Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering
6-1-1995

A Tighter Lower Bound for Optimal Bin Packing

Heng Yi Chao

Purdue University School of Electrical Engineering

Mary P. Harper
Purdue University School of Electrical Engineering

Russell W. Quong
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Chao, Heng Yi; Harper, Mary P.; and Quong, Russell W, "A Tighter Lower Bound for Optimal Bin Packing” (1995). ECE Technical
Reports. Paper 122.
http://docs.lib.purdue.edu/ecetr/122

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages

A TIGHTER LOWER BOUND FOR
OprPTIMAL BIN PACKING

HENG-Y1 CHAO
MARY P. HARPER
RUSSELL W. QUONG

TR-ECE 95-15
JUNE 1995

%
Q
O

SCHOOL OF ELECTRICAL

AND COMPUTER ENGINEERING
PURDUE UNIVERSITY
WEST LAFAYETTE, |NDIANA 47907-1285

oy
3, Al
'-"ui‘aao\

A Tighter Lower Bound for Optimal Bin Packing

Heng-Yi Chao, Mary P. Harper, and Russell W. Quong
School o Electrical Engineering
1285 Electrical Engineering Building
Purdue University
West Lafayette, IN 47907-1285
Email: {hengyi,harper,quong}@ecn.purdue.edu

Abstract

In this paper, we present an O(nlogn) algorithm to compute a tighter lower bound
for the one-dimensional bin packing problem. We have simulated the algorithm on
randomly generated bin packing problems with item sizes drawn uniformly from (a, b],
where 0 < a< b < B and B is bin size. Using our lower bound, the average error of
BFD is less than 2%. For at b > B, theerror is less than 0.003%.

Key words: bin packing, lower bound, best fit decreasing, harmonic partition, matching.

1 Introduction

The quality of an approximation algorithm A isoften measured by its asymptotic performance ratio
[3] or worst-case performance ratio [6]. For an instance L of a minimization problem TI, let S*(L)
be the opt mal solution and A(L) be the solution obtained by using algorithm A. If a quantity
implicitly depends on the problem instance L, then we drop L from our notation. The asymptotic
performance ratio of algorithm A for minimization problem II, is defined as [3, page 128]:

A(L
% <,V L € domain(II), satisfying $*(L) > k}

Comparing two algorithms solely using worst-case performance ratios can be misleading because

R(A) = inf {r > 1:for somek € N,

the average-case performance may differ significantly from the worst-case performance.

For an instance L of a minimization problem II, if b < S*(L) < ub, then I5 is called a lower
bound and ubis called an upper bound on the optimal solution. These bounds are useful because
S* may not; be computed in polynomial time. Clearly, {6 (ub) should be aslarge (small) as possible,
with the goal of having /b = S* = ub. Note that an existing heuristic algorithm provides an upper
bound on 5*. In this paper, we present an efficient algorithm to compute atighter lower bound for
the off-line one-dimensional bin packing problem (a packing algorithm is called on-line if it packs
the items in the order they are received; otherwise it is off-line).

The one-dimensional bin packing problem [3] is the problem of partitioning (or packing) a set
L of n objects (or items) into a minimum number of bins, such that the sum of the object sizes in
each bin does not exceed the bin size, B. Let s; be the size of object 4, s; € (0,.8]. In discrete bin
packing, s; and B areintegers; in continuous bin packing, B = 1 and s; are reals in (0,1].

Becausz the bin packing problem is NP-complete, heuristic algorithms for the bin packing
problem have been studied extensively [1, 4, 5, 6, 10]. Some of the basic algorithms include First-
Fit (FF), Best-Fit (BF), Worst-Fit, and Next-Fit. The Best-Fit algorithm assigns each object
sequentially to the most fully packed bin into which it fits. First-Fit Decreasing, (FFD) and Best-
Fit Decreasing (BFD) are variations of FF and BF in which the objects are sorted in decreasing
(or non-increasing) order before being packed. Johnson [4, 5] provides the worst-case performance
ratios, R(I"'F) = I and R(FFD) = 4. The BF and BFD algorithms have the same worst-case
performance as FF and FFD [5]; however, BFD performs better than the othersin practice. In this
paper, we use our lower bound to empirically show that BFD performs very well for a wide range
of object size distributions.

