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Abstract 

This paper presents a certification mechanism for verifying the 
secure flow of information through a program. Because it exploits the 
properties of a lattice structure among security classes, the procedure 
is sufficiently simple that it can easily be included in the analysis 
phase of most existing compilers. Appropriate semantics are presented 
and proved correct. An important application is the confinement problem: 
the mechanism can prove that a program cannot cause supposedly non-
confidential results to depend on confidential input data. 
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1 Introduction 

Computer system security relies in part on Information flow control, 

that is, on methods of regulating the dissemination of information among 

objects throughout the system. An information flow policy specifies a set 

of security classes for information, a flow relation defining permissible 

flows among these classes, and a method of binding each storage object 

to some class. An operation, or series of operations, that uses the value 

of some object, say x, to derive a value for another, say y, causes a flow 

from x to y. This flow is admissible in the given flow policy only if 

the security class of x flows into the security class of y. 

Prior work on the enforcement of flow policies has concentrated on 

run time mechanisms. One type of mechanism enforces a given flow policy 

by controlling processes' read and write access rights to objects: no 

process may acquire read access for an input object, or write access for 

an output object, unless the security class of every input flows into the 

security class of every output -- even if some outputs depend on only a 

subset of the inputs. ADEPT-50 [30] , the Case system [29], the MITRE 

system [3» 23], and the Privacy Restriction Processor [26] are of this type. 

These mechanisms are generally easy to implement because they make no 

attempt to examine the structure of a program. A second type of (more 

complex) mechanism accounts for program structures in order to determine 

flows between specific input and output objects. Fenton's data mark 

machine [10], the mechanism of Gat and Saal [13]» and the surveillance 

mechanism of Jones and Lipton [19] are of this type. The surveillance 

mechanism employs a program transformation to insure that all flows are 

properly accounted for at run time. A detailed discussion of all these 

mechanisms can be found in [ 7 ] . 
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This paper presents a compile time mechanism that certifies 

a program only if it specifies no flows in violation of the flow policy. 

Besides the aesthetic attraction of establishing a program's security 

before it executes, a certification mechanism has important advantages. 

It can be specified directly in terms of language structures, which facili-

tates its comprehension and its proof of correctness. It greatly reduces 

the need for run time checking. It does not impair a program's execution 

speed. (See also [23]) . 

Prior certification does not completely eliminate the need for 

run time checking. Run time support is needed to raise the tolerance against 

hardware malfunctions and other threats to the integrity of certified 

programs. It is needed to verify that computed addresses remain in the 

ranges assumed for them during certification. It is needed to control 

covert channels, which allow flows outside the storage objects of the system. 

2 Lattice Model of Information Flow 

We give a brief review of the flow model on which the certification 

mechanism is based [6, 7]• The model generalizes earlier work as reported 

in [3, 9, 10, 11, 23, 26, 29, 30]. 

2.1 Policy Description and,Properties 

A flow policy can be represented by (s, , where S is a given set of 

security classes and is a flow relation specifying permissible flows 

between pairs of classes. Each storage object x -- e.g., constant, scalar 

variable^ array» or file -- is assigned (bound) to a security class, 



denoted by underbar, x. The notation x thus means that a flow from 

object x to object y is permissible in the flow policy. We will suppose 

that the binding of each object t;o a security class is static, and can 

be determined from the declarations contained in a program. 

Under the reasonable assumptions that there is a finite number of 

security classes, that the flow relation is reflexive (i.e., x + ^ i s 

always permissible), and that the flow relation is transitive (i.e., 

x̂  •*• £ £ inpl ies jk •*• z), we may suppose that {s, +) is a lattice. 

This means that, corresponding to any pair of classes, there are unique 

upper and lower bound classes. If (S, •+) is not a lattice, It may be 

transformed into one by adding new classes as necessary without changing 

the flows among the original classes [8]. The lattice properties are 

exploited to construct an efficient certification mechanism. 

The symbols ® and 8 denote, respectively, the associative and 

commutative least upper bound and greatest lower bound operators of the 

lattice (s, •+) [kt 28J. The least upper bound is defined so that x. •+ ^ 

for I • l,...,m is equivalent to the relation x, ® ... ® x •*• y. It can 
—I —m -L-

be envisaged as requiring that flows from various operand classes must 

pass through a single, common class en route to a given result class. 

The greatest lower bound is defined so that x_-»• for J H 1 n is 

equivalent to the relation x -*• ^ 8 ... 8 It can be envisaged as 

requiring that flows from a given operand class must pass through a singl 

common class en route to various result classes. There is a h i ghest 
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class H, which is the least upper bound of all classes, and a least class 

L, which is the greatest lower bound of all classes. 

