Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

1-1-2004

COMPILER OPTIMIZATION
ORCHESTRATION FOR PEAK
PERFORMANCE

Zhelong Pan

Rudolf Eigenmann

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Pan, Zhelong and Eigenmann, Rudolf, "COMPILER OPTIMIZATION ORCHESTRATION FOR PEAK PERFORMANCE"
(2004). ECE Technical Reports. Paper 123.
http://docs.lib.purdue.edu/ecetr/123

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages

COMPILER OPTIMIZATION
ORCHESTRATION FOR PEAK
PERFORMANCE

ZHELONG PAN
RUDOLF EIGENMANN

TR-ECE 04-01
JANUARY 2004

SCHOOL OF ELECTRICAL
l l RD l ' E AND COMPUTER ENGINEERING
PURDUE UNIVERSITY
UNIVERSITY WEST LAFAYETTE, IN 47907-2035

COMPILER OPTIMIZATION ORCHESTRATION
FOR PEAK PERFORMANCE

Zhelong Pan Rudolf Eigenmann !

School of Electrical and Computer Engineering
1285 Electrical Engineering Building
Purdue University

West Lafayette, IN 47907-1285

!This material is based upon work supported in part by the National Science Foundation

under Grant No. 9703180, 9975275, 9986020, and 9974976.

LIST OF TABLES
LIST OF FIGURES

ABSTRACT

1 Introduction and Motivation

i

TABLE OF CONTENTS

2 Understanding the Performance Behavior of Compiler Optimizations

2.1 Experimental Environment

2.2 Performance of Optimization Levels O0 through O3

2.3 Performance of Individual Optimizations

2.4 Selected Harmful GCC Optimizations

241

Strict Aliasing

2.4.2 GCSE (Global Common Subexpression Elimination)

24.3

If=Conversion

3 Algorithms for Orchestrating Compiler Optimizations

4 Conclusions

LIST OF REFERENCES

Page
iii

v

N e = e

1ii

LIST OF TABLES

Table Page

2.1 Average speedups of the optimization levels, relative to O0. In each entry,
the first number is the arithmetic mean, and the second one is the geo-
metric mean. The averages without ART are put in parentheses for the
floating point benchmarks on the Pentium IV machine. 8

3.1 Algorithms for Orchestrating Compiler Optimizations 20

iv

LIST OF FIGURES

Figure

2.1

2.2

2.3

24

2.5
2.6

2.7
3.1

Execution time of SPEC CPU 2000 benchmarks under different optimiza-
tion levels compiled by GCC. (Four floating point benchmarks written in
f90 are not included, since GCC does not compile them.) Each benchmark
has four bars for O0 to O3. (a) and (c) show the integer benchmarks; (b)
and (d) show the floating point benchmarks. (a) and (b) are the results on

Page

a Pentium IV machine; (c¢) and (d) are the results on a SPARC II machine. 7

Relative improvement percentage of all individual optimizations within O3

of GCC . . . s,

Relative improvement percentage of all individual optimizations within O3

of GCC . . . e

Relative improvement percentage of all individual optimizations within O3
of GCC. SIXTRACK on a Pentium IV machine.

Relative improvement percentage of strict aliasing.

Relative improvement percentage of global common subexpression elimi-

Relative improvement percentage of if-conversion.

Speedup improvement of three algorithms relative to O1. (a) and (c) show
the integer benchmarks; (b) and (d) show the floating point benchmarks.
(a) and (b) are the results on a Pentium IV machine; (c) and (d) are the
results on a SPARC II machine. oL

ABSTRACT

Although compile-time optimizations generally improve program performance,
degradations caused by individual techniques are to be expected. Feedback-directed
optimizations have recently begun to address this issue, by factoring runtime in-
formation into the decision process of which compiler optimization to apply where
and when. While improvements for small sets of optimization techniques have been
demonstrated, little empirical knowledge exists on the performance behavior of the
large number of today’s optimization techniques. This is especially true for the in-
teraction of such techniques, which we have found to be of significant importance
in navigating the search space of the best combination of techniques. The contribu-
tion of this paper is in (1) providing such empirical knowledge and (2) developing
algorithms for efficiently navigating and pruning the search space.

To this end, we evaluate the optimization techniques of GCC on both a Pentium
IV machine and a SPARC II machine, by measuring the performance of the SPEC
CPU2000 benchmarks under different compiler flags. We analyze the performance
losses that result from individual optimizations. We then present three heuristic
algorithms that search for the best combination of compiler techniques using measured

runtime as feedback.

1. INTRODUCTION AND MOTIVATION

Compiler optimizations for modern architectures have reached a high level of so-
phistication. Although they yield significant improvements in many programs, the
potential for performance degradation in certain program patterns is known to com-
piler researchers and many users. Potential degradations are well understood for some
techniques, while they are unexpected in other cases. For example, the difficulty of
employing predicated execution or parallel recurrence substitutions is evident. On
the other hand, performance degradation as a result of alias analysis is generally

unexpected.

The state of the art is for compiler writers to let the user deal with this problem.
Through command line flags, the user must decide which optimizations are to be
applied in a given compilation run. Clearly, this is not a long-term solution. As
compiler optimizations get increasingly numerous and complex, this problem must

find an automated solution.

Compile-time performance prediction models are unable to deliver the necessary
accuracy in deciding when and where best to apply what optimization technique - a
process we refer to as orchestration of compiler optimizations. Among the main rea-
sons are the unavailability of program input data, the unknown machine/environment
parameters, and the difficulty of modeling interactions of optimization techniques.
Runtime information is necessary for more accurate decisions. Many recent tech-
niques have begun to exploit this potential. They range from state-of-the-art profiling

techniques to feedback-directed optimizations to fully dynamic, adaptive compilation.

We are still only at the beginning of this development. T'wo important milestones
towards advanced techniques that dynamically orchestrate compiler optimizations are

(1) the quantitative understanding of the performance effects of today’s compiler opti-

mizations and (2) the development of efficient methods that find the best combination
of optimization techniques, given a specific program, machine, and compiler. The first
issue is important, as we must understand and focus attention on those techniques
that may cause large negative effects in (sections of) today’s computer applications.
The second issue is important, as the number of optimization techniques in any re-
alistic compiler setting is so large that it is prohibitive to “try out all combinations”
in hope to find the best. The contributions of the present paper are in providing
answers and solutions to these two issues.