In the rest of this paper, we present a tight lower bound for the bin packing problem. In
Section 2, we discuss our lower bound strategies. In Section 3, we present our lower bound. In
Section 4, we show that our lower bound is effectivein practice.

2 Our Lower Bound Strategies

Our lower bound is based on several concepts: the subproblem principle, SUM, Lueker’s functions
[8], harmonic partition [6], and special handling of large-sized objects which we classify as BIG.
The subproblem principle is introduced in Lemma 1.

Lemma 1 [Subproblem Principle] The optimal solution of a subproblem Ly, C L is a lower
bound for the original problem L. It follows that a lower bound for Lgy, is also a lower bound for
S*(L), because {b(Lsub) < S*(Lsub) < S*(L).

We define SUM as [(3";cr si)/B], which is an obvious lower bound on S*. Many researchers
[1, 9] have used A(L) — SUM, termed empty space (or wasted space), to measure the performance of
a packing algorithm, A. Bentley et al. [1] used empty space to measure the average performance of
FF and FE'D for packing items drawn uniformly from the range (0, b], 0 < b < 1. The empty space
remains consistently small until b reaches a critical threshold between 0.8 and 0.9 (depending upon
n), above which it grows without bound. In particular, the empty space grows roughly as 0.3./7,
for b= 1.0 {1, 7]. Shor [9] provided tighter lower bounds and upper bounds on the expected wasted
space for the on-line BF and FF algorithms when packing items uniformly distributed on [0,1].
When there are many small objects, the empty space seems a good performance measurement.
However, if the object sizes tend to be large, the simulation datain Section 4 show that the empty
space is not a good performance measurement.

Lueker [8] considered packing items drawn uniformly from intervals [a,b],0 < a< b< 1. He
determined lower bounds on the optimum packing ratios for certain values of a and b, where the
optimum packing ratio is defined as the expected number of bins to the expected total item size.
He considered four regions on the a-b plane and gave a feasible function for each region, where a
feasible function is a real-valued function u(z) such that V k > 1,

k k
Zzigl:»Zu(zi)gl (1)
i=1 i=1
The four regions and their corresponding feasible functions defined in [8] are shown in Table 1. A
partial plot (a > 1/5) of the regions on the a-b plane defined by Lueker is shown in Figure 1. Note
that these regions cover only part of the a-b plane.

Lemma 2 describes how we can use Lueker's functions to compute a lower bound. If (a,b) is
contained in one of the regions defined in Table 1, then a lower bound can be computed by using
the feasible functions given in the table. We cal this lower bound LLB (Lueker's Lower Bound).

Lemma 2 Let L be a bin packing instance containing n items distributed over (a,b],0 <a< b<
B. If u(z) isafeasible function on (a, b], then [3>-7, u(s;/B)] < S*.

T 1
a€ (337 5]
p=2
a€ (-1 1
Pl prptl s(z)+ z € [a,-% - d]
Bl be(Fr—aj;—3r+a) “B(”):{; P ze[~—2£+iab]
p>2 P p J
€ (i
C QpE€(EE+al-a) uc(z) = [(p+ 1)z - 1]/p,z € [a}]
p>3
ez o) 0(2) = FL31+ [Ga mod)z €8
P+2Pg 8= = —a,a=1-pf
D be(——+—+T—(l,1 +1+[l) Pt 1
P P s(x— A7)+ =27 z€ (o, f]
p=3 fle) = P
0 ze0,a]

Table 1: The four regions and their corresponding feasible functions defined by Lueker, where
s = (‘ - ;ﬁ)/(,,H -a).

Proof: For each bin k in an optimal packing, > ;c.s: < B (i.e., 2;ci(si/B) < 1), where i € k
denotes item i being packed in bin k. Hence, 3 ;c,u(s;/B) < 1 because u(r) is feasible (see
Equation 1). It followsthat,

n

> u(si/B) = ZZ (si/B) < 21 =8

i=1 k=1 ick
and hence, |35, u(si/B)] < S*.]