All unnamed programming language constants are members of L. This 

assumption is reasonable since the flow of an ordinary constant, say "99", 

into a variable, say x, puts in x no information about any other object. 

Only when "99" is known to be the value of an object y for which ^ A- x 

must its flow be prevented; but this is done by restricting the flow 

from y, not from "99". 

Figures I and 2 illustrate lattices that arise frequently in practice. 

Figure 1 is a linear "priority lattice" on n classes 0,l,..,,n-l, where 

L s0 and H=n-1. This lattice applies to the simple confinement problem with 

classes nonconfidential (0) and confidential (l) [10] and to the corwnon 

military security problem with classes unclassified (0), confidential (1), 

secret (2), and top secret (3) [30]. Figure 2 shows a more complex 

"property lattice" representing the immediate inclusions among all 2 n 

subsets of n=3 properties represented as bit vectors. It generalizes 

easily to any value of n. It is used in systems where information may flow 

only to a security class having at least the same properties as the 

originating class [3, 23, 29, 30]. 

2.2 Flow 

Information flows from object x to object y, denoted x -> y, whenever 

information stored in x is transferred to, or used to derive information 

transferred to, object y. A program statement specifies a flow x => y if 

execution of the statement could result in a flow x => y. 



n 
S ={0,1,...,n-l} | 

n-1 
I -»• j i f f r <_ j { 

t 

i • j = max (i,J) 

i 8 j = min (i,j) 

L - 0, H - n - 1 0 

Description Precedence graph 

F i gure 1. Linear priority lattice 

S = {000,001,..., 111} 

A •+ B i ff 0R(A,B) = B 

A • B - 0R(A,B) 

A 8 B = AND(A,B) 

L - 000, H = 111 

Descr i pt ion 

110 101 Oil 

t X X t 
100 010 001 

000 

Precedence graph 

Figure 2 . Property lattice for n™3. 
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F1ows a re explicit or i mp1i c i t. An exp1\c i t f1ow x => y occurs 

whenever the operations generating it are independent of the value of x. 

Assignment statements, I/O statements, and value-returning procedure calls 

generate explicit flows. An implici t flow x »> y occurs whenever a 

statement specifies a flow from some arbitrary z to y, but execution 

depends on the value of x. Consider for example the statements 

y: = 1; j_f x=0 then y: =0, 

where x is either 0 or 1. On termination of these statements, x=y 

whether or not the then clause was executed. Hence the j_f statement 

causes an implicit flow x a > y. In general, all conditional structures 

generate implicit flows. 

It should be noted that the relation => is transitive, that is, 

x => y => z implies x => z. If x => y because some function having x 

as an operand stores its result in y, the flow Is di rect; otherwise it 

is ind i rect. An assignment "y f (...,x,...)" thus causes flow x => y 

directly, while the pair "z := f(...,x,...); y g(...,z,...)" causes 

flow x => y indirectly. 

2.3 Security Requirements 

A program p is secure if and only if no execution of p results in 

a flow x => y unless x . ^ necessary and sufficient condition for the 

securlty of p is then 

(1) "x => y for some execution of p only If x •»• 
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Unfortunately, condition (1) Is generally undecldable. Any procedure 

purported to decide It could be applied to the statement 

If f(x) halts then y := 0, 

and thus provide a solution to the halting problem for an arbitrary recursive 

function [2k]. (in a related study, Harrison, Ruzzo, and Ullman have shown 

that, without severe restrictions, protection systems contain Intractable, 

if not undecidable, accessing Questions [16]). 

The undecldabi1Ity Is removed If we replace (?) with the security 

condi tIon 

(2) "x => y Is specified by p only If x + 

The previous J_f statement can clearly be tested for this condition. 

However, security condition (2) gives less precision In program certification 

than (1). For example, consider the program 

I f x-0 then i f xj<0 then y z 

and a flow relation that disallows only z => y. This program Is secure by 

(1) since no execution of it can result in z •»> y; but it will not be certified 

by a mechanism based on (2) since it specifies z => y. There Is no reason 

to believe that loss of precision is avoidable; Jones and Lipton, for example, 

have shown that it Is not even possible to construct a mechanism that rejects 

exactly the Insecure executions of a program £193 -

The certification mechanism to be presented is based on condition (2). 

It determines whether a given program specifies Invalid flows. 

Irrespective of whether the program can ever execute them. 
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3 The Certification Mechanism 

When the security classes of variables are declared in a program and 

are static, it is easy to incorporate the certification process into the 

analysis phase of a compiler. The mechanism wi11 be presented in the form 

of certification semantics — actions for the compiler to perform, along 

with usual semantic actions such as type checking and code generation, when 

a string of a given syntactic type Is recognized. This procedure differs 

from an information tracing procedure given by Moore 125]: ours verifies 

program flows against a standard, whereas Moore's seeks primarily to 

construct a flow graph. 