The specific contributions of this paper are as follows:

1. We evaluate the performance behavior of the GNU Compiler Collection (GCC)
and its optimization options on both a Pentium I'V machine and a SPARC II ma-
chine using the SPEC CPU2000 benchmarks. We analyze the situations where
substantial performance losses occur. They are effects of the optimizations alias

analysis, global common subexpression elimination, and if conversion.

2. We describe and evaluate three algorithms that maximize performance by or-
chestrating compiler optimizations in a better way. In our implementation,
the algorithms are driver scripts that tune the optimization options of existing
compilers. The best algorithm improves the performance up to 6.4% for integer
benchmarks (3.0% on average) and up to 183.8% for floating point benchmarks
(24.1% on average) on the Pentium IV machine, over O3, the highest GCC
optimization level. It improves the performance up to 8.8% for integer bench-
marks (3.3% on average) and up to 13.8% for floating point benchmarks (4.4%
on average) on the SPARC II machine.

The present paper relates to several recent contributions: In an effort to
consider the interactions between optimizations, Wolf, Maydan and Chen developed
an algorithm that applies fission, fusion, tiling, permutation and outer loop unrolling
to optimize loop nests [14]. They also use a performance model to estimate caches

misses, software pipelining, register pressure and loop overhead. Similarly, Click and

Cooper showed that combining constant propagation, global value numbering, and

dead code elimination leads to more optimization opportunities [4].

In an effort to avoid the inaccuracy of compile-time models, Whaley and Dongarra
select optimizations using actual execution time. They developed ATLAS to generate
numerous variants of matrix multiplication and to find the best one on a particular
machine [13]. Similarly, Iterative Compilation [8] searches through the transformation

space to find the best block sizes and unrolling factors.

Some empirical methods were introduced to tune the optimizations in the com-
piler. Meta optimization [10] uses machine-learning techniques to adjust the compiler
heuristics automatically. Cooper uses a biased random search to discover the best or-
der of optimizations [5]. To reduce the expensive search time, the Optimization-Space
Exploration (OSE) compiler [11] defines sets of optimization configurations and an
exploration space at compile-time. According to compile-time performance estima-
tion, this compiler prunes the search space to find the best optimization configuration

quickly.

To choose options intelligently, Granston and Holler presented an automatic sys-
tem, which makes application-specific recommendations for use with PA-RISC compil-
ers. They developed heuristics to deterministically select good optimizations, based

on information from the user, the compiler and the profiler [6].

Open Issues: Most approaches have focuses on a relatively small number of opti-
mization techniques [4,10,13,14], where the need for considering their interactions has
not been compelling. When considering interactions, the search space for finding the
best combination of techniques increases dramatically. Interactions are very difficult
to model, which adds even more complexity to the approach of orchestrating opti-
mizations through compile-time modeling, pursued by several researchers [11,13,14].
General pruning techniques of the search space must be developed. They are nec-
essary complements of methods that explore the full space [5,10] or that deal with

specialized environments [6,11]. These techniques need to be developed based on

experience with realistic applications, in addition to the kernel benchmarks used in
many initial contributions [4,5,14].

Addressing these issues, this paper sets the goals of: (1) quantitatively understand-
ing the performance behavior of the large number of today’s optimization techniques
on realistic programs and, in particular, understanding their interactions; (2) devel-
oping efficient algorithms that can feed this information back into the compiler and

orchestrate the best combination of techniques.

We have approached these two milestones as follows: In order to quanti-
tatively understand the performance effects of a large number of compiler techniques,
we have measured the performance of the SPEC CPU2000 benchmarks under differ-
ent compiler configurations. We have obtained these results on two different com-
puter architectures and two different compilers, giving answers to the questions (1)
What optimizations may not always help performance? How large is the degrada-
tion? (2) How and to what degree do optimizations interact with each other? (3) Do
the optimizations have different effects on integer benchmarks and on floating-point

benchmarks? (4) Is the performance degradation specific to a particular architecture?

Although [15] shows model-driven optimizations may produce comparable perfor-
mance as empirical optimizations, there is some difficulty in constructing a perfect
performance model applicable to all optimizations. Moreover, it is not easy to es-
timate the model parameters. [11] displays that optimization evaluation by the real
execution time is much better than by its performance model. Therefore, for simplic-
ity, we use the actual execution time as the feedback in this paper. We evaluate the
whole program by executing it under the SPEC ref dataset, which gives the potential

peak performance by automatically orchestrating optimizations.

Using this information as feedback, we have developed several search algorithms
that orchestrate optimization techniques in a compiler. They find a superior opti-
mization combination for a particular application and machine, while maximizing the
application performance. The optimization parameters tuned by our algorithms are

those available to the user through compiler options. The algorithms make multiple

runs of an application, finding the best possible options. The “trivial” solution of
trying all combinations of techniques would be infeasible, as it is of complexity O(2")
even for n on-off optimizations. Given the potential interactions, all on and off com-
binations would need to be tried, leading to days or months of test times per program
for even modest numbers of optimization techniques and application run times. The
interaction of optimization techniques is a key motivation for our goal of developing
efficient search algorithms. We have observed many situations, where individual opti-
mization techniques degraded performance, but switching all of them off led to further
degradation. These observations are consistent with the work presented in [8], which
shows that the execution time of matrix multiplication is not smooth across tile sizes
and unroll factors. In this paper, we will evaluate three different algorithms that are
of reasonable complexity and yield significant application performance improvements.

The remainder of this paper is organized as follows: In Section 2, we
characterize the performance behavior of the compiler optimization techniques of the
GCC compiler . We also analyze the situations where performance degrades substan-
tially as a result of individual optimizations and discuss the need and opportunity
for better orchestration of these techniques in the compiler. Section 3 presents and
evaluates three heuristic algorithms that orchestrate the compiler optimizations, so as

to achieve the best possible application performance. Section 4 presents conclusions.