Our lower bound also considers partitioning the interval (0, B] into sub-intervals. Lee and
Lee [6] proposed a harmonic algorithm which partitions (0,1] into M intervals: Iy = (g5,] for
1<k< M and Ip = (O,ﬁ]. An object 7 is called an Iy-item if s; € I, and a bin designated
to pack Iy-items exclusively is caled an Ix-bin. We have modified the definition of a harmonic
partition to accommodate discrete bin packing over theinterval (0, B]. The k-th harmonic interval
is denoted Iy, £ = 1,2,..., where I, = {x : k+1 < x < B} The term I;, . ;, is the union of
intervals I;; U.--U |;,. For example, if B = 100, we have I;=(50..100], I;=(33..50], Is=(25..33],
and I3 = I; Uz = (25,501. At most one I, s-item can be packed with an I;-item. Also, given
only Ij-items, it is optimal to pack k of them to a bin choosing items arbitrarily. We define L; to
be the set of I;-items in L and L;; ...;, to be theset of I;,...;, itemsin L.

If object sizes are not uniformly distributed over (0,B] or tend to be large, SUM becomes
unrealistically optimistic. A better lower bound must consider the largest, and hence, the most
difficult-to-pack items, that is, L; 2 3. Hence, we derive a lower bound, BIG, for S$*(L;,2,3), which
is so named because it takes into account the big items. BIG is a lower bound on S* since, by the

3

partition of the a-b plane

P5 T I I T T I I T T P6

0.9
0.8
0.7
0.6
2 0.5
0.4
0.3
0.2

0.1

L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 1: A partial plot (a> 1/5) of the regions on the a-b plane defined by Lueker.

subproblem principle, BIG < §*(L123) < S*. A lower bound on S*(L; ;,3) is the best we can do,
because desermining $*(Z4 2,3) is NP-complete (we can reduce three-dimensional matching [3, page
50] to bin packing Zj 2,3 in which each bin contains three objects).

Our lower bound OB contains three major components, SUM, LLB and BIG. OB s a lower
bound as it is the maximum of the lower bounds.

Lemma 3 OB = max(SUM, LLB, BIG) is a lower bound for S*.

We now show how to compute BIG, a lower bound of S*(L;23). The main idea behind the
computation of BIG is to perform a sequence of optimal steps for packing objectsin Ly 33 such
that these packed pseudo objects cannot be packed with any other objects. Then we compute a
lower bound for packing the leftover items and add it to the number of bins required by the packed
pseudo objects.

Let A== AgUAs. Wesay Ag (As) isa big (small) set if packing Ag always requires [Ag| bins
and for each item i € Ag, we can pack at most one other item in Ag with i. For example, | Ly| bins
are needed to pack 7, (because each I;-item requires a bin), and each I s-item can be packed with
at most one I-item. Hence, L, isa big set (Ap), and Ly 3 isasmall set (As). Assume we pack Ap
into bins with various itemsfrom As viapacking P. Let P(As, Ag) be the set of |eftover itemsfrom
Ag not packed with Ag. Let P(As, Ag) = {P(As, Ap) :for dl packings P}. Lot U = P(As, AB)
and U’ = P'(Ag, Ap) for two packings P and P’. Assume U and U’ are sorted into decreasing
order. We say U is strongly minimal over P(As, Ag) if V U’ € P(As, A), |U| < |U'| and s; < s,
where 1 < 7 < |U|. Namely, U is minimal both in cardinality and on an item-by-item basis over dl
sets of leftover small items. Analogously, U is strongly maximal if V U’ € P(As, Ag), |U| > |U’|
and s; > s, where 1 < i < |U'|. The next lemma indicates why computing a strongly minimal set
is useful for bin packing.

Lemma 4 If U is strongly minimal over P(As, Ag), then §*(U) < §*(U’"), V U’ € P(As, AB).
Proof: In theoptimal packing of U’, replacing s; with s;isvaid ass; < s;. Thus, S*(U) # S*(U").

]
The next theorem indicates that after packing big items, if the set of the remaining items is
strongly minimal, the packing is optimal.

Theorem 1 If U = P(As, Ag) is strongly minimal, then $*(A4) = |Ag| T S*(C).

