1974

Analytical Analysis of the Forced Vibration of the Sprung Mass of a Reciprocating Hermetic Compressor, Including comparison with Experiment

G. W. Gatecliff
Tecumseh Products Company

Follow this and additional works at: http://docs.lib.purdue.edu/icec

http://docs.lib.purdue.edu/icec/125

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/Herrick/Events/orderlit.html
ANALYTIC ANALYSIS OF THE FORCED VIBRATION OF THE SPRUNG MASS OF A RECIPROCATING HERMETIC COMPRESSOR, INCLUDING COMPARISON WITH EXPERIMENT

George W. Gatecliff, Ph.D., Chief Research Engineer
Tecumseh Products Research Laboratory, Ann Arbor, Michigan

ABSTRACT

A mathematical analysis is made of compressor motion within a housing as a function of design and operating parameters. The forces considered include pressure forces, inertia forces, unbalance forces due to crankshaft eccentricity and counterweights, and restoring forces exerted by the mounting springs. The governing equations are obtained by applying the linear and rotational form of Newton's Second Law in each of three mutually perpendicular directions. The solution of the steady-state portion of the problem yields the linear and angular displacement and velocity of the sprung mass about each axis as a function of crankshaft position.

The instrumentation used to measure the vibration of the sprung mass relative to the housing is described and experimental traces illustrating the vibratory motion are presented.

INTRODUCTION

High-speed hermetic compressors are designed and manufactured for many years of dependable, maintenance-free service. Particular attention must be paid to the design of the mounting system to insure conditions of load compatible with long life and noiseless operation. The dynamic characteristics of the piston/connecting rod/crankshaft linkage, the pressure forces within the cylinder, and the flexural characteristics of the suspension system bear directly on this problem. A model incorporating each of these aspects offers a means of seeking a balance between the conflicting requirements for a suspension with sufficient flexibility to produce quiet operation and adequate stiffness to prevent objectionable transient behavior when operation ceases.

MATHEMATICAL MODEL

The slider-crank mechanism consists of a piston, connecting rod and crankshaft as shown in Fig. 1 for the purpose of analysis. Its motion is determined by the force exerted on the piston, \(P \), the torque applied to the rotor, \(T \), and the physical constants describing the system. The ideal pressure-volume diagram provides a means of calculating cylinder pressure as a function of crankshaft position consistent with the accuracy required here.

Beginning with the free body diagram of the piston shown in Fig. 2, the following equations result:

\[
F_X = M_A X, \quad F_{3PX} + F_{WP} - P = M_{ARP} \quad (1)
\]

\[
F_Y = M_A Y; \quad F_{WP} - F_{3PY} = 0 \quad (2)
\]

The analysis outlined below applies for the free body diagram of the connecting rod shown in Fig. 3.

\[
\sum F_X = M_A X; \quad F_{23X} - F_{3PX} = M_{CR CGX} \quad (3)
\]

\[
\sum F_Y = M_A Y; \quad F_{23Y} + F_{3PY} = M_{CR CGY} \quad (4)
\]
Fig. 3 Free body diagram of connecting rod

\[\sum T_{CG} = IA; \quad F_{3PY}(L-M)\cos(180-\phi) \]
\[- F_{3PX}(L-M)\sin(180-\phi) \]
\[- F_{23YM} \cos(180-\phi) \]
\[- F_{23XM} \sin(180-\phi) \]
\[= I_{CR}A_3 \]

(5)

For the free body diagram of the crankshaft rotor assembly shown in Fig. 4:

\[\sum T_{AR} = IA; \quad F_{23X}R \sin\phi - F_{23Y}R \cos\phi \]
\[+ T = I_{CSR}A_2 \]

(6)

Utilizing the following kinematic relationships by Cowie (1), it is apparent that \(\phi \), \(w_3 \) and \(A_3 \), and therefore \(A_{CGX}, A_{CGY} \) and \(A_P \) are expressible as functions of \(\phi, w_2, A_2, R, L, \) and \(M \) for the linkage pictured in Fig. 5.