When external objects, such as files and separately compiled procedures, 

are bound to a program, the linker must verify that the actual security 

class of each such object corresponds properly to the security class declared 

formally for it in the program. This must be done before a program is executed. 

The certification mechanism exploits lattice properties for efficiency. 

The transitive flow relation Implies that sequences of secure direct flows 

are secure and, hence, the semantics need only certify the direct flows 

implied by each syntactic type. The least upper and greatest lower bound 

properties greatly simplify the amount of information needed to track the 

origins and destinations of flows. Suppose x^ x m are sources of infor-

mation for some receiving object y, as in an assignment statement "y 

f{xj,...,xm)" or in an output statement "output x^ x m is y". Rather 

than certify ^ separately for each i, the compiler may form A = 

2S.J ® • ® a s t h e source objects are recognized, and verify simply A -»• — 
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only a single internal variable representing the maximal class of the 

source objects is needed. Now, suppose y,,...,y are to receive information 
i n 

derived from some source object x, as in an input statement "input yj,...,y 

from x", or in a structure generating implicit flows from an object x in a 

conditional expression to objects yj in that structure's scope. Rather 

than certify x •*• ^ separately for each j, the compiler may form B = 

9 ... 8 ^ as .the receiving objects are being recognized, and verify simply 

x -»• B -- only a single internal variable representing the minimal 

class of the receiving objects is needed. 

The presentation of the full mechanism has been divided into four 

parts: a) assignment, I/O, and simple control structures; b) general control 

structures and complex data structures; c) procedure calls; and finally 

d) exception handling. 

3.1 Assignment, 1/0, and Simple Control Structures 

We consider a programming language that supports only the elementary 

data types integer, Boolean, and fi1e. Extensions to other types are 

straightforward. Arithmetic and Boolean expressions are formed from variables 

and constants as in Pascal [31]. The control structures specify assignment, 

Input and output with files, selection (by an \f_ statement), and iteration 

(by a while statement). A program comprises a list of declarations, including 

security class declarations, followed by the executable statements. An 

example program is given in Figure 3(a). 
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Table I gives the syntax and certification semantics for this language. 

To avoid ambiguities in the semantics, multiple occurrences of the same 

syntactic type are distinguished (e.g., <x>, <x>^, and < x >
2 ) •

 T h e security 

class of a syntactic type <x> is denoted by <x>. A compiler variable, 

CERTIFIED, Is initialized to true and set to false if the compiler ever 

detects a flow specification violating the flow relation. A program is 

certified as secure if and only if CERTIFIED = true after the entire program 

has been analyzed. The reader ;s referred to Gries [15, Sect. 12.2] for 

an exposition of additional semantic actions, e.g., code generation, that 

must be defined to complete the compiler. 

Figure A illustrates the certification of a simple assignment 

"c := a*2+b". The overall parse can be represented as a syntax tree for the 

statement. The security classes (in parentheses) are shown opposite each 

subtree. The semantic actions in effect propagate the security classes of 

expressions up the tree and verify the flow when the assignment operator 

is accounted for at the top. 

Figure 3(b) shows the certification actions for the example program. 

When the selection and iteration statements are recognized (lines 20 and 

22), the implicit flows from the controlling expressions (the • of the 

operand classes) to the variables receiving flows in their scopes (the 8 

of all such variable classes) are checked. The example program is certified. 
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1 begin 
2 i,n: integer security class L; 
3 flag: Boolean security class L; 
k f1,f2: file security class L; 
5 x,sum: Integer security class H; 
6 f3,fk: file security class H; 

7 begin 
8 I {L L) 
9 n 0; 0 + n ( L + L ) 

sum 0; 0 -»- Turn (L -> H) 
M while I < 100 do ~ 
12 begin 
13 Input flag from f I; f]_ flag (L -»• L) 
U output flag to f2; flag f2 (L •+• L) 
15 Input x from f3; f3 •+ x "Th H) 
16 H flag then ~ 
17 begin 
1 8 n n + 1; n • j_ ji (L <+ L) 
19 sum := sum + x sum 9 x sum (H H) 
2 0 end; flag -»• n 9 sum (l -»• L) 
21 i i + 1 ! • I * " ! TIT- L) 
2 2 end; 1 9 100 + flag 9 f2 8 x 8 

n̂  9 sum 8 J_ (L •*• L) 
23 output n, sum, sum/n Jto n 9 sum 9 sum 9 n -*• f<» (H •+• H) 
2k end — — 
25 end 

a) Program b) Certification Checks 

Figure 3. A Program and its Certification. 