Proof: Let P’ be any packing of A and let U’ = P'(As, Ag). Both Pand P’ require |[Ag| bins
to pack Ag. If we optimally pack U and U’, we need |Ap| T $*(U) and |Ag| + $*(U’) bins,
respectively. However, as U is strongly minimal, $*(U) < §*(U’) by Lemma 4. Thus, packing P
followed by optimally packing U cannot be improved upon. u

Note that L, isa big set and L3 is a small set. If we can find a strongly maximal set X of Ly 3
and its corresponding set Y in Ly, then L, 3\ X isstrongly minimal, and it is therefore optimal to
pack each pair of objectsin (X,Y) by Theorem 1.

3 BIG, A New Lower Bound for S*(Ly33)

In this section, we describe how to calculate BIG, a lower bound for $*(L1,2,3). We first pack L,
with items from L, 3 using an optimal matching algorithm which leaves a strongly minimal set
of "unmatched" itemsin L3, denoted U, 3. We then determine a lower bound for $*(U,3), and
add it to |L;| because the L;-items must occupy |Li| bins no matter how they are packed. In
Section 3.1, we give the matching algorithm and prove its optimality; in Section 3.2, we determine
a lower bound for the unmatched items, U, 3.

3.1 Optimal Matching

We say that two sets X = {z1,...,2m} C Logand Y = {31,...,¥) € L; form a matching if for
1< i< m,each pair x; and y; can be placed in the same bin. Note that (X,Y’) forms a matching
[2] in the common sense that each I 3-item can be packed with at most one I;-item. We use the
greedy algorithm maTcHu(L; 23) to match theitemsin Lq 3, sorted in order of decreasing size, with
thelargest possible remaining L;-item. Intuitively, MATCH isdriven by L, 3, not L;. When an item
in Ly 3 is matched with an item in Ly, it is moved to the set X and its match is moved to the
set Y. Algorithm maTcH computes the sets X and Y of matched L, 3 and L, items, respectively.
When the algorithm is complete, U; contains the unused L;-items and U, 3 contains the unused
L, s-items. Note that this process is equivalent to performing FFD or BFD on L, ; 3-items such
that those itemsin Ly 3 not assigned to bins containing L;-items define the set U, 3.

Algorithm MATCH(L; 3 3)
sort L213 = {’Ul > > ’l)m};
X =Y = §;
for each v; = v; to vy in Lags
T := L; items matching Vv,
if (T is not empty) then
t := the largest itemin T;
move t from I, to Y
move V; from Ly3 to X

end
end
Ul = Ll,
Uzs 1= Las;

Toguaranteethat BIGis alower bound, it isimportant that the set of leftover Las-items, Uz s,
is strongly minimal. Theorem 2 proves that the matching (X,Y) produced by MATCH(L 23) is
part of an optimal packing of L 2 3.

Theorem 2 Let X be theset of Ly 3-items matched by MATCH(L; 23). Let X' bethe set of L, ;-
items matched by any other matching algorithm A'. Let X = {z1,...,z,} and X’ ={xi,. ..,z/,}
where X and X' have been sorted into decreasing (non-increasing) order. Then X is strongly
maximal over all X'.

Proof: To simplify the notation, we take z; to represent both the object and its size. We use
induction on i, showing z; > z, thus we are comparing the ith largest element matched by A with
that of A'. Recall that MaTCH(L, 9 3) repeatedly matches the largest remaining item in L, 3 with
the largest item, y, remaining in L;. Let y, be the ith Li-item matched by maTcu(L;23) and

Y =A{y1,. - w}
Basis: (¢ = 1) If z; isthelargest item matched by MaTCH{ Ly 2 3), none of thelarger items originally
in Ly 3 could have been matched. Thus, z; is the largest matchable item possible, giving z; > zf.

