
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

6-1-1995

A Tighter Lower Bound for Optimal Bin Packing
Heng Yi Chao
Purdue University School of Electrical Engineering

Mary P. Harper
Purdue University School of Electrical Engineering

Russell W. Quong
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Chao, Heng Yi; Harper, Mary P.; and Quong, Russell W., "A Tighter Lower Bound for Optimal Bin Packing" (1995). ECE Technical
Reports. Paper 122.
http://docs.lib.purdue.edu/ecetr/122

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages

TR-ECE 95-15
JUNE 1995

~ " 2 ~ ~ ~ SCHOOL OF ELECTRICAL
AND COMPUTER ENGINEERING

o* PURDUE UNIVERSITY

WEST LAFAYETTE, INDIANA 47907-1285

A Tighter Lower Bound for Optimal Bin Packing

Heng-Yi Chao, Mary P. Harper, and Russell W. Quong

School of Electrical Engineering

1285 Electrical Engineering Building

Purdue University

West Lafayette, IN 47907-1285

Email: {hengyi,harper,quong) @ecn.purdue.edu

Abstract

In this paper, we present an O(n1ogn) algorithm to compute a tighter lower bound

for the one-dimensional bin packing problem. We have simulated the algorithm on

randomly generated bin packing problems with item sizes drawn uniformly from (a, b],

where 0 5 a < b 5 B and B is bin size. Using our lower bound, the average error of

BFD is less than 2%. For a + b > B, the error is less than 0.003%.

Key w0rd.s: bin packing, lower bound, best fit decreasing, harmonic partition, matching.

1 Introduction

The qualitj, of an approximation algorithm A is often measured by its asymptotic performance ratio

[3] or wors1;-case performance ratio [6]. For an instance L of a minimization problem II, let S*(L)

be the opt ma1 solution and A(L) be the solution obtained by using algorithm A. If a quantity

implicitly depends on the problem instance L, then we drop L from our notation. The asymptotic

performance ratio of algorithm A for minimization problem II, is defined as [3, page 1281:

r 2 1 :for some k E N , - A(L) < T , V L E domain(=), satisfying S*(L) 2 k
S*(L) -

Comparing two algorithms solely using worst-case performance ratios can be misleading because

the average-case performance may differ significantly from the worst-case performance.

For an instance L of a minimization problem 11, if lb 5 S*(L) 5 ub, then 145 is called a lower

bound and ub is called an upper bound on the optimal solution. These bounds ;are useful because

S* may not; be computed in polynomial time. Clearly, lb (ub) should be as large (small) as possible,

with the goal of having lb = S* = ub. Note that an existing heuristic algorithm provides an upper

bound on ,I;*. In this paper, we present an efficient algorithm to compute a tighter lower bound for

the off-line one-dimensional bin packing problem (a packing algorithm is called on-line if it packs

the items in the order they are received; otherwise it is off-line).

The one-dimensional bin packing problem [3] is the problem of partitioning (or packing) a set

L of n objects (or items) into a minimum number of bins, such that the sum of the object sizes in

each bin does not exceed the bin size, B. Let s; be the size of object i, s; E (O , A ~] . In discrete bin

packing, s; and B are integers; in continuous bin packing, B = 1 and s; are realis in (0,:I.l.

Becaus'? the bin packing problem is NP-complete, heuristic algorithms for the bin packing

problem have been studied extensively [l, 4, 5, 6, 101. Some of the basic algoritlhms include First-

Fit (FF) , Best-Fit (BF), Worst-Fit, and Next-Fit. The Best-Fit algorithm assigns each object

sequentially to the most fully packed bin into which it fits. First-Fit Decreasing, (FFD) and Best-

Fit Decreasing (BFD) are variations of F F and BF in which the objects are sorted in decreasing

(or non-increasing) order before being packed. Johnson [4, 51 provides the worst-case performance

ratios, R(I7F) = and R (F F D) = y. The B F and BFD algorithms have the same worst-case

performanlze as F F and FFD [5]; however, BFD performs better than the others in practice. In this

paper, we use our lower bound to empirically show that BFD performs very well for a wide range

of object size distributions.
In the rest of this paper, we present a tight lower bound for the bin packing problem. In

Section 2, we discuss our lower bound strategies. In Section 3, we present our lower bound. In

Section 4, we show that our lower bound is effective in practice.