Syntax Rule 

Declarations 

1 <type> : i n t e g e r [ Boolean | file 

2 <Idl1st> <ident> | <IdIist> , <ident> 

3 <decl> <id1ist> : <type> securi ty class 

A <decllst> <decl> ] <declist> ; <decl> 

Expressions 

5 <addop> ::= + | - | v 

6 <mulop> : * | / | a 

7 <relop> : : = < | l l = | » t ) l ] > 

8 <var> ::= <ident> 

9 <file> ::= <ident> 

10 <factor> <var> 

11 <factor> : < c o n s > 

12 <factor> : ( <exp> ) 

13 <factor> - <factor>j 

14 <term> ::»<factor> 

15 <term> : <term>j <mulop> <factor> 

16 <aexp> <term> 

17 <aexp> ::= <aexp>j <addop> <term> 

18 <exp> <aexp> 

19 <exp> ::» <aexp>. <relop> <aexp>^ 

Table i. Basic Certification Semantics. 



Certification Semantics 

<security class> for each <ident> In <idlist> associate 
<security class> with <ident> in the symbo 
table entry for <ident> 

<var> := < i den t> 

<fi1e> := <ident> 

<factor> := <var> 

<factor> L (the least class) 

<factor> :«= <exp> 

<factor> := <factor>j 

<term> := <factor> 

<term> <term>| A <factor> 

<aexp> :° <term> 

<aexp> := <aexp>| • <term> 

<exp> := <aexp> 

<exp> := <aexp>. C <aexp>„ 



Syntax Rule 

Assignment 

20 <stmt> <var> <exp> 

Input 

21 <Inllst> ::» <var> 

22 <In Ii st> : < I n 1 i st>| , <var> 

23 <stmt> : i n p u t <inl i st> from <file> 

Output 

2U <outllst> <exp> 

25 <outli st> ::=> <outlist>j , <exp> 

26 <stmt> : o u t p u t <outlist> to <flle> 

Compound 

27 <stlist> : < s t m t > 

28 <stlist> <stllst>1 ; <stmt> 

29 <stmt> begin <stlist> end 

Selection 

30 <stmt> j_f <exp> then <stmt>j [else <stmt>2] 

Iteratlon 

31 <stmt> ::•» whl le <exp> do <stmt>j 

Program 

32 <prog> begin <declist> ; <stmt> end 

Table I, cont. 



Certification Semantics 

<stmt> :- <var> 
if not (<exp> -»• <var>) then CERTIFIED fa ise 

<inlist> 

<inlist> 

<stmt> := <in 11st> 
if not (<file> <lnlist>) then CERTIFIED false 

<var> 

<inlist>, 8 <var> 

<outli st> := <exp> 

<outl i st> : =• <out 1 ist>^ $ <exp> 

<stmt> :- <file> 

if not (<outl ist> <f i le>) then CERTIFIED false 

<stl ist> :• <stmt> 

<stlist> <stllst>t 8 <stmt> 

<stmt> := <st]i st> 

<stmt> := <stmt>. [8 <stmt>2] 
if not (<exp> <stmt>) then CERTIFIED false 

<stmt> <stmt>1 

if not (<exp> -*• <stmt> then CERTIFIED false 

if CERTIFIED then certify <prog> else report security 
violation. (CERTIFIED is initialized to true and set to 
false if a violation is detected) 



1<I 

a • b •*• c 7 

<aexp> (a) <addop> 7 ^ r m > (b) 

<term> (a) 

< te rm> (a) <mulop> <factor> (L) 

I " I I 
<factor> (a) * <cons> (L) 

I I 
<var> (a) 2 

<ident> (a) 

I 

<factor* (b) 

I 
<var> (b) 

<ident> (b) 

I 
b 

• F ? 9 u r e V Certification Tree of an Assignment Statement. 
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The correctness of the certification semantics is straightforwardly 

established. Let Xj x^ denote the operands (source objects) in an 

<exp> or an <outlist>, and y 1 y^ the results (receiving objects) in 

an <inlist> or <stmt>. From Table I, it is easy to deduce that 

(pi) <exp> - <outllst> " X . 9 ... 9 x 
• 1 ———— —I —m 

(p2) <lnl lst> = <stmt> = ^ 9 ... 9 ^ 

We wish to prove: 

Theorem. A program is certified only if it is secure. 