Inductive step: Assuming thelargest k itemsin X are maximal, x; > z}, for 1 < i < k, we show
the (k + L)stitemin X is maximal, i.e., zx41 > z,, assuming X' has a (k + 1)st item.,

Assume the contrary, namely z},, > zx41. By the inductive hypothesis, z; > =z, so we have
zy > @) > Thyr > Thy1. A is able to match zi,, to some item in Ly, but MATCH(L33) is
unable to match z}_ ,, otherwise it would have matched z}_, and not zx4;. Hence, at this point,
all remaining items in L, must be greater than (B - z;,,) in size. As the k matched items
{z1,23,...,z;} all have a size greater than or equal to z},, each item in Y; must be less than or
equal to (B - zj4). Thus, initially L, contains exactly k items less than or equal to (B - z},,),
namely Y;. However, A has already matched k items greater than or equal to zj,, namely
{xi,...,z}}, and these k items must be matched with Y;. Thus, no remaining item in L; is small
enough to e matched with =} ,,, so A cannot possibly match z},,, yielding a contradiction. Thus,
we must have zx11 > Thyy-
A similar argument shows | X| > |X'|. That is, if n< n', X cannot contain an z,4, item, but the
above reasoning shows that X’ cannot contain a corresponding z;,,, item either. n
As maTcH(Ly23) partitions Lz 3 into X and U, 3, we know Us 3 is strongly minimal because
X is strongly maximal. Thus, Theorem 1 indicates the following steps give an optimal packing of

Ly 3

1. Run MATCH{L1,2,3).

2. Pack each of the I;-items remaining in Uy in a separate bin.

3. Pack each pair z; and y; from X and Y together in a separate bin.

4. Optimally pack the U, 3 using S*(Usz3) bins. This step is NP-complete, in general.

Steps 2 and 3 pack the L;-items and items in X using |L;| bins. Thus, we have:

§*(L1,2,3) = |L1| + 5*(Ua,3)

-~

Lemma 5 Both BFD and FFD provide an optimal solution when given only Iy ; (or I, 3) items.

Proof: In this case, both BFD and FFD mimic MATCH(L; 2 3) and Us 3 consists of only I (or I3)
items. Then each would pack the U, 3 objects two (or three) to a bin, avoiding the NP-complete
problem d packing mixed I 3-items. n

3.2 After Matching

Although we could apply SUM to U3, SUM can perform quite poorly as packing the L, s-items
often leaves much empty space in bins. We obtain a better bound by considering the unpacked
I,-items separately. Let U; be the set of I-items in U, 3; let up = |Usz| and uz 3 = |U, 3]. Packing
U, alone requires [u3/2] bins. We can pack at most threeitemsin U, 3 to a bin. requiring at least
[uz,3/3] bins. Thus, alower bound for $*(Us3) is [max(%,*22)].

In practice, we can improve this bound slightly because we must often pack large I,-items with
only one other object. For example, if B = 100 and Uz 3 = {27, 30, 34, 38, 42, 45, 48}, we can
pack neither 45 nor 48 with two other objects. Let s;, sj be the sizes of the smallest I 3-items with
S, < s;. We define the Z-interval (a sub-interval of I; in most cases) as:

7 -] s3] if s; € I
Tl (B-s;—s;,8] ifs;el
Jr 2

Lemma 6 saysthat the Z-interval contains items which can be packed with at most one other item;
hence, it is best to pack them with other Z-items. Figure 2 depicts the partitioning of L; ; s-items
into classes.

Lemma 6 It is optimal to pack every two Z-items together.

Proof: First we show a Z-item can be packed with at most one other item. If s; € I, all we have
are I,-items. If s; € I3, consider packing a Z-item (of size s,), with two items of size s; and s,,.

Then s, + st s, > s, Ts; T s; > B, exceeding the bin capacity.

Consider any Z-item. By itself, it forms a set of one big item. If we pack it with the largest
remaining U,z item (possibly a Z-item itself), the remaining items in U, 3 are strongly minimal,
and Theor=m 1 indicates thisis optimal. -

Hence, the new lower bound BIGfor 5*(L123) is obtained by the following steps:
1. Run MATCH(Ly 23) (requiring |Ly| bins).

2. Pair up and remove the Z-items from U, 3 (requiring 12/21 bins).

3. Choose the larger lower bound for the remaining non-Z-items in U, 3 using:

(8) m1 = [max(%,%22)].

(b) mq, = alower bound computed by using Lueker’s functions.

B/4 B2 B

Figure 2. The set of L;3-items are partitioned into X, Y, Z, U;3-Z, and U, after running
MATCH(L, 2 3) and determining the Z-interval, where B is the bin size.

Hence, BIG = |Iy| T [2/2] T max(my,mj), which is computed by the algorithm carc_Bic(). If
there are an odd number of Z-items, we pack the leftover Z-item with the largest non-Z item in
Uz,3. The running time of caLc_BiG() is dominated by the call to MATCH, which must sort the
L, 3-items. Hence, caLc_BIG requires O(nlog n) time and is quite practical to run.

Algorithm CALC_BIG()
match(L;23);
z := the number of Z-items from U,3;
remove the Z-items from U, 3;
iz (z is odd) then
discard the largest item from U/, 3;

z 1=z + 1;
end
uy = the number of Iy-items in Uj3;
Un 3 < |U2,3|;
my 1= [max(%,*2)];

compute a lower bound my for U,3 using Lueker's functions in Table 1;
return |L| + [2] + max(mq, my);
end

4 Experimental Results and Analysis

To test the effectiveness of our lower bound, OB, we have run simulations on a RS/6000 workstation
running AIX 3 using the bin size B = 100. Samples were generated by the random number generator
random() in the standard C library and packed by using the BFD algorithm. The object size is
randomly generated over the interval (a,b] for 0 < a < b < B. For each pair of a,b vaues,
we generated ten instances, where n = |L| = 30,000. We simulated 50500 random bin-packing
instances in total. Note that Lueker’s functions are used twice in the computation of OB = max

{SUM, LLB, BIG), once for computing LLB when (a,b) is in the regions defined by Lueker [8]
(see Table 1), and once again as m;, a component of the lower bound for S*(Us,3) (after matching
and Z-items are removed) in BIG. Because the three componentsin OB perform well in different
regions on the a-b plane, we divide the plane into the three sub-regions:

R]_ = {(a,b):a+ bZ B),
Ry ={(a,b):a> B/4, atb< B),
R3 = {(a,b):a < B/4, a +b< B).

The three regions (for B=1) are shown in Figure 1. R, corresponds to the triangle P;P;Ps; R,
corresponds to the triangle P, Ps Py; and R3 corresponds to the polygon Py Py Py Ps.

The number of times each component in OB winsin each region is shown in 'Table 2, where the
winner is determined as follows:

if SUM= OBthen
SUM wins
else if LLB= OBthen
LLBwins
else BIG wins
end
end

BIG is the winner only when it contributes to a tighter lower bound. In region R;, BIG is the
dominant component in OB; in region Ry, LLB wins 79.5% and BIG wins 20.05% of the time; in
region R3, SUM is the dominant component in OB. In region Rs, Lueker's functions help in 136
out of 645 instances when BIG wins, contributing the m4 term.

Because the actual error rate is unknown, we define the approximate error rates, r(SUM) =
(BFD-SUM)/SUMand r(OB) = (BFD - OB)/ OB, where BFD is the solution obtained by using
BFD algorithm. Note that an approximate error rateis an upper bound on the actual error rate.
For many cases, the errors caused by the poor estimate of SUM are eliminated by our tighter lower
bound OB. The minimum (Min), average (Mean), maximum (Max), and standard deviation (a) of
r(SUM) and r(OB) values for the three regions are summarized in Table 3. The small standard
deviation values for »(OB) show that OB provides a consistently good lower bound.

Figure 3 depicts #(SUM) and r(OB) for regions R; and Rs where each data point shown
represents the average of ten instances. Consider the worst-case of r(SUM) and 7(OB) in region
R,. The peak value of r(SUM) is 47.06%) while the peak value of r(OB) is 24.39%.

a The worst-case of »(SUM) occurs when theinterval is [34,34]. If there are 2m 34s, then SUM
= [0.34 * 2m) and BFD = S*=m. Hence, r(SUM)= m/0.68m — 1 = 47.06%.

a The worst-case of r(OB) occurs when the interval is [33,34]. If there are 2m 33s and 2m
34s, then OB = [4m/3]. It is optimal to pack two 33s and one 34s in a bin, yielding