2. UNDERSTANDING THE PERFORMANCE
BEHAVIOR OF COMPILER OPTIMIZATIONS

2.1 Experimental Environment

We take our measurements using the SPEC CPU2000 benchmarks. To differen-
tiate the effect of compiler optimizations on integer (INT) and floating-point (FP)

programs, we display the results of these two benchmark categories separately.

We measured GCC 3.3 ! on two different computer architectures: a SPARC II
machine and a Pentium IV machine. Among all the FP benchmarks, FACEREC,
FMA3D, GALGEL, and LUCAS are written in f90. Because GCC cannot currently
handle f90, we do not measure them in this paper. We chose GCC even though it may
be outperformed by vendor-specific compilers. Our reasons are that GCC is widely
used, has many easily controlled compiler optimizations, is portable across many dif-
ferent computer architectures, and its open-source nature helps us to understand the
performance behavior. To verify that our results hold beyond the GCC compiler, we
have conducted similar experiments with compilers from Sun Microsystems. We have
found that these compilers generally outperform GCC, that many of their options
cause significant performance degradation as well, and that our orchestration algo-
rithms can yield substantial improvements. Hence, our conclusions are valid for these

compiler as well.

To ensure reliable measurements, we ran our experiments multiple times. In
several of the subsequent figures we indicate the degree of fluctuation through “error
bars”. This fluctuation is relevant where the performance gains and losses of an

optimization technique are small.

'For compatibility, we use g++ 2.95.3 for EON, the only C++ benchmark in SPEC CPU2000.

Execution Time / Seconds

Execution Time / Seconds

In this paper, we have measured the impact of compiler optimizations on the

overall program performance. For our ultimate goal of tuning the options on the

basis of individual code sections, a more fine-grained analysis will be of interest. We

expect that these results would be similar to our overall measurements, although

potentially different in magnitude.

2.2 Performance of Optimization Levels O0 through O3

1400

1200

1000

800

600

400

200

(@) INT benchmarks on a Pentium IV machine

5000
4500
4000
3500
3000
2500
2000
1500
1000
500
0

2000
o 1800
12
gleoo =
2 1400 — —
. "
~ 1200 +
[}
£ 1000 T
h =
c 800
i)
S 600
T 3
x 400
L
-+ 200 + WW
0
[SN] > < Qa 9 a %5 = o = < = © 5 H = 3 = s
£ 8§ 8 586553 E ¢ 3% g & % S £ 2 £ & &8
a o g o S 5} D =

(b) FP benchmarks on a Pentium IV machine

25000
12
T 20000 m
(=]
()
= [0
n
= - I I — 15000
° -
£
T =
1 < 10000
9
5
[(8]
£ 5000
T i
L B g_ =] g % g 8 k] _Zc) = é}
N 2 S 2 8 2 B 5 2 5 3 5 2 3 € 9o > @8 =
o o) © o = <) IS =] = =
§E8 &8 E gy g °d 5 ° g ° F F 7 s
() INT benchmarks on a SPARC |l machine (d) FP benchmarks on a SPARC |l machine

Fig. 2.1. Execution time of SPEC CPU 2000 benchmarks under differ-
ent optimization levels compiled by GCC. (Four floating point bench-
marks written in f90 are not included, since GCC does not compile
them.) Each benchmark has four bars for O0 to O3. (a) and (c) show
the integer benchmarks; (b) and (d) show the floating point bench-
marks. (a) and (b) are the results on a Pentium IV machine; (¢) and
(d) are the results on a SPARC II machine.

GCC provides four optimization levels, O0 through O3 [1], each applying a larger
number of optimization techniques. OO0 does not apply any substantial code opti-

mizations. From Figure 2.1, we make the following observations.

1. There is consistent, significant performance improvement from O0 to O1. How-
ever, O2 and O3 do not always lead to additional gains; in some cases, perfor-
mance even degrades. (In Section 2.4 we will analyze the significant degradation
of ART). For different applications, any one of the three levels O1 through O3

may be the best.

Table 2.1
Average speedups of the optimization levels, relative to O0. In each
entry, the first number is the arithmetic mean, and the second one is
the geometric mean. The averages without ART are put in parenthe-
ses for the floating point benchmarks on the Pentium IV machine.

INT FP INT FP

Pentium IV Pentium IV SPARC II | SPARC II
O1 | 1.49/1.47 | 1.74(1.77)/1.65(1.67) | 2.32/2.28 | 3.17/2.88
02 | 1.53/1.50 | 1.81(1.95)/1.60(1.81) | 2.50/2.43 | 4.40/3.78
03 | 1.55/1.51 | 1.80(1.94)/1.60(1.80) | 2.58/2.52 | 4.38/3.79

2. As expected, Table 2.1 shows that O2 is better on average than O1? and, for
the integer benchmarks, O3 is better than O2. However, for the floating point
benchmarks O2 is better than or close to O3. Most of the performance is gained

from the optimizations in level O1. The performance increase from O1 to O2 is

bigger than that from O2 to O3.

3. Floating point benchmarks benefit more from compiler optimizations than in-
teger benchmarks. Possible reasons are that floating point benchmarks tend
to have fewer control statements than integer benchmarks and are written in a

more regular way. Six of them are written in Fortran 77.

2except the anomalous ART, to be discussed in Section 2.4

4. Optimizations achieve higher performance on the SPARC II machine than on
the Pentium IV machine. Possible reasons are the regularity of RISC versus
CISC instruction sets and the fact that SPARC II has more registers than
Pentium IV. The latter gives the compiler more freedom to allocate registers,

resulting in less register spilling on the SPARC II machine.

5. EON, the only C++ benchmark, benefits more from optimization than all other
integer benchmarks. On the Pentium IV machine, the highest speedup of EON
is 2.65, while the highest one among other integer benchmarks is 1.73. On the
SPARC II machine, the highest speedup of EON is 3.70, while the highest one

among other integer benchmarks is 3.47.