The proof is an induction on the structure Index i of a given program p; i 

is simply the number of <stmt> nodes in a syntax tree for p. As a basis, 

consider i«l. There are three cases for the single simple <stmt> constituting 

1) Suppose <stmt> = "<var> :• <exp>". Let x. x denote the operands l m 

of <exp>; by (pi), <exp> » x^ 9 ... 6 The program Is certified only 

if <exp> -»• <var> (Rule 20), and thus only when it is secure. 2) Suppose 

<stmt> «= "input <inlist> from <flle> n. Let y^ y n denote the variables 

in <in1ist>; by (p2), <inlist> = ^ 9 ... program Is certified 

only if <f i ie> -»• <inl ist> (Rule 23), and thus only when it is secure. 

3) Suppose <stmt> - "output <oytlist> to <file>". Let xj,...,xm be all 

the objects in <outlist>; by (pi), <out1 lst> a Xj • ••• ® x ^ The program 

Is certified only If <outlist> <f I le> (Rule 26), and thus only when It 

is secure. Thus the theorem holds for all programs of one simple statement. 

As an induction hypothesis, assume that the theorem holds whenever the 

program's structure Index satisfies 1 £ i < J, and consider a program 
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p for which i » J. There are two cases. I) p Is d compound statement of the 

form <stmt> » "begin <stlist> end." The semantics assume that <stmt> Is 

certified whenever <stlist> Is (Rule 29). Since <stllst> denotes a sequence 

of statements each with index not exceeding J-l, and since the transitivity 

of the flow relation implies that any sequence of secure flows is secure, 

<stmt> Is secure when <stlist> is. 2) p Is a selection or iteration 

statement of the form <stmt> = "jrf <exp> then <stmt>j [else <stmt> 2]" or 

"while <exp> do <stmt>j". Let x.,..., x be the operands of <exp>; by (pi), 

<exp> x. ®...® x . Let y,,...,y be the objects receiving flows specified 
• J —m i n 

by <stmt>j [and <stmt>2]; by (p2) and Rule 30, <stmt> = <s_tmt> | [8 <stmt>^j -

0 ... By induction <stmt>^ [and <stmt> 2], having structure indices 

not exceeding J-l, are certified only if secure. However, Rules 30 and 31 

certi fy <stmt> only ifx^ ® ... • ^ 8 ... a n d t f i u s 0 0 ^ w* 1 e n 

the selection or iteration statement is secure. This completes the correct-

ness proof of the certification semantics. 

3.2 General Control and Data Structures 

The method of certifying the jj_f and whi le statements can be extended 

to any selection or Iteration structure expressible as a single statement. 

This Includes, for example, the Pascal repeat, for, and case statements 13?3. 

The prl nciple is to identify the operands xj,...,xm of the controlling expres-

sion and the objects yj y n receiving flows within the scope of the struc-

ture, and then verl fy that ® ... 8 • • • 

This technique can be extended to control structures arising from 

arbitrary goto statements. However, certifying a program with unrestricted 
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gal£s requires a control flow analysis of the program to determine the objects 

receiving flows within the scope of a conditional expression. (This analysis 

Is unnecessary If gotos are restricted — e.g., to loop exits - - s o that 

the scope of conditional expressions can be determined during syntax analysts). 

Following is an outline of the analysis required to do the certification. 

All basic blocks (single-entry, single-exit substructures) are Identified. 

A control flow graph is constructed, showing transitions among basic blocks; 

associated w|th block bj is an expression ej that selects the successor of b. 

In the graph. (How to do this is detailed In [I, 22]). The security class 

of block bj Is the greatest lower bound of the security classes of all objects 

receiving flows In bj (If there are no such objects, this class Is H). The 

Immediate forward dominator IFD(b.) Is computed for each block b^; It is the 

closest block to b. among the set of blocks which lie on all paths from b. 

to the program exit. Define Bj as the set of all blocks on some path from 

b. to IFD(b.). The security class Bj is the greatest lower bound of the 

classes of blocks in B { . Since the only blocks directly conditioned on the 

selector expression e. of b. are those In B^, the program is secure If each 

block b. Is Independently secure and B_j for all i. Full details of this 

procedure, with examples, are given In [6]. 

The mechanism can also be extended to handle complex data structures. 

We shall consider arrays and records to Illustrate the method; Table M shows 

the semantics. We assume .that, Just as they are of the same data type, the 

elements of an array are of the same security class. The certification 

semantics specify that, as an array reference Is processed, the classes of . 

the subscripts should be Joined with that of the array, yielding a class 
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<array ref> « <ident> • <subllst> (Rule 35). This Is sufficient as long as 

the array reference is a source object In an expression. If, however, the 

array reference is a receiving object, e.g., on the left side of an assignment 

statement, the relation <subl lst> <Ident> must also be verified. This is 

because information about the subscripts flows Into the array iri this case — 

e.g., after the assignment "a[i] 1" is made on an all-zero array, the 

value of i can be deduced by searching for the first non-zero element. 