10

SUM wins 17(0.07%)
LLB wins 0
R, | BIGwins | 25483(99.93%) | m1 wins 24903(97.66%)
mq Wins 580(2.27%)

subtotal 25500

SUM wins 26(0.42%)
LLB wins | 4969(79.50%)
R, || BIGwins | 1255(20.08%) | m:1 wins 1250(20%)
ms WiNs 5(0.08%)

subtotal 6250

SUM wins | 17159(91.51%)
LLB wins 946(5.05%)
Rs || BIG wins 645(3.44%) | my wins 509(2.71%)
ma wins 136(0.73%)

subtotal 18750

Table 22 Winners in OB for the three regions on the a-b plane. There are two componentsin BIG
after matching and removing the Z-items: m; = [max(*%,*2)] and m; is the lower bound for
packing U; 3 computed by using Lueker's functions.

‘ repion “ | Min | Mean | M ax | a

Ry r(SUM) | 0% | 26.67% | 96.08% | 19.5%
r(OB) 0% | 0.003% | 0.08% | 0.01%
Ry r(SUM) | 0% | 11.52% | 47.06% | 9.38%
r(OB) 0% 1.7% | 24.39% | 3.02%

Rs || r(SUM) | 0% | 2.26% | 19.05% | 3.12%
r(OB) | 0% | 2.03% | 19.05% | 2.76%

Table 3: The statistics for r(SUM) and r(OB).

11

5* = m* [m/2]. However, BFD would pack two 34s and then pack three 33s in a bin,
yielding BFD = m * [2m/3]. Hence, r(OB) ~ B 4m _ 1 = 25%. Note that BFD/S* =

(m+ [2m/3])/(m* [m/2]) = 10/9 and OB/S* = [4m/3]/(m * [m/2]) = 8/9.

5 Coricluson

We have presented an efficient algorithm to compute a tighter lower bound OB for the one-
dimensional bin packing problem. OB is the maximum of SUM, LLB, and BIG, which itself is
a lower bound for packing objects of size greater than B/4. When many large objects exist, BIG
gives a very good estimate on the optimal solution. For many instances L with large objects
BFD(L) = OB, empirically proving that BFD produces optimal packings even when large objects

dominate the packing. BFD appears to produce optimal packings for a very wide range of object
size distributions.

12

Figure 3: Average r(SUM) and r(OB) for 0 < a< b< B,atb< B.

13

References

[1] J. L. Bentley, D. S. Johnson, T. Leighton, and C. C. McGeoch. An experimental study of bin
packing. In Proceedings of the 21st Annual Allerton Conference on Comnzunication Control
and Computing, pages 51-60, 1983.

[2] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. American Elsevier Pub-
lishing; Co., New York, 1976.

[3] M. R. Garey and D. S. Johnson. Computers and Intractability. W.H. Freeman and Company,
San Francisco, CA, 1979.

[4] D. S. Johnson. Near-Optimal Bin Packing Algorithms. PhD thesis, MIT, 1973.

[5] D. S. Johnson. Fast algorithms for bin packing. Journal of Computers and System Sciences,
8:272--314, 1974.

[6] C. C. Lee and D. T. Lee. A simple on-line bin packing algorithm. Journal of the ACM,
32:562-572, 1985.

[7] G. S. Lueker. An average-case analysis of bin packing with uniformly distributed item sizes.
Technical Report 181, University of California at Irvine, Feb. 1982.

[8] G. S. Lueker. Bin packing with items uniformly distributed over interval [a,b]. In Proceedings
of the 24th Annual FOCS, pages 289-297, 1983.

[9] P. W. Shor. Theaverage-case analysis of someon-line algorithms for bin packing. In Proceedings
of the 25th Annual FOCS, pages 193-200, 1984.

[10] A. C. C. Yao. New algorithms for bin packing. Journal of the Association for Computing
Machinery, 27:207-227, 1980.

14

	Purdue University
	Purdue e-Pubs
	6-1-1995

	A Tighter Lower Bound for Optimal Bin Packing
	Heng Yi Chao
	Mary P. Harper
	Russell W. Quong