2.3 Performance of Individual Optimizations

In this section, we discuss the performance of all individual optimization tech-
niques included in the levels discussed previously. GCC includes additional optimiza-
tion techniques, not enabled by any O-level. We have measured these options as well
and found that their effect is generally small. They are not discussed further.

We chose O3 — which generally has the highest performance — as the baseline. We
turned off each individual optimization zzx, by using the corresponding GCC com-
piler flag “-fno-zxx”. We display the results using the metric Relative Improvement

Percentage, defined as follows:

_ tion_time_without
RIP = (seationtine without e 1) 5
RIP represents the percent increase of the program execution time when disabling
a given optimization technique. A larger RIP value, indicates a bigger positive impact
of the technique.
Figures 2.2, 2.3, and 2.4 show the results. We make a number of observations and

discuss opportunities and needs for better orchestration of the techniques.

. . Relative Improvement Percentage
Relative Improvement Percentage Relative Improvement Percentage P 9
N Ao o & K&
P ,
F—t—t— f

!
b Pk orvwsOOo AdbonvrowbRES "~

DDD JO €O UIIIM SUON

~ezruarydo enprarpur e jo a8ejusdiod justosorduil ATYR[OY "Z'g "SI
nnued e uo 470ML ()

aulyzew A|w

base(-O3)
rename-registers
inline-functions
align-labels
align-loops
align-jumps
align-functions
strict-aliasing
reorder-functions
reorder-blocks
peephole2
caller-saves
sched-spec
sched-interblock
schedule-insns2
schedule-insns
regmove
expensive-optimizations
‘delete-null-pointer-checks
gcse-sm

gcse-Im

gcse

rerun-loop-opt
rerun-cse-after-loop
cse-skip-blocks
cse-follow-jumps
strength-reduce
optimize-sibling-calls
force-mem
cprop-registers
guess-branch-probability
delayed-branch
if-conversion2
if-conversion
crossjumping
loop-optimize
thread-jumps
merge-constants
defer-pop

—
=y

&

== a | ‘mmm‘g‘ Lo ﬁ_T e

=1 s DU ‘D‘U

aulyJew A wnnuede uo X31HOA (@)

base(-03)
rename-registers
inline-functions
align-labels
align-loops
align-jumps
align-functions
strict-aliasing
reorder-functions
reorder-blocks
peephole2
caller-saves
sched-spec
sched-interblock
schedule-insns2
schedule-insns
regmove
expensive-optimizations

delete-null-pointer-checks

gcse-sm

gcse-Im

gcse

rerun-loop-opt
rerun-cse-after-loop
cse-skip-blocks
cse-follow-jumps
strength-reduce
optimize-sibling-calls
force-mem
cprop-registers
guess-branch-probability
delayed-branch
if-conversion2
if-conversion
crossjumping
loop-optimize
thread-jumps
merge-constants
defer-pop

aulyJew || DYVdSe uo 1Sdv ()

=T 1=

— - — } base(-03)
E

rename-registers
inline-functions
align-labels
align-loops
align-jumps
align-functions
strict-aliasing
reorder-functions
reorder-blocks
peephole2
caller-saves
sched-spec
sched-interblock
schedule-insns2
schedule-insns
regmove
expensive-optimizations
delete-null-pointer-checks
gcse-sm

gcse-Im

gcse

rerun-loop-opt
rerun-cse-after-loop
cse-skip-blocks
cse-follow-jumps
strength-reduce
optimize-sibling-calls
force-mem
cprop-registers
guess-branch-probability
delayed-branch
if-conversion2
if-conversion
crossjumping
loop-optimize
thread-jumps
merge-constants
defer-pop

== -0

01

'————*—m=='=ﬂ——===—"D=DD—==@Q'—Q'"

DDD JO €0 UN A suory

-ezrurydo renprarput [[e jo oagejusotod juotosordwt ARy “¢'g "SI

aulydew || DYVdSe uo 470ML (0)

Relative Improvement Percentage

base(-O3)
rename-registers
inline-functions
align-labels
align-loops
align-jumps
align-functions
strict-aliasing
reorder-functions
reorder-blocks
peephole2
caller-saves
sched-spec
sched-interblock
schedule-insns2
schedule-insns
regmove
expensive-optimizations
delete-null-pointer-checks
gcse-sm

gcse-Im

gcse

rerun-loop-opt
rerun-cse-after-loop
cse-skip-blocks
cse-follow-jumps
strength-reduce
optimize-sibling-calls
force-mem
cprop-registers
guess-branch-probability
delayed-branch
if-conversion2
if-conversion
crossjumping
loop-optimize
thread-jumps
merge-constants
defer-pop

A d N RO
N

PN W A~ O

1

N o | P 1 H

DDT

auIyTew Al wnnued e uo MdA (a)

Relative Improvement Percentage

base(-O3)
rename-registers
inline-functions
align-labels
align-loops
align-jumps
align-functions
strict-aliasing
reorder-functions
reorder-blocks
peephole2
caller-saves
sched-spec
sched-interblock
schedule-insns2
schedule-insns
regmove
expensive-optimizations
delete-null-pointer-checks
gcse-sm

gcse-lm

gcse

rerun-loop-opt
rerun-cse-after-loop
cse-skip-blocks
cse-follow-jumps
strength-reduce
optimize-sibling-calls
force-mem
cprop-registers
guess-branch-probability
delayed-branch
if-conversion2
if-conversion
crossjumping
loop-optimize
thread-jumps
merge-constants
defer-pop

g
£
B
| m—
7757
——
=
0
=
B
]
—+
£l
——
+ =
-+
]
+ pu i)
——
—
=
—+
-
——

aulydew Al wnnuede uo zdizg (e)

Relative Improvement Percentage

base(-O3)
rename-registers
inline-functions
align-labels
align-loops
align-jumps
align-functions
strict-aliasing
reorder-functions
reorder-blocks
peephole2
caller-saves
sched-spec
sched-interblock
schedule-insns2
schedule-insns
regmove
expensive-optimizations
delete-null-pointer-checks
gcse-sm

gcse-Im

gcse

rerun-loop-opt
rerun-cse-after-loop
cse-skip-blocks
cse-follow-jumps
strength-reduce
optimize-sibling-calls
force-mem
cprop-registers
guess-branch-probability
delayed-branch
if-conversion2
if-conversion
crossjumping
loop-optimize
thread-jumps
merge-constants
defer-pop

=
o

1-
S0-

I =
o v r w

,

f

LIETR Hﬂﬂ]ﬂhﬂmm I N

Ef'm**T
\

1T

Relative Improvement Percentag:

12

. Ideally, one expects that most optimization techniques yield performance im-

provements with no degradation. This is the case for APSI on the SPARC II
machine, shown in Figure 2.2 (a). This situation indicates little or no need and

opportunity for better orchestration.