Fig. 4 Free body diagram of crankshaft rotor assembly

Upon examination of these relations, it is apparent that for known values of \(P, T, e \) and \(w_2 \), the analysis of the slider-crank reduces to the solution of five simultaneous linear equations in terms of the variables \(F_{3PX}, F_{3PY}, F_{23X}, F_{23Y} \) and \(A_2 \).

Applicability of this procedure arises from the continuous nature of the slider-crank motion and can be made as accurate as desired by choosing smaller and smaller values of \(\Delta \phi \). In practice, a value of \(\Delta \phi \) equal to 2 crankshaft degrees of rotation permits the assumption of constant angular acceleration between steps, thereby allowing the amount of time \(t \) required to advance \(\Delta \phi \) degrees to be calculated as follows:

\[t = \frac{-w_2I + \sqrt{w_2^4 + 2A_{2I}w_2I}}{A_{2I}} \]

for \(A_{2I} \neq 0 \)

\[t = \frac{\Delta \phi}{w_2I} \]

for \(A_{2I} = 0 \)
The angular velocity at the end of time increment \(t \) is determined by the following relationship:

\[
\omega_2 = A_2 t + \omega_{2i}
\]

Once \(\omega_2 \) and \(A_2 \) are known as functions of \(\theta \), the \(X \) and \(Y \) components of the forces associated with unbalance sections of the crankshaft may be calculated. The following equations apply for the unbalanced mass depicted in Figure 6:

\[
\begin{align*}
F_R &= m U U \omega_2^2 \\
F_T &= m U U A_2 \\
F_{xU} &= F_R \cos(\theta + \psi) + F_T \sin(\theta + \psi) \\
F_{yU} &= F_R \sin(\theta + \psi) - F_T \cos(\theta + \psi)
\end{align*}
\]

![Fig. 6 Schematic diagram of an unbalanced mass](image)

The resultant \(X \)-direction force in the bearings at each position in the cycle is given by the expressions which follow. They are obtained by summing moments about the main and cage (outboard) bearings respectively.

\[
\begin{align*}
FCBX &= \sum_{I=1}^{N} \frac{F_{xU} (DBB - D_T)}{DBB} - F_{23X} DT \\
FMBX &= \sum_{I=1}^{N} \frac{F_{xU}(DBB - D_T) - F_{23X}(DBB - DT)}{DBB}
\end{align*}
\]

Similarly, for the \(Y \)-direction:

\[
\begin{align*}
FCBY &= \sum_{I=1}^{N} \frac{F_{yU} (DBB - D_T)}{DBB} - F_{23Y} DT \\
FMBY &= \sum_{I=1}^{N} \frac{F_{yU}(DBB - D_T) - F_{23Y}(DBB - DT)}{DBB}
\end{align*}
\]

The time-varying pressure, cylinder wall, and bearing forces obtained from this analysis are the disturbances giving rise to the vibratory motion of the sprung mass of the compressor. Fig. 7 shows the geometric relationship between the point of application of the various forcing functions and the center of gravity of the sprung mass.

\[
XC = X_P - XB
\]

![Fig. 7 Free body diagram of mechanism and pressure forces acting on the sprung mass of the compressor](image)

The geometric relationship of the forces exerted on the sprung mass of the compressor by the suspension system is depicted in Fig. 8.

![Fig. 8 Free body diagram of suspension system forces acting on the sprung mass of the compressor](image)