Since <array ref> • <ident> 9 <subllst> is computed for any array reference 

(Rule 35)» and since then <sublist> <ldent> implies <sublist> ® <Ident> -

<ident>, this check reduces to testing whether <array ref> «» <ident> when 

<array ref> is recognized as receiving a flow. We have not shown this check 

in the certification tables. 

As a general rule, certification semantics must generate code that 

verifies whether computed addresses refer to the objects assumed during 

certification. Thus the array semantics must verify that the subscripts 

select elements in the declared range of the array (Rule 35). Without this, 

a statement like Ma[i] :»b" might cause an Invalid flow b •> c, where c is 

an object addressed by a[i] when I Is out of range. 

A record r Is a structure comprising fields x,,...,x , the I'th element 
i m 

being referenced by the compound name r.x.. Having a distinct name, each 

element can be assigned to a different security class. The notation ®r_ denotes 

r.Xj ® — • r , x m ' is similarly defined. An operation copying a record 

from a file f into r is secure only If f_ An operation copying a 

record r into a file f Is secure only I f •*• f_. An assignment "r :- s" 

for two records of Identical structure Is secure only If s.x^ r.Xj for 

each I. (A stronger, but not equivalent, requirement is_ •*• Bjr would be 

easier to implement). 



Syntax Rule 

Arrays 

33 <sublist> : < e x p > 

3b <subllst> <sublist>j , <exp> 

35 <array ref> : < i d e n t > [ <subllst> ] 

Records 

36 <stmt> input <rec> from <flle> 

37 <stmt> ::» output <rec> to <flle> 

38 <stmt> ::= <rec>. := <rec>„ 

Table II. Certification of Arrays and Records 



Certification Semantics 

<sublist> := <exp> 

<subl?st> <subl Ist>^ ® <exp> 

<array ref> <Ident> 9 <sub1ist> 
generate subscript range checking code 

<stmt> : = 8 <rec> 

If not (<fi 1e> <stmt>) then CERTIFIED :- false 

<stmt> := <file> 

if not (C<rec> <stmt>) then CERTIFIED false 

if <rec>j and <rec>^ have corresponding elements X i « « * i fX 
1 n 

then 

if not (<rec>j .x. -*• <rec>^ .x. for all i) 

then CERTIFIED := false 

<stmt> 8<re_c> | 

else TYPE ERROR true 



3.3 Procedure Calls 

A program p Is secure only If It cal1s certifled procedures for which 

the linkage flows are secure. Let q be a procedure with formal input 

parameters x^ x^ and formal output parameters yj,...,y . Consider 

a call to q in p of the form 

cal1 q ( a ) , . . . b j , . . . , b ), 

where are taken as th-i actual input parameters and bj tr 

as the actual output parameters of the call. The security of the call 

requires three conditions be verified: 

a) q is secure, 

* —] f o r ' = ' ' • • • > m > a n d 

c ) ij kj for j =• 1,.. .,n. 

Should the cal1 statement appear in the scope of conditional expressions 

the Implicit flows from to objects that could receive 

values during execution of q, must be verified. To this end, the compiler 

of q must Identify all objects Cj,...,^ to wliich q specifies flows; among 

them will be the formal output parameters of q. The security of the calI 

statement requires that 

d) e, • ... • e. -»- c, 8 ... 0 c„. 
—I —k —I HI 

If (d) is verified, then by (c) e ̂  « ... 6 e^ -+• ^ bj for each actual 

output bj of q. 

Unless p and q are compiled together, conditions (a)-(d) cannot be 

verified at the same time. However, the certifier can output Into the 
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separately compiled p and q information used subsequently by a linker to 

certify the linkage flows. On recognizing a call to q in p, the certifier outputs 

the list of rrrt-n+1 classes (a, a : b.,.. . ,b ; e. ® ... ® e. ) . For 
—i —— l —n —I —k 

procedure q, it outputs the list of m+n+1 security classes (x,,...,x ; 
—I —m 

^j,...,^; £j 9 ... 9 . By matching these lists, the linker can verify 

condi t ions (b)- (d) . 

This mechanism permits constructing a procedure q which outputs results 

of a higher class than the inputs. This is convenient when q itself., or 

confidential information used by q to compute its results, must be protected. 

The flow of information computed by q can be restricted to actual outputs 

of high security classes. 

