
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1976

Certification of Programs for Secure Information Flow Certification of Programs for Secure Information Flow

Dorothy E. Denning

Peter J. Denning

Report Number:
76-181

Denning, Dorothy E. and Denning, Peter J., "Certification of Programs for Secure Information Flow" (1976).
Department of Computer Science Technical Reports. Paper 124.
https://docs.lib.purdue.edu/cstech/124

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

CERTIFICATION OF PROGRAMS FOR SECURE INFORMATION FLOW1

Dorothy E. Denning
and 2

Peter J. Denning

Purdue University

March 1976

CSD-TR 18)

Abstract

This paper presents a certification mechanism for verifying the
secure flow of information through a program. Because it exploits the
properties of a lattice structure among security classes, the procedure
is sufficiently simple that it can easily be included in the analysis
phase of most existing compilers. Appropriate semantics are presented
and proved correct. An important application is the confinement problem:
the mechanism can prove that a program cannot cause supposedly non-
confidential results to depend on confidential input data.

Key Words and Phrases

protection, security, information flow, program ce rt i f i cat i on,
lattice, confinement, security classes

CR Categories

A.35, 4.3, 5.24

1

2

Work reported herein was supported in part by the National Science
Foundation under grants GJ-^3176 and GJ-^1289 and by IBM under a
fellowship.

Authors' present address: Purdue University, Computer Science Dept.,
W. Lafayette, Ind. ^7907-

I

1 Introduction

Computer system security relies in part on Information flow control,

that is, on methods of regulating the dissemination of information among

objects throughout the system. An information flow policy specifies a set

of security classes for information, a flow relation defining permissible

flows among these classes, and a method of binding each storage object

to some class. An operation, or series of operations, that uses the value

of some object, say x, to derive a value for another, say y, causes a flow

from x to y. This flow is admissible in the given flow policy only if

the security class of x flows into the security class of y.

Prior work on the enforcement of flow policies has concentrated on

run time mechanisms. One