The following relationships result from the application of the linear and rotational form of Newton's Second Law in the \(X \), \(Y \) and \(Z \) directions about the center of gravity of the sprung mass:

\[
\begin{align*}
\sum F_X &= 0; \quad -FMBX - FCBX + FPRESS \\
&\quad + FS1X + FS2X + FS3X \\
&\quad + PSLX - m\ddot{x} = 0
\end{align*}
\]
\[\sum F_Y = 0; \quad -FMBY - FCBY + FW \]
\[+FS1Y + FS2Y + FS3Y \]
\[+FSLY - mY = 0 \]
\[\sum F_Z = 0; \quad FSIZ + FS2Z + FS3Z \]
\[+FSLZ - mZ = 0 \]
\[\sum M_X = 0; \quad -FMBY ZMB + FW ZC \]
\[-FCBY ZCB - FS1Z YSL \]
\[+FS2Z YS2 + FS1Y ZS \]
\[+FS2Y ZS + FS3Y ZS \]
\[-FSLZ YSL + FSLY(ZS - ZSL) \]
\[\sum M_Y = 0; \quad FMBX ZMB + FCBX ZCB \]
\[-FPRESS ZC - FS1Z XSL \]
\[+FS2Z XS2 + FS3Z XS3 \]
\[-FS1X ZS - FS2X ZS \]
\[-FS3X ZS + FSLZ XSL \]
\[-FSLX(ZS - ZSL) - I_X \dddot{x} = 0 \]
\[\sum M_Z = 0; \quad FMBX XB + FCBX XB \]
\[+FW XC + FS1Y XSL \]
\[+FS2Y XS2 + FS3Y XS3 \]
\[+FS1X YSL - FS2X YS2 \]
\[-FSLY XSL + FSLX YSL \]
\[-T - I_Z \dddot{z} = 0 \]
\[\text{Utilizing the following relationships which are approximately true for small displacements about the mean and collecting terms, the problem reduces to the solution of six nonhomogeneous coupled second-order linear differential equations:} \]
\[\text{FPRESS} = \pi R_C^2 \left(P_{CYL} - P_{SUC} \right) \]
\[FS1X = -KSLX (X + YS1 \epsilon_Z - ZS \epsilon_X) \]
\[FS1Y = -KSLY (Y + XSL \epsilon_Z + ZS \epsilon_X) \]
\[FS1Z = -KSLZ (Z + YSL \epsilon_X - XSL \epsilon_Y) \]
\[FS2X = -KSLZ (X + YS2 \epsilon_Z - ZS \epsilon_Y) \]
\[FS2Y = -KSLY (Y + XS2 \epsilon_Z + ZS \epsilon_X) \]
\[FS2Z = -KSLZ (Z + XS2 \epsilon_X - XS2 \epsilon_Y) \]
\[\text{FS3X} = -KSLZ (X - ZS \epsilon_Y) \]
\[\text{FS3Y} = -KSLY (Y - XS3 \epsilon_Z + ZS \epsilon_X) \]
\[\text{FS3Z} = -KSLZ (Z + XS3 \epsilon_Y) \]
\[\text{FSLX} = -KSLX (X + YSL \epsilon_Z) \]
\[\text{FSLY} = -KSLY (Y - XSL \epsilon_Z) \]
\[\text{FSLZ} = -KSLZ (Z - YSL \epsilon_X + XSL \epsilon_Y) \]
\[\text{The resulting formulation may be written as follows using matrix notation:} \]
\[[M] \dddot{\{ u \}} + [K] \{ u \} = \{ F \} \]
\[\text{where} \]
\[n(1) = X \]
\[n(2) = Y \]
\[n(3) = Z \]
\[n(4) = \epsilon_X \]
\[n(5) = \epsilon_Y \]
\[n(6) = \epsilon_Z \]
\[M_{ij} = 0 \text{ for } i \neq j \]
\[M_{11} = M_{22} = M_{33} = m \]
\[M_{44} = I_X \]
\[M_{55} = I_Y \]
\[M_{66} = I_Z \]
\[F(1) = -FMBX - FCBX + FPRESS \]
\[F(2) = -FMBY - FCBY + FW \]
\[F(3) = 0 \]
\[F(4) = -FMBY ZMB - FCBY ZCB \]
\[+FW ZC \]
\[F(5) = +FMBX ZMB + FCBX ZCB \]
\[-FPRESS ZC \]
\[F(6) = +FMBX XB + FCBX XB \]
\[+FW XC - T \]
\[\text{and the individual values of } K_{ij} \text{ are found by substituting equations 13 - 25 in equations 7 - 12 and collecting terms.} \]
The steady periodic behavior of the sprung mass under given operating conditions may be obtained with the aid of a Fourier series representation of the forcing functions in the column matrix \(\{ F \} \) over the period of one crankshaft revolution. The problem reduces to the following form utilizing this technique:

\[
[M] \{ \ddot{u} \} + [K] \{ n \} = \sum_{j=1}^{b} \left(A_j \sin w_j t + B_j \cos w_j t \right)
\]