2 Our Lower Bound Strategies

Our lower bound is based on several concepts: the subproblem principle, SUM, ILueker's functions

[8], harmonic partition [6], and special handling of large-sized objects which we classify as BIG.

The subproblem principle is introduced in Lemma 1.

Lemma 1 [Subproblem Principle] The optimal solution of a subproblem L13ub 2 L is a lower

bound for the original problem L. It follows that a lower bound for Lsub is also a lower bound for

S*(L), because lb(L,,b) 5 S*(LSub) 5 S*(L).

We defi.ne SUM as [(CiEL si)/B1, which is an obvious lower bound on S*. Many researchers

[I , 91 have used A(L) - SUM, termed empty space (or wasted space), t o measure the performance of

a packing algorithm, A. Bentley et al. [I] used empty space to measure the average performance of

F F and FE'D for packing items drawn uniformly from the range (0, b], 0 < b 5 1. The empty space

remains consistently small until b reaches a critical threshold between 0.8 and 0.9 (depending upon

n), above which it grows without bound. In particular, the empty space grows roughly as 0.3&,

for b = 1.0 [I , 71. Shor [9] provided tighter lower bounds and upper bounds on the expected wasted

space for the on-line BF and F F algorithms when packing items uniformly distributed on [0,1].

When t h e ~ e are many small objects, the empty space seems a good performance measurement.

However, i:? the object sizes tend to be large, the simulation data in Section 4 show that the empty

space is not a good performance measurement.

Lueker [8] considered packing items drawn uniformly from intervals [a, b], 0 < a < b < 1. He

determined lower bounds on the optimum packing ratios for certain values of a and b, where the

optimum packing ratio is defined as the expected number of bins to the expected total item size.

He considered four regions on the a-b plane and gave a feasible function for each region, where a

feasible function is a real-valued function u(x) such that V k 1 1,

The four regions and their corresponding feasible functions defined in [8] are shown in Table 1. A

partial plot (a 2 1/5) of the regions on the a-b plane defined by Lueker is shown in Figure 1. Note

that these regions cover only part of the a-b plane.

Lemma 2 describes how we can use Lueker's functions to compute a lower bound. If (a, b) is

contained in one of the regions defined in Table 1, then a lower bound can be computed by using

the feasible functions given in the table. We call this lower bound LLB (Lueker's Lower Bound).

Lemma 2 Let L be a bin packing instance containing n items distributed over (a, b], 0 5 a < b <
B. If u(x) is a feasible function on (a, b], then [CY=+(s;/B)] 5 S*.

a E (hl ;)
C b E (y + a , l - a) IT- ~ c (x) = [(P + l) x - l l / p , x E [a , b]

Table 1: The four regions and their corresponding feasible functions defined by Lueker, where
1 L 1 s = (- - --I/(- - a) .
p - 1 p+l

Proof: For each bin k in an optimal packing, E iEks ; j B (i.e., E iEk(s i /B) . j I), where i E k

denotes item i being packed in bin k. Hence, EiEk u(si/B) 5 1 because u(.x) is feasible (see

Equation 1). It follows that ,

and hence, [CT=l u(si/B)l < S*.
Our lower bound also considers partitioning the interval (0, B] into sub-irltervals. Lee and

Lee [6] prc~posed a harmonic algorithm which partitions (0,1] into M intervals: Ik = (&, i] for

1 5 k < Ad and IM = (0, $1. An object i is called an Ik-item if s; E Ik , and a bin designated

t o pack Ik-items exclusively is called an Ik-bin. We have modified the definition of a harmonic

partition t13 accommodate discrete bin packing over the interval (0, B]. The k-th harmonic interval
B is denoted Ik, k = 1,2, . . ., where Ik = {x : < x 5 f!}. The term I;, ,..., i, is the union of

intervals I;, U . - . U I;,. For example, if B = 100, we have Il=(50..100], 12=(3:1..50], 13=(25..33],

and 12,3 = I2 U I3 = (25,501. At most one 12,3-item can be packed with an 11-.item. Also, given

only Ik-items, it is optimal to pack k of them to a bin choosing items arbitraril;~. We define L; to

be the set of I;-items in L and Li ,,..., ;, to be the set of I;, ,..., i, items in L.
If object sizes are not uniformly distributed over (O,B] or tend to be large, SUA! becomes

unrealistic,dy optimistic. A better lower bound must consider the largest, and hence, the most

difficult-to-pack items, that is, L1,2,3. Hence, we derive a lower bound, BIG, for S*(L1,2,3), which

is so named because it takes into account the big items. BIG is a lower bound on S* since, by the

partition of the a-b plane

a

Figure 1: A partial plot (a 2 1/5) of the regions on the a-b plane defined by Lueker.

subproblen~ principle, BIG 5 s*(L1,2,3) 5 S*. A lower bound on s*(L1,2,3) is th.e best we can do,

because de.;ermining s*(L1,2,3) is NP-complete (we can reduce three-dimensional matching [3, page

501 t o bin packing L1,2,3 in which each bin contains three objects).

Our lower bound O B contains three major components, SUM, LLB and BIG. OB is a lower

bound as ii, is the maximum of the lower bounds.

Lemma 3 O B = max(SUM, LLB, BIG) is a lower bound for S*.

We now show how t o compute BIG, a lower bound of S*(L1,2,3). The maiin idea behind the

computaticm of BIG is t o perform a sequence of optimal steps for packing objects in L1,2,3 such

that these ~ a c k e d pseudo objects cannot be packed with any other objects. Then we compute a

lower bound for packing the leftover items and add it to the number of bins requjred by the packed

pseudo objects.

Let A == AB u As. We say AB (As) is a big (small) set if packing AB always requires lABI bins

and for each item i E AB, we can pack a t most one other item in As with i. For example, (LIJ bins

are needed to pack L1 (because each 11-item requires a bin), and each Iz,3-item c'an be packed with

a t most one 11-item. Hence, L1 is a big set (AB), and L2,3 is a small set (As). Assume we pack AB

into bins with various items from As via packing P. Let P(As, AB) be the set of leftover items from

As not packed with AB. Let P (A s , AB) = {P(As, AB) : for all packings P}. Lot U = P(As, AB)

and U' = P1(As, AB) for two packings P and P I . Assume U and U' are sorted into decreasing

order. We say CT is strongly minimal over P(As, AB) if V U' E P (A s , AB), JUI 2 lU'l and s; 5 sl,

where 1 5 i 5 IUI. Namely, U is minimal both in cardinality and on an item-by-item basis over all

sets of leftl~ver small items. Analogously, U is strongly maximal if V U' E P (A s , AB), IU(> IU'(

and si 2 st:, where 1 5 i 5 IU'I. The next lemma indicates why computing a strongly minimal set

is useful for bin packing.

Lemma 4 If U is strongly minimal over P(As, AB), then S*(U) 5 S*(U1), V U' E P(As, AB).

Proof: In the optimal packing of U', replacing s: with s; is valid as si 5 s: . Thus, S*(U))(S*(U1).

The next theorem indicates that after packing big items, if the set of the remaining items is

strongly minimal, the packing is optimal.

Theorem 1 If U = P(As,AB) is strongly minimal, then S*(A) = lABl + S*(Cr).

Proof: Let P' be any packing of A and let U' = P1(As,AB). Both P and P' require lABl bins

t o pack AB. If we optimally pack U and U', we need lABl + S*(U) and JAB[+ S*(U1) bins,

respectively. However, as U is strongly minimal, S*(U) 5 S*(U1) by Lemma 4. Thus, packing P
followed b:y optimally packing U cannot be improved upon.

Note that L1 is a big set and L2,3 is a small set. If we can find a strongly maximal set X of L2,3

and its coi~esponding set Y in L1, then L2,3\X is strongly minimal, and it is therefore optimal to

pack each pair of objects in (X , Y) by Theorem 1.

3 BIG, A New Lower Bound for S * (L ~ , ~ , J)

In this section, we describe how to calculate BIG, a lower bound for S*(L1,2,s). We first pack L1

with items from L2,s using an optimal matching algorithm which leaves a strongly minimal set

of "unmatched" items in L2,3, denoted U2,3. We then determine a lower bound for S*(U2,s), and

add it t o IL1(because the L1-items must occupy JL1(bins no matter how they are packed. In

Section 3.1, we give the matching algorithm and prove its optimality; in Section 3.2, we determine

a lower boiind for the unmatched items, U2,3.

3.1 Optimal Matching

We say that two sets X = {xi , . . ., xm) C_ L2,s and Y = {yl, . . ., y,) L1 form a matching if for

1 5 i 5 m, each pair x; and y; can be placed in the same bin. Note that (X , Y) forms a matching

[2] in the common sense that each 12,s-item can be packed with at most one 11--item. We use the

greedy algorithm M A T C H (L ~ , ~ , ~) to match the items in L2,s, sorted in order of decreasing size, with

the largest possible remaining L1-item. Intuitively, MATCH is driven by L2,s, not L1. When an item

in L2,s is ~natched with an item in L1, it is moved to the set X and its matclh is moved to the

set Y. Algorithm MATCH computes the sets X and Y of matched L2,s and L1 items, respectively.

When the algorithm is complete, Ul contains the unused L1-items and U2,3 contains the unused

L2,s-items. Note that this process is equivalent to performing FFD or BFD on Ll,2,3-items such

that those items in L2,s not assigned t o bins containing L1-items define the set 172,s.

Algorithm M A T C H (L ~ , ~ , ~)
s o r t L2,s = {vl 2 . - . > v,) ;
X := Y := 0;
f o r each v; = vl t o v, i n L2,s

T := L1 items matching v;
i f (T is no t empty) t h e n

t := t h e l a r g e s t i tem i n T ;
move t from L1 t o Y
move v; from L2,s t o X

end
end
Ul := L1;
u2,3 := L2,3;

end

To guarantee that BIG is a lower bound, it is important that the set of leftover Lays-items, U 2 , ~ ,

is strongly minimal. Theorem 2 proves that the matching (X , Y) produced by M A T C H (L ~ , ~ , ~) is

part of an optimal packing of L1,2,3.

Theorem 2 Let X be the set of La,3-items matched by M A T C H (L ~ , ~ , ~) . Let X' be the set of L2,3-

items matched by any other matching algorithm A'. Let X = {xl, . . . , x,) and ;Y' = {x i , . . . , x;,)

where X and X' have been sorted into decreasing (non-increasing) order. Then X is strongly

maximal over all XI.

Proof: To simplify the notation, we take xi to represent both the object ancl its size. We use

induction on i, showing xi > x:, thus we are comparing the i th largest element matched by A with

that of A'. Recall that M A T C H (L ~ , ~ , ~) repeatedly matches the largest remaining item in L2,3 with

the largest item, y, remaining in L1. Let y; be the i th L1-item matched by M A T C H (L ~ , ~ , ~) and

K = {YI, . . . , ~ i) .

Basis: (i = 1) If x1 is the largest item matched by M A T C H (L ~ , ~ , ~) , none of the larger items originally

in L2,3 could have been matched. Thus, XI is the largest matchable item possible, giving rl > xi .

Inductive step: Assuming the largest k items in X are maximal, x; >_ xi, for 1 5 i < k, we show

the (k + 1)st item in X is maximal, i.e., xk+l > assuming X' has a (k + 1)st item.

Assume the contrary, namely > xk+l. By the inductive hypothesis, xk > x i , so we have

xk 2 x i 1: > xk+l. A' is able to match to some item in L1, but M A T C H (L ~ , ~ , ~) is

unable to match xi+l , otherwise it would have matched and not xk+l. Hence, at this point,

all remainjng items in L1 must be greater than (B - x ; + ~) in size. As the k matched items

{xl, xz, . . . , xk) all have a size greater than or equal to x i+l , each item in Yk must be less than or

equal to (1 3 - xi+l) . Thus, initially L1 contains exactly k items less than or equal to (B - xi+ l) ,

namely Yk. However, A' has already matched k items greater than or equal to xi+], namely

{x i , . . . , x i) , and these k items must be matched with Yk. Thus, no remaining item in L1 is small

enough t o '3e matched with x i+l , so A' cannot possibly match xi+l , yielding a contradiction. Thus,

we must have xk+l > xi+l .

A similar argument shows 1x1 > JX'I. That is, if n < n', X cannot contain an 3:,+1 item, but the

above reawning shows that X' cannot contain a corresponding x;+~ item either.

As M A ' ~ C H (L ~ , ~ , ~) partitions L2,3 into X and U2,3, we know U2,3 is strongly minimal because

X is strongly maximal. Thus, Theorem 1 indicates the following steps give an optimal packing of

L1,2,3:

1. Run MATCH (L1,2,3).

2. Pack each of the 11-items remaining in Ul in a separate bin.

3. Pack each pair xi and y; from X and Y together in a separate bin.

4. Optimally pack the U2,3 using S*(U2,3) bins. This step is NP-complete, in general.

Steps 2 and 3 pack the L1-items and items in X using 1 L1 1 bins. Thus, we have:

Lemma 5 Both BFD and FFD provide an optimal solution when given only I, (or 11,3) items.

Proof: In this case, both BFD and FFD mimic M A T C H (L ~ , ~ , ~) and U2,3 consists; of only I2 (or 13)

items. Then each would pack the U2,3 objects two (or three) to a bin, avoiding the NP-complete

problem of packing mixed 12,3-items.

3.2 After Matching

Although lwe could apply SUM to U2,3, SUM can perform quite poorly as packing the L2,3-items

often leaves much empty space in bins. We obtain a better bound by considering the unpacked

12-items separately. Let U2 be the set of 12-items in U2,3; let 1 ~ 2 = IU2J and U2,3 = (U2,31. Packing

U2 alone requires [u2/21 bins. We can pack a t most three items in U2,3 to a bin. requiring a t least

[~ ~ , ~ / 3 1 bins. Thus, a lower bound for S*(U2,3) is [max(?, ?)I.
In practice, we can improve this bound slightly because we must often pack large 12-items with

only one other object. For example, if B = 100 and U2,3 = (27, 30, 34, 38, 42, 45, 481, we can

pack neither 45 nor 48 with two other objects. Let s;, s j be the sizes of the smallest 12,3-items with

s; 5 s j . We define the 2-interval (a sub-interval of Iz in most cases) as:

Lemma 6 says that the 2-interval contains items which can be packed with at most one other item;

hence, it is best t o pack them with other 2-items. Figure 2 depicts the partitioning of Ll,2,3-items

into classes.

Lemma 6 It is optimal to pack every two 2-items together.

Proof: First we show a 2-item can be packed with at most one other item. If s; E 12, all we have

are 12-items. If s; E 13, consider packing a 2-item (of size s,), with two items of size sl and s,,.

Then s, + sl + s, 2 s Z + s; + s j > B , exceeding the bin capacity.

Consider 2,ny 2-item. By itself, it forms a set of one big item. If we pack it with the largest

remaining U2,3 item (possibly a 2-item itself), the remaining items in U2,3 are strongly minimal,

and Theorl2m 1 indicates this is optimal. rn

Hence, the new lower bound BIG for S*(L1,2,3) is obtained by the following steps:

1. Run MATCH (L1,2,3) (requiring lLl 1 bins).

2. Pair up and remove the 2-items from U2,3 (requiring 12/21 bins).

3. Choose the larger lower bound for the remaining non-2-items in U2,3 using:

(a) m1 = Cmax(?, ?)l.

(b) m2 = a lower bound computed by using Lueker's functions.

Figure 2: The set of Ll,2,3-items are partitioned into X, Y , Z, U2,3-Z7 and U1 after running

M A T C H (L ~ , ~ , ~) and determining the Z-interval, where B is the bin size.

Hence, BIG = I L1 I + [z/2] + max(ml, m2), which is computed by the algorithm CALC-BIG(). If

there are a,n odd number of Z-items, we pack the leftover 2-item with the largest non-Z item in

U2,3. The running time of CALC-BIG() is dominated by the call to MATCH, which must sort the

La,3-items. Hence, CALC-BIG requires O(n1og n) time and is quite practical to run.

Algoirithm CALC-BIG()
match(Ll,2,3> ;
z := t h e number of Z-items from U2,3;
rc:move t h e Z-items from U2,3;
i:: (z i s odd) then

d iscard t h e l a r g e s t item from U2,3;

u : ~ := t h e number of 12-items i n U2,3;
~ : : , 3 := Iu2,31 ;
m.1 : = [max(F, ;
compute a lower bound ma f o r U2,3 using Lueker's funct ions fin Table 1 ;
r e t u r n 1 Ll 1 + + max(ml, ma) ;

end

4 Experimental Results and Analysis

To test the effectiveness of our lower bound, OB, we have run simulations on a RS/6000 workstation

running AIX 3 using the bin size B = 100. Samples were generated by the random number generator

random() in the standard C library and packed by using the BFD algorithm. The object size is

randomly generated over the interval (a, b] for 0 5 a < b < B. For each pair of a , b values,

we generated ten instances, where n = ILJ = 30,000. We simulated 50500 ra,ndom bin-packing

instances in total. Note that Lueker's functions are used twice in the computa-tion of OB = max

{SUM, LLB, BIG), once for computing LLB when (a, b) is in the regions defined by Lueker [8]

(see Table I) , and once again as m2, a component of the lower bound for S*(U2,3) (after matching

and 2-items are removed) in BIG. Because the three components in OB perform well in different

regions on the a-b plane, we divide the plane into the three sub-regions:

RI = {(a,b): a + b 2 B),

R2 = {(a, b) : a 2 B/4, a + b < B),

R 3 = { (a , b) : a < B/4, a + b < B).

The three regions (for B = l) are shown in Figure 1. R1 corresponds t o the triangle P3P5P6; R2

corresponds t o the triangle P2P3P4; and R3 corresponds t o the polygon PlP2P4 P5.

The number of times each component in OB wins in each region is shown in 'Table 2, where the

winner is determined as follows:

if S U M = OB then
SUM wins

else if LLB = OB then
LLB wins

else BIG wins
end

end

BIG is the winner only when it contributes to a tighter lower bound. In region R1, BIG is the

dominant component in OB; in region R2, LLB wins 79.5% and BIG wins 20.05% of the time; in

region R3, SUM is the dominant component in OB. In region R3, Lueker's functions help in 136

out of 645 instances when BIG wins, contributing the m2 term.

Because the actual error rate is unknown, we define the approximate error rates, r(SUM) =

(B F D - SUM)/SUMand r (0 B) = (B F D - OB)/OB, where B F D is the solution obtained by using

BFD algorithm. Note that an approximate error rate is an upper bound on the actual error rate.

For many cases, the errors caused by the poor estimate of SUM are eliminated b:y our tighter lower

bound OB. The minimum (Min), average (Mean), maximum (Max), and standard deviation (a) of

r (S U M) and r (0 B) values for the three regions are summarized in Table 3. The small standard

deviation values for r (0 B) show that OB provides a consistently good lower bound.

Figure 3 depicts r (S U M) and r (0 B) for regions Rz and R3 where each data point shown

represents the average of ten instances. Consider the worst-case of r (S U M) and r (0 B) in region

R2. The peak value of r (S U M) is 47.06%) while the peak value of r (0 B) is 24.39%.

a The worst-case of r (SUM) occurs when the interval is [34,34]. If there are 2m 34s, then SUM

= 10.34 * 2m) and B F D = S* = m. Hence, r (S U M) = m/0.68m - 1 = 4:7.06%.

a The worst-case of r (0 B) occurs when the interval is [33,34]. If there are 2m 33s and 2m

34s) then OB = [4m/31. It is optimal t o pack two 33s and one 34s in a bin, yielding

Table 2: Winners in OB for the three regions on the a-b plane. There are two components in BIG
after matching and removing the 2-items: ml = [m a x (y , y)l and rn2 is the lower bound for

packing U; ,3 computed by using Lueker's functions.

I renion 1 1 I Min 1 Mean I Max I a 1

R1

R2

R3

Table 3: The statistics for r(SUM) and r (0B) .

17(0.07%)
0

25483(99.93%)

25500

26(0.42%)
4969(79.50%)
1255(20.08%)

6250

17159(91.51%)
946(5.05%)
645(3.44%)

18750

SUM wins

LLB wins

BIG wins

subtotal

SUM wins

LLB wins

BIG wins

subtotal

SUM wins

LLB wins

BIG wins

subtotal

ml wins 24903(97.66%)
ma wins 580(2.27%)

ml wins 1250(20%)
m2 wins 5(0.08%)

ml wins 509(2.71%)
ma wins 136(0.73%)

S* =: m + [m/21. However, BFD would pack two 34s and then pack three 33s in a bin,

yielding B F D = m + [2m/3]. Hence, r (0 B) = - 1 = 25%. Note that B F D I S * =

(m + [2m/3l)/(m + [m/21) = 1019 and OBIS* = [4m/31 / (m + [m/21) z: 819.

5 Coriclusion

We have presented an efficient algorithm to compute a tighter lower bound OB for the one-

dimensional bin packing problem. OB is the maximum of SUM, LLB, and BIG, which itself is

a lower bound for packing objects of size greater than B/4. When many large objects exist, BIG

gives a very good estimate on the optimal solution. For many instances L with large objects

BFD(L) = OB, empirically proving that BFD produces optimal packings even when large objects

dominate the packing. BFD appears to produce optimal packings for a very wide range of object

size distributions.

Figure 3: Average r(SUM) and r (0 B) for 0 5 a < b 5 B, a + b < B.

References

[I] J. L. IBentley, D. S. Johnson, T. Leighton, and C. C. McGeoch. An experimental study of bin

packing. In Proceedings of the 21st Annual Allerton Conference on Comnzunication Control

and C:omputing, pages 51-60, 1983.

[2] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. American Elsevier Pub-

lishing Co., New York, 1976.

[3] M. R. Garey and D. S. Johnson. Computers and Intractability. W.H. Freeman and Company,

San Francisco, CA, 1979.

[4] D. S. Johnson. Near- Optimal Bin Packing Algorithms. PhD thesis, MIT, 1973.

[5] D. S. Johnson. Fast algorithms for bin packing. Journal of Computers and System Sciences,

8:272--314, 1974.

[6] C. C. Lee and D. T. Lee. A simple on-line bin packing algorithm. Journal of the ACM,

32:56:!-572, 1985.

[7] G. S. Lueker. An average-case analysis of bin packing with uniformly distributed item sizes.

Technical Report 181, University of California a t Irvine, Feb. 1982.

[8] G. S. Lueker. Bin packing with items uniformly distributed over interval [a,b]. In Proceedings

of the 24th Annual FOCS, pages 289-297, 1983.

[9] P. W. Shor. The average-case analysis of some on-line algorithms for bin packing. In Proceedings

of the 25th Annual FOCS, pages 193-200, 1984.

[lo] A. C. C. Yao. New algorithms for bin packing. Journal of the Association for Computing

Mach:inery, 27:207-227, 1980.

	Purdue University
	Purdue e-Pubs
	6-1-1995

	A Tighter Lower Bound for Optimal Bin Packing
	Heng Yi Chao
	Mary P. Harper
	Russell W. Quong