The foregoing approach poses a serious limitation in designing a procedure 

q for handling arbitrary classes of information, as is typical of library 

procedures. The formal inputs xj,...,xm must be declared in the highest 

secur i ty class H so that _x. (i = 1,... ,m) can be ver i f i ed for all ca 11 s . 

This implies that y,,-..,y must also be declared in H, since they will be 
I n 

derived from xj,...,x m. This in turn implies that no call on q can be 

verified unless the caller has assigned b,,...,b to H, even if a.,...fa 
I n I m 

are all in the least class L. The foregoing mechanism cannot therefore 

be used to construct unrestricted procedures that yield low security 

results from data in arbitrary security classes. 

One solution, analogous to the PL/I GENERIC procedure for different 

data types [17], is to prepare a separate version of q for each possible 

combination of input security classes. The viability of this approach is 

questionable when there are many possible combinations of parameter security 
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classes. A more attractive solution results when q is restricted in two 

ways: its output parameters are derived solely from the input parameters 

and information in the least class L; it is not permitted to write into 

any other nonlocal objects. (Local objects can be written if their values 

are erased when q returns.) The security of a call on such a restricted 

procedure is verified whenever 

a) a. © ... 9 a •+ b, 8 8 b , and 
—1 —m — I -n 

b) e. 9 . . . 9 e. + b, 6 ... fl b . 
—1 —k —1 —n 

Table III gives the semantics for certifying these conditions. Note that 

condition (b) is verified by assigning the class b, B ... 9 b to the node 
—I —n 

of the syntax tree associated with the cal1 statement, so that the implicit 

flow is handled the same as in other statements. 

A special case of these restricted procedures is the "function" type 

procedure (e.g., SORT, LOG, SIN). Here a procedure f is called during 

expression evaluation (e.g., by f ( a j , . . . ) and returns with a single 

result derived entirely from the input parameters and constants. Since 

there are no explicit output parameters, the function call can be treated 

as any other expression with operands a.,...,a . Table 111 shows the syntax 
I m 

and semantics for this case. 



Syntax Rule 

39 <Inparams> ::= <exp> 

<inparams> ::= <rnparams>^, <exp> 

Al <outparams> :: = <var> 

<outparams> <outparams>^, <var> 

*»3 <stmt> :: = 
cal1 <ident> (<inparams> ; <outparams>) 

M cfnca!l> ::= <ident> (<inparams>) 

<factor> ::= <fncall> 

Table III. Certification of Restricted Procedure 



Cert i f i cat ion Semant i cs 

<inparams> := <exp> 

<inparams> := <inparams>^ ® <exp> 

<outparams> :~ <var> 

<outparams> := <outparams>^ 0 <var> 

if not <i npararcis> -+• <outparams> then 
CERTIFIED false 

<stmt> := <outpar?ms> 

<fnca11> := <i nparams> 

<factor> := <fncal1> 
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3.** Exception Handling 

Program traps caused by exceptional conditions -- underflow, overflow, 

divide-by-zero, array subscript range, endfile, and so forth — require 

special care [12], They may cause statements subsequently executed to 

depend on the variables that caused them. The resulting flows will not 

be detected by the mechanism defined so far. 

The program in Figure 5 will be certified by our mechanism. A 

problem arises when sum overflows and the trap handler terminates the 

program: the value of x can be approximated by MAX/LASTi, where MAX is the 

largest value that can be stored in a register and LASTi is the last value 

of i entered into file f. The trap has effectively caused a flow of class H 

information (x) into a class L file (f). Had the programmer indicated the 

possible loop termination by replacing the wh ile express ion e with "not 

overflow sum", the invalid implicit flow from sum to f would have been 

detected [5]. 

One solution -- inhibit all traps -- can be rejected, for it defeats 

the purpose of traps. Another solution would have the compiler test, for 

each type of trap possible after each statement, the flow that would arise 

should that trap occur. This may be rejected for sheer inelegance and 

i mpract i ca1i ty. 

A practical solution is based on inhibiting all traps except those 

for which actions have been defined explicitly by the program. Such 

definitions could be made with a statement similar to one used in PL/I £17 3-

on <condition> <ident> do <stmt>, 



p: begin 

i: ? nteger secur? ty class L; 

e: Boolean secur i ty class L; 

f: file security class L; 

x, sum; integer security class H; 

begin 

sum := 0; 

i := 0; 

e := true; 

whi1e e do 

begi n 

sum := sum + x; 

i := i + 1 ; 

output I ̂ o f 

end 

end 

end 

Figure 5- A program with invalid flow caused by a trap. 
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where <condition> names a trap condition (underflow, overflow, endfile, 

etc.), <ident> is the identifier to which the condition applies, and <stmt> 

contains no gotos. All on̂  statements must appear as part of a program's 

declaration section. When the trap occurs, <stmt> is executed and control 

is returned to the point of the trap. Now: suppose there is an on statement 

"on <condi t ion> y do <stmt>j", z is a variable receiving a flow in <stmt> J P 

another statement <stmt>2 in the program contains a reference (either 

read or write) to y, and <exp> is a conditional expression in whose scope 

<stmt>2 lies. Since <stmt>1 is potentially executed immediately after the 

reference to y in <stmt>2» the implicit flow <exp> ^ ẑ  must be verified. 