In some benchmarks, only a few optimizations make a significant performance
difference, while others have very small effects. VORTEX on Pentium IV Fig-
ure 2.2 (b) is such an example. Here also, little opportunity exists for perfor-

mance gain through better orchestration of the techniques.

It is possible that many optimizations cause performance degradation, such
as in TWOLF on Pentium IV (Figure 2.2 (c)), or individual degradations are
large, as in SIXTRACK on Pentium IV (Figure 2.4). In these cases, better
orchestration may help significantly. Section 2.4 will show that the search for

the optimum is non-trivial and that performance surprises can happen.

O
u
u
0

.:
=
E.
'

base(-O3)

WO YY DD DY PYNDOXNDDLYYEEDELY N DDEDSIENCS DO DY
T Es B e SRR EEr 80888 cFs S8 582828
6288588882853 2E22808¢¢548E80EB888g22EESS
DEeL LT egceRe T T dbONT GO ST IT2aP289 5 258
o 5 c c 5 ® 5 L 0 o 2 = 0 = g =) S £ 2 L £ o0 Q0o 20T
T2 o025 L2 0Lc @3S EgGP T8 E3E=sET5g25292 s 3
b dE®ES 2 LB 2FIOI3T = 2 S =92 L 228504820
£ c S 55 0 35 o » o T O Q C 28990 c® S cmgoaL 29 2
T = = » T g o 25 (SIS o8 0% 09 89 gwe=0c82s=pP
c £ < S = S G 0 o 2 s 885N © 5o [}
[o n @ = = S o £ e S

= = ® > = S o

;

qc)'; o =% %)

o 2 © 3

X5 E

w% >

Fig. 2.4. Relative improvement percentage of all individual optimiza-
tions within O3 of GCC. SIXTRACK on a Pentium IV machine.

4. In some programs, the RIPs of individual optimizations are between —1.5 and

1.5. For example, in Figure 2.3 (a) and Figure 2.3 (b) the improvements are

defer-pop

13

in the same order of magnitude as their variance. While better orchestration
may combine small individual gains to a substantial improvement, the need
for accurately measuring the performance feedback becomes evident. Effects
such as OS activities and interference of other applications must be considered

carefully.

5. The performance improvement or degradation may depend on the computer ar-
chitectures. We compare TWOLF on the SPARC II machine, in Figure 2.3 (c),
with TWOLF compiled on the Pentium IV machine, in Figure 2.2 (c). The opti-
mizations causing degradations are completely different on these two platforms.
It clearly shows that advanced orchestration must consider the application as

well as the execution environment.

We have also found that, in some experiments, few or none of the tested optimiza-
tions cause significant speedups (e.g. Figure 2.3 (a)); however, there is significant
improvement from OO0 to O1, as shown in Figure 2.1. This is because some ba-
sic optimizations are not controllable by compiler options. From reading the GCC
source code we determined that these optimizations include the expansion of built-in

functions, and basic local and global register allocation.

2.4 Selected Harmful GCC Optimizations

In this section, we discuss the major reasons for performance degradations seen
in Section 2.3. Some of the major degradations are caused by the techniques strict

aliasing, global common subexpression elimination, and if-conversion.

Relative Improvement Percentage

Relative Improvement Percentage

14

4 o 20
£ 10
| c
3] R : : : O : : FEL :
jo)
2 # o -10
g -20
0 . :#: RN :D: ;,_;,,;Ii"l g 40
t £ -50
1 2 -60
5 ’ % -70
- o S = = [0} © o X
hd = [%2] = = 1S Q
N > £ 929 0 9 % 5 X <« x 5 E & & & ¥ 9 5 ¢ £ 3
= £ 8 858 8yE 2 5 ¢ g% E g © = £ £ £ & =
o o g E_ = g o) @ g
(&) INT benchmarks on aPentium IV machine (b) FP benchmarks on aPentium IV machine
7 Y12
6 N g +
. S 10
o
4 g e
3 S 6- _
IS
2 m T + % 4
1 s 24
e T £
T T T T TR T T T T T o 0 } } — } } } } } | e | } }
-1 = L]
8 2
-2 Il o S 5 © o © T X
o IS = Q < X 0 = 3] 1S)
N > £ o o o % = X o @ 9x = 9 o © T 0 D © S @
S § 8588 E 25 ¢g = E & ° = € € £ & =
L g % s 8 5 5
o 3
(c) INT benchmarks on a SPARC I machine (d) FP benchmarks on a SPARC |l machine

Fig. 2.5. Relative improvement percentage of strict aliasing.

2.4.1 Strict Aliasing

Strict aliasing is controlled by the flag strict-aliasing. When turned on, objects of
different types are always assumed to reside at different addresses.? If strict aliasing

is turned off, GCC assumes the existence of aliases very conservatively [1].

Generally, one expects a throughout positive effect of strict aliasing, as it avoids
conservative assumptions. Figure 2.5 confirms this view for most cases. However, the
technique also leads to significant degradation in ART, shown in Figure 2.5 (b). The
RIP is -64.5.

3 Strict-aliasing in combination with type casting may lead to incorrect programs. We have not
observed any such problems in the SPEC CPU2000 benchmarks.

15

From inspecting the assembly code, we found that the degradation is an effect of
the register allocation algorithm. GCC implements a graph coloring register allocator
[2,3]. With strict aliasing, the live ranges of the variables become longer, leading
to high register pressure and ‘ spilling. With more conservative aliasing, the same
variables incur memory transfers at the end of their (shorter) live ranges as well.
However, in the given compiler implementation, the spill code includes substantially

more memory accesses than these transfers, and thus causes the degradation in ART.

We also observed from Figure 2.5 (d) that, on the SPARC II machine, strict
aliasing does not degrade ART, but improves the performance by 10.7%. We attribute
this improvement to less spilling due to the larger number of general purpose registers

in the SPARC II than in the Pentium IV processor,

2.4.2 GCSE (Global Common Subexpression Elimination)

GCSE is controlled by the flag gcse in GCC. GCSE employs PRE (partial redun-
dancy elimination), global constant propagation, and copy propagation [1]. GCSE
removes redundant computation and, therefore, generally improves performance. In
rare cases it increases register pressure by keeping the expression values longer. PRE
may also create additional move instructions, as it attempts to place the results of

the same expression computed in different basic blocks into the same register.

We have also found that GCSE can degrade the performance, as it interacts with
other optimizations. In APPLU (Figure 2.6 (b)), we observed a significant per-
formance degradation in the function JACLD. Detailed analysis showed that this
problem happens when GCSE is used together with the flag force-mem. This flag
forces memory operands to be copied into registers before arithmetic operations,
which generally improves code by making all memory references potential common
subexpressions. However, in APPLU, this pass evidently interferes with the GCSE
algorithm. Comparing the assembly code with and without force-mem, we found the

former recognized fewer common subexpressions.

Relative Improvement Percentage

Relative Improvement Percentage

16

4l

-5

o c Qo a9 5% 5 X X s

Qéomoﬁ‘-’wg"(—;mc_

N ® © o ® © £ ¥ 35 £ >

B3 g g 2 ¢
a

(&) INT benchmarks on a Pentium IV machine

bzip2
crafty
eon
gap
cc
9zip
mcf
parser
perlbmk
twolf
vortex

(c) INT benchmarks on a SPARC Il machine

vpr

Relative Improvement Percentage

Relative Improvement Percentage

0 m ‘ ‘ =t et
-5
-10
-15 L
-20
[=3 =] 7 = [} [0} o X
E 2 &% 3 8 58 £ ¢
g ® g £ £ % 7 §
3
(b) FP benchmarks on a Pentium IV machine
8
6
4
2
0 N I B 1|:|;=-1D
O A 1
-4
Q =] D g [J] ® o X =
E 2 & % § 8 5 8 s 2
< © = € 1S = n g
(3} » g

(d) FP benchmarks on a SPARC Il machine

Fig. 2.6. Relative improvement percentage of global common subex-

pression elimination.

2.4.3 If-Conversion

If-conversion attempts to transform conditional jumps into branch-less equiva-

lents. It makes use of conditional moves, min, max, set flags and abs instructions,

and applies laws of standard arithmetic [1].

If the computer architecture supports

predication, if-conversion may be used to enable predicated instructions [9]. By re-

moving conditional jumps, if-conversion not only reduces the number of branches,

but also enlarges basic blocks, thus helps scheduling. The potential overhead of such

transformations and the opportunities for dynamic optimization are well-known [7].

In our measurements, we found many cases where if-conversion degrades the perfor-

mance.

Relative Improvement Percentage

17

Relative Improvement Percentage

4 e 7
8
3 ‘ = 6 —
&)
2 5 5
o
1 # g 4
[
0 Tt £ 3
-1 I‘T‘I m |——4-| I‘—"l c>3 2
o
2 gl
3 - S Ofgt= e Ll Ot
\ B 4
-4 Q Qo iy +
x =2 %) o] o o < £ ©
Y s 28 2% 5 £ s 5 & E 2 &8 < 3 8 5 8 £ 38
< £ 3 8 g N £ 2 §E g 2 S E § © s 8 &8 £ 7 =
o S @ = = o] X [=%
o 8 > 7 g
(&) INT benchmarks on a Pentium IV machine (b) FP benchmarks on aPentium IV machine
4 g 5
©
3 T 4 —
8
2 — g.f 3 N
1 =
2,
0 D}L_.J} : : : : Nult :D: :Ij % 1
)] 2
| S— | |
- L E— 0 = —v—\m\m f =1
3 .02) -1 :
B
-4 Q o i +
o =} » o] @ o 4 £
N c 2 o a2 5% 5 X <« x 5 £ S o ®© = a = o £ 9
=& 3 g5 52 858 & e E & © S &g 2 £ 3 ¢
o S @ o = o @ X [=%
a g > % g
(c) INT benchmarks on a SPARC Il machine (d) FP benchmarks on a SPARC Il machine

Fig. 2.7. Relative improvement percentage of if-conversion.

In VORTEX, there is a frequently called function named ChkGetChunk, which is

called billions of times in the course of the program. After if-conversion, the number

of basic blocks is reduced, but the number of instructions in the converted if-then-else

construct is still the same. However, the number of registers used in this function

is increased, because the coalesced basic block uses more physical registers to avoid

spilling. Thus, this function has to save the status of more registers. The additional

register saving causes substantial overhead, as the function is called many times

From the above analysis, we make the following observations:

e Optimizations may exhibit unexpected performance behavior. Even generally-

beneficial techniques may degrade performance. Degradations are often com-

18

plex side-effects of the interaction with other optimizations. They are near-

impossible to predict analytically.

Better orchestration techniques of compiler optimizations using knowledge of
the observed runtime behavior are called for. The subtle interactions of compiler
optimizations requires such techniques to consider combinations rather than

decoupled, individual optimizations.

A larger number of optimization techniques cause performance degradations in
integer benchmarks. Integer benchmarks often contain irregular code with many
control statements, which tends to reduce the effectiveness of optimizations. On
the other hand, larger degradations (of fewer techniques) occur in floating point
benchmarks. This is consistent with the generally larger effect of optimization

techniques in these programs.

On different architectures, the optimizations may behave differently. This
means that compilers orchestrated for one architecture will not necessarily per-

form best for others.

19

3. ALGORITHMS FOR ORCHESTRATING COMPILER
OPTIMIZATIONS

The previous sections have indicated significant potential for performance improve-
ment by better orchestrating the compiler optimizations. In this section, we develop
three algorithms to efficiently determine the best combination of techniques, while
maximizing the application’s performance. Each algorithm makes a number of full
application runs, using the resulting run times as performance feedback for deciding
on the next run. We keep the algorithm general and independent of specific compilers
and optimization techniques. It tunes the options available in the given compiler via

command line flags.
We can describe our goal as follows:

Given a set of on-off optimization flags {Fi...F,}, find the combination that

minimaizes the application execution time.

Because there are interactions between optimizations and the interactions are
unpredictable, a simple approach would have to try each combination to find the
best. Its complexity would be O(2"), which is prohibitive. We design three heuristic
algorithms, shown in Table 3.1, to obtain the result in polynomial time. We have
evaluated the resulting application performance, relative to the default optimization

level, -O1. We took the measurements on a Pentium IV machine.

From Section 2.2, we know that any of the three optimization levels, O1 through
03, may be the best among them. This observation leads to the first, basic algorithm,
which has complexity O(1). Figure 3.1 shows that this simple algorithm improves the
speedup by up to 14.9% (3.9% on average) for integer benchmarks, and up to 32.7%
(8.1% on average) for floating point benchmarks on Pentium; and up to 22.6% (11.0%

20

Table 3.1
Algorithms for Orchestrating Compiler Optimizations

Algorithms Description

Algorithm 1: 1. Measure all three optimization levels.

Basic Algorithm 2. Choose the best one as the best optimization combination.
Algorithm 2: 1. Measure the RIPs of all individual optimizations.

Batch Elimina- | 2. Disable all optimizations with negative RIPs.

tion

Algorithm 3: 1. Let B be the flag set for measuring the baseline performance.
Iterative Elimina- Let the set S represent the optimization search space.

tion Initialize B = S = {F...F,,}

2

B.

3. Find the optimization flag f with the most negative RIP.
Remove f from both B and S.

B represents the final flag combination.

. Measure the RIPs of all optimization flags in S relative to the baseline

4. Repeat Step 2 and Step 3 until all flags in S have non-negative RIPs.

on average) for integer benchmarks, and up to 60.4%(33.3% on average) for floating
point benchmarks on SPARC.

The second heuristic is to find the techniques degrading the baseline performance,
and then to disable all of them in a batch. Since most optimizations improve per-
formance most of the time, we include all of them in the baseline. The complexity
of this algorithm is O(n). Figure 3.1 shows that Algorithm 2 achieves better per-
formance than the first in half of the benchmarks, and that on average it is worse
than Algorithm 1. In a few cases Algorithm 2 is even worse than the default op-
timization combination. The main disadvantage of Algorithm 2 is that it does not
consider the interactions of different optimizations. These observations hold for both

architectures.

Algorithm 3 eliminates the degrading optimizations one by one in a greedy way.
This approach takes the interaction among optimizations into consideration. We
include all optimizations into the initial baseline in order to make the algorithm con-

verge faster. This baseline is close to the optimal decision, because the optimizations

25

21

20

O Basic

[5] Batch Elimination

[l !terative Elimination

50
[] Basic
40 h Elimination
B terative Elimination
30
20
10

OWMM

— —
o] o
8 2
2 2
= K
[T} [}
24 o
2 2
s 2
o
g 2
& a
he} el
:
(=}
= s
E E L
s k)
2 % 20 =3 [} o] o X
o “— 2 3 g B E o %
© o > c Q 3} o S 5 = — X 5 [}] £ % 3 a X 1%} = [3} £ <)
- c] Q =] o] k] @
s § § 8 &% 8 E 2 5 g2 5 ¢ 5 E§ & C s E E £ % % %
o 2 5 & g > g e @ @ R
o) i) © . .
= (a) INT benchmarks on a Pentium IV machine : (b) FP benchmarks on a Pentium 1V machine
o) O 8
O 30 .
° O Basic 2 O Basic
o S 2 [E] Batch Elimination
S 051 [E] Batch Elimination 2 60 Hredive Hliminet
5 _.u | terative Elimination | & Wl Tterfive Elimination
4 x 9
» 20 @ 40 nSll .
Q. m
S > &
© 15 il 3 N
o @ N
= =3 20 1 N = —
g o : \ [VI IR
@ o N N N N
3 § §01HHHHHHH‘1 R USE DS USE L8 L
4 N
a 5 N =y N
£ N £ N
= \ 5 \
c o LNE L L N N LN L N M LISN [N 5 -20 N
o > 8
s <
s -5 ‘qE) -40
o N c o Q o ‘S = X = x = () Qo ‘0 b= [} [+ =] X [(5]
s 2 £ %8 88§ EEEEE e £ 2 8% ¢ g EOEOEOE
o a8 o g 3 [§ a £ 5 2 E E £ o = §
[=% @ o n
. .z ®
(c) INT benchmarks on a SPARC Il machine (d) FP benchmarks on a SPARC Il machine

Fig. 3.1. Speedup improvement of three algorithms relative to O1.
(a) and (c) show the integer benchmarks; (b) and (d) show the float-
ing point benchmarks. (a) and (b) are the results on a Pentium IV
machine; (c¢) and (d) are the results on a SPARC II machine.

are beneficial in most cases. Therefore, we only need a few iterations, in practice.

This algorithm has a worst-case complexity of O(n?).

Figure 3.1 shows that Algorithm 3 achieves the highest performance in all but one

case, EQUAKE on the Pentium IV, and it consistently out-performs Algorithm 2. In

EQUAKE, the iterative algorithm is slightly worse than the basic one. This can be due

to the greedy nature, which may converge on a local optimum in the complex search

space.

better than Algorithm 1, showing the benefit of orchestrating optimizations.

Figure 3.1 shows many cases where the iterative algorithm is significantly

22

On the Pentium IV machine, Algorithm 3 improves the speedup over O1 by up
to 20.1% (6.5% on average) for integer benchmarks, and up to 38.9% (14.0% on
average) for floating point benchmarks. The improvement over O3 is up to 6.4% for
integer benchmarks (3.0% on average) and up to 183.8% for floating point benchmarks
(24.1% on average). Floating point benchmarks improve more from orchestrating
optimizations than the integer benchmarks, which is consistent with the generally
higher effect of optimizations on this class of programs. We also observed that integer
benchmarks take more time to converge on the Pentium machine. On average, the
integer benchmarks need 4 iterations and the floating point benchmarks need 3.3
iterations.

On the SPARC II machine, Algorithm 3 significantly improves the performance as
well. The speedup over O1 is improved by up to 25.7% (14.4% on average) for integer
benchmarks, and up to 66.2% (38.1% on average) for floating point benchmarks. The
improvement over O3 is up to 8.8% (3.3% on average) for integer benchmarks, and
up to 13.8% (4.4% on average) for floating point benchmarks. Similar to Pentium
IV, floating point benchmarks improve more from orchestrating optimizations than
the integer benchmarks. However, integer benchmarks take less time to converge on
SPARC II. On average, the integer benchmarks need 2.75 iterations and the floating
point benchmarks need 3.9 iterations. Comparing the results from the SPARC II to
those from the Pentium IV, we know that different orchestrations achieve the optimal
performance on the two machines (SIXTRACK’s results are substantially different).

We also considered an improved algorithm to reduce the search time by making
the searching set S in Step 3 contain only the flags with negative RIPs, obtained
in Step 2. Since the interactions between optimizations can be very strong in some

benchmarks, this approach did not result in better performance.

23

4. CONCLUSIONS

In this paper, we used the metric Relative Improvement Percentage to evaluate a
large number of compiler optimizations. We found that, although the optimizations
are beneficial in many programs, significant degradations may occur. Optimizations
perform differently on different applications, different computer platforms, and dif-
ferent compilers. Of particular importance and concern are the interactions between
the optimizations, which are subtle and near-impossible to predict. Based on these
observations, we have developed three heuristic algorithms to search for the best opti-
mization combination. Among the three algorithms, the iterative method outperforms
the other two in all but one insignificant case. This method uses the RIP metrics to
identify harmful optimizations, and iteratively removes the harmful optimization, so
as to get the best possible flag combination. Our work demonstrates promising per-
formance improvement by orchestrating compiler techniques using measured runtime
as feedback.

The presented work is an important step towards our ultimate goal of orchestrating
compiler optimizations on the basis of individual functions. Our implementation
environment is the ADAPT system [12] which supports the monitoring of application
through timers and hardware counters and provides for the application of compiler
optimizations in a dynamic, adaptive manner.

The knowledge about performance-degrading optimization techniques and their
interactions are not only important for enabling an adaptive compilation process, it
also helps compiler engineers to continuously develop better optimization techniques
and compiler driver algorithms. Clearly, both methods for advancing compiler capa-
bilities are complementary and necessary to achieve high performance levels for future

machine generations.

24

LIST OF REFERENCES

GCC online documentation. http://gcc.gnu.org/onlinedocs/.

Peter Bergner, Peter Dahl, David Engebretsen, and Matthew T. O’Keefe. Spill code
minimization via interference region spilling. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 287-295, 1997.

Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph color-
ing register allocation. ACM Transactions on Programming Languages and Systems,

16(3):428-455, May 1994.

Cliff Click and Keith D. Cooper. Combining analyses, combining optimizations.
ACM Transactions on Programming Languages and Systems (TOPLAS), 17(2):181—
196, 1995.

Keith D. Cooper, Devika Subramanian, and Linda Torczon. Adaptive optimizing com-
pilers for the 21st century.

Elana D. Granston and Anne Holler. Automatic recommendation of compiler options.
In 4th Workshop on Feedback-Directed and Dynamic Optimization (FDDO-4). Decem-
ber 2001.

Kim M. Hazelwood and Thomas M. Conte. A lightweight algorithm for dynamic if-
conversion during dynamic optimization. In 2000 International Conference on Parallel
Architectures and Compilation Techniques, pages 71-80, 2000.

Toru Kisuki, Peter M. W. Knijnenburg, Michael F. P. O’Boyle, Francois Bodin, and
Harry A. G. Wijshoff. A feasibility study in iterative compilation. In ISHPC, pages
121-132, 1999.

J.C.H. Park and M. Schlansker. On predicated execution. Technical Report HPL-91-58,
Hewlett-Packard Software Systems Laboratory, May 1991.

Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May O’Reilly. Meta
optimization: improving compiler heuristics with machine learning. In Proceedings of
the ACM SIGPLAN 2008 conference on Programming language design and implemen-
tation, pages 77-90. ACM Press, 2003.

Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and David I. August.
Compiler optimization-space exploration. In Proceedings of the international sympo-
stum on Code generation and optimization, pages 204-215, 2003.

Michael J. Voss and Rudolf Eigemann. High-level adaptive program optimization with
adapt. In Proceedings of the eighth ACM SIGPLAN symposium on Principles and
practices of parallel programming, pages 93-102. ACM Press, 2001.

R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software.
Technical Report UT-CS-97-366, 1997.

[14]

[15]

25

Michael E. Wolf, Dror E. Maydan, and Ding-Kai Chen. Combining loop transforma-
tions considering caches and scheduling. In Proceedings of the 29th annual ACM/IEEE
international symposium on Microarchitecture, pages 274-286, 1996.

Kamen Yotov, Xiaoming Li, Gang Ren, Michael Cibulskis, Gerald DeJong, Maria
Garzaran, David Padua, Keshav Pingali, Paul Stodghill, and Peng Wu. A comparison
of empirical and model-driven optimization. In Proceedings of the ACM SIGPLAN
2003 conference on Programming language design and implementation, pages 63—76.
ACM Press, 2003.

	Purdue University
	Purdue e-Pubs
	1-1-2004

	COMPILER OPTIMIZATION ORCHESTRATION FOR PEAK PERFORMANCE
	Zhelong Pan
	Rudolf Eigenmann