A complete presentation of the details associated with the solution of this formulation may be found in Meirovitch (2). Figs. 9 - 14 show the calculated results for a typical case.
EXPERIMENTAL DATA

Experimental measurements were conducted utilizing a light cell to measure the vibratory motion of the sprung mass. A small projection was attached to the crankcase and the relative motion between the sprung mass and the shell was sensed by measuring the travel of the projection's shadow back and forth across the light cell. Fig. 15 shows a highly simplified schematic diagram of this apparatus.

A sample of the output from this transducer illustrating the X-direction translation is shown in Fig. 16. The scale is such that each major division on the picture represents 0.0068 in. of movement between the sprung mass and the shell. As a result, Fig. 16 indicates a peak-to-peak travel of 0.0204 in., compared to a calculated value of 0.0260 depicted in Figure 9.

The most obvious difference between Figs. 9 and 16 is the substantial amount of high frequency content in the experimental trace. In an effort to ascertain the predominant frequencies of the trace in Fig. 16, the wave form was passed through a filter capable of eliminating all frequencies with the exception of those between preset limits. Figs. 17 and 18 were produced in this way. Fig. 17 displays the original wave form together with the contribution to the wave form from vibrations between 40 and 95 Hz. The compressor was operating at a crankshaft frequency of 56.7 Hz. during the time Figs. 17 and 18 were recorded. As a
result, Fig. 17 depicts the original waveform on the bottom and the fundamental component on the top. The peak-to-peak height of this trace is 0.0272 in., which compares favorably with the 0.0260 in. distance shown in Fig. 9.

Fig. 18 depicts the original waveform together with the contributions to the waveform from vibrations with frequencies between 600 and 1000 Hz. Frequencies within this range are often associated with a higher-order vibratory mode of the shell. It may be noted that there are 12 cycles of the higher frequency vibration within each cycle of the fundamental. As a result, a shell vibrating at this frequency would have 12 nodes and 12 antinodes about its periphery.

A clamp placed across the shell such that the two contact points do not fall on antinodes and are separated by six cycles of vibration should substantially modify this motion. Fig. 19 depicts the transducer output with the shell clamped in this manner. The audible noise associated with the test unit dropped noticeably with the clamp in place. This, together with the measurable difference between Fig. 18 and 19, was taken as verification that the high frequency component of the transducer trace was a result of shell vibration. Using the upper trace of Fig. 18, it appears the peak-to-peak amplitude of the shell at the location of the transducer was 0.00136 in.

CONCLUDING REMARKS

The work described herein is little more than a start on an involved problem. The initial results are neither so precise that improvement is impossible nor so inexact as to be valueless. The calculation sequence is a small part of a larger study to evaluate the suspension forces contributing to shell vibration just as the slider-crank model (3) is a subpart of this effort. Much remains for future consideration including the subject of transient response.

LIST OF SYMBOLS

\[A_{CGX} \] Acceleration of the connecting rod center of gravity in the X-direction
\[A_{CGY} \] Acceleration of the connecting rod center of gravity in the Y-direction
\[A_p \] Acceleration of the piston in the X-direction
\[A_2 \] Crankshaft angular acceleration
\[A_{2I} \] Crankshaft angular acceleration at the start of a rotational increment
\[DBB \] Distance between the main and cage bearings.
\[DT \] Distance between the center of the throw bearing and the main bearing as measured parallel to the center line of the crankshaft
\[D_I \] Distance between the center of mass of the Ith unbalanced mass and the main bearing measured parallel to the center line of the crankshaft
\[e_u \] Eccentricity of unbalanced mass with respect to the center line of the crankshaft
\[F_{23X} \] Force exerted on the connecting rod in the X-direction by the crankshaft
\(F_{23Y} \) Force exerted on the connecting rod in the Y-direction by the crankshaft
\(F_{3PX} \) Force exerted on the piston in the X-direction by the connecting rod
\(F_{3PY} \) Force exerted on the piston in the Y-direction by the connecting rod
\(F_{CBX} \) X-direction component of the force exerted on the crankshaft by the cage bearing
\(F_{CBY} \) Y-direction component of the force exerted on the crankshaft by the cage bearing
\(F_{MBX} \) X-direction component of the force exerted on the crankshaft by the main bearing
\(F_{MBY} \) Y-direction component of the force exerted on the crankshaft by the bearing
\(F_{PRESS} \) Force exerted on the sprung mass of the compressor due to pressure forces
\(F_R \) Radial component of the unbalanced force
\(F_{SIX} \) Force exerted on the sprung mass of the compressor by spring I in the X-direction
\(F_{SIY} \) Force exerted on the sprung mass of the compressor by spring I in the Y-direction
\(F_{SIZ} \) Force exerted on the sprung mass of the compressor by spring I in the Z-direction
\(F_{SLX} \) Force exerted on the sprung mass of the compressor by the shock loop in the X-direction
\(F_{SLY} \) Force exerted on the sprung mass of the compressor by the shock loop in the Y-direction
\(F_{SLZ} \) Force exerted on the sprung mass of the compressor by the shock loop in the Z-direction
\(F_T \) Tangential component of the unbalanced force
\(F_{WP} \) Force exerted on the piston normal to the wall
\(F_{YU} \) Y-direction component of the unbalanced force
\(I_{CR} \) Connecting rod moment of inertia about its center of gravity
\(I_{CSR} \) Moment of inertia of the crankshaft and rotor about their axis of rotation
\(I_X \) Moment of inertia of the sprung mass about an axis passing through its center of gravity parallel to the X-direction
\(I_Y \) Moment of inertia on the sprung mass about an axis passing through its center of gravity parallel to the Y-direction
\(I_Z \) Moment of inertia on the sprung mass about an axis passing through its center of gravity parallel to the Z-direction
\(K_{SIX} \) Effective X-direction spring constant of spring I
\(K_{SIY} \) Effective Y-direction spring constant of spring I
\(K_{SIZ} \) Effective Z-direction spring constant of spring I
\(K_{SLX} \) Effective X-direction spring constant of the shock loop
\(K_{SLY} \) Effective Y-direction spring constant of the shock loop
\(K_{SLZ} \) Effective Z-direction spring constant of the shock loop
\(L \) Length between connecting rod bearing centers
\(M \) Distance from crankshaft bearing center of gravity
\(M_{CR} \) Connecting rod mass
\(M_p \) Piston mass
\(m \) Mass of sprung mass
\(m_u \) Unbalanced mass
\(\Delta \phi \) Increment of crankshaft rotation
\(\theta_X \) Rotational displacement of the sprung mass about the X-axis
\(\theta_Y \) Rotational displacement of the sprung mass about the Y-axis
\(\theta_Z \) Rotational displacement of the sprung mass about the Z-axis
\(p \) Phase angle between the crankshaft throw and the radial location of the unbalanced mass
\(p_{CYL} \) Cylinder pressure
\(p_{SUC} \) Suction line pressure
R Crankshaft throw
RC Cylinder radius
T Torque exerted on the rotor by the motor
W2 Crankshaft angular velocity
W21 Crankshaft angular velocity at the start of a rotational increment
X Linear displacement of the center of gravity of sprung mass in the X-direction
Y Linear displacement of the center of gravity of sprung mass in the Y-direction
Z Linear displacement of the center of gravity of sprung mass in the Z-direction

BIBLIOGRAPHY