To avoid having the compiler backtrack to the on^ statement to verify 

<exp> z_, it is simpler to verify a stronger condition: ^ -»• £ when the 

on statement is processed, and <exp> ^ when <stmt>2 is processed. The 

requires a modification in the semantics: the class of any <stmt> is 

defined as the greatest lower bound of all x̂  such that x ei ther receives 

a flow, is an on^ condition identifier referenced, in <stmt>. Only those 

traps for which on_ statements have been declared will be enabled by the 

compiler. 

The program in Figure 5 would be (trivially) certified by this mechanism 

since it would run with traps inhibited. Had the programmer made clear his 

intentions via the statement "or^ overflow sum do e: s fa 1se," the program 

would not be certified. 
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flpplications 

4.1 The Confinement Problem 

A service procedure Is confined as long as the system guarantees that 

It can neither retain any customer Information nor encode It into any 

value transmitted by a storage object [20, 21]. It is selectively 

confined if this restriction applies only to confidential customer information 

[5, 10]. Mechanisms enforcing varying degrees of confinement exist or have 

been proposed [2, 14, 18, 20, 26, 27]. 

Our certifier is capable of verifying the partial, or total, confine-

ment of a procedure (see Section 3-3). Let p be a procedure with input para-

meters Xj,. .. » x
c»* c +|»• • • »

x
m ,

 a r |d suppose that p is permitted to retain 

information derived from the nonconfidential inputs xj,...,x , but not 

from the confidential inputs x i l (....x . The confinement of p hinges 
c+1 m 

on three properties: 1) p must be Internally secure, 2) p must not write 

Into any nonlocal object z for which •> z_ (c+l £ i <_ m), and 3) p 

must Invoke only confined procedures. By our definition of security, 

property (1) implies that confidential information cannot be encoded in 

supposedly nonconfidential results. Property (2) insures that any Informa-

tion output from p is not derived from confidential Inputs, (it does not, 

however, prevent p from returning confidential results to the customer 

through the output parameters.) Property (3) requires that p cannot be 

linked to any other procedure which might violate properties (1) or (2). 
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k.2 State Variables 

Invalid flows ("leaks") can occur in some systems when an observer 

may examine system state variables and deduce information encoded in them 

[6, 20, 26]. For example, a process could transmit a confidential value x 

by locking out files fj,...,f ; an observer could determine x by counting 

the number of locked files. These flows can be regulated by associating 

security classes with all state variables, and verifying flows to and 

from them as with any other object in the system [21]. 

M Data Bank Confidentiality 

Suppose a system (or network of systems) has a large data base con-

taining different classes of information about individuals. One class 

might be employment records, another health records, others credit records, 

tax records, criminal records, and so on. Assuming that all access to the 

data base must be performed using certified query and update procedures, 

controlling flows is straightforward. Let each user u have a clearance, 

i.e., a static security class u_. If u submits a query involving records 

Xj,...,x mof the data base, the query procedure would verify ® ... € x^ -*• 

before accepting the request. Similarly, if u submits an update request for 

records yj,...,y n, the update procedure would verify u_-y ^ 0 ... 0 ^ 

before accepting the request. 
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5 Limitations 

Lampson has identified three classes of paths, or "channels", by which 

processes can transmit information out of their immediate environments [20] 

Legitimate channels are the declared, formal outputs of the process; storage 

channels are other storage objects in the nonlocal environment of the process; 

and covert channels are any other transmission methods not Involving values 

stored anywhere in the system. Since the first two channels involve informa-

tion transmitted through storage objects In the system, their flows can be 

verified by our mechanism. The third, however, employs physical phenomena 

to connect events within the computer with those outside; examples include 

program running time, power consumption, noise, and electromagnetic radiation. 

Flows along these channels are beyond the pale of our certification mechanism. 

Various run time mechanisms must be used to deal with them. Fenton [9, 10], 

and Jones and Lipton [19], have shown how to construct mechanisms that prevent 

an isolated program's running time from depending on confidential information. 

After a careful analysis, Lipner has concluded that sealing covert channels 

associated with program running time is at best difficult, and may be impossible 

in systems of shared resources [21]. 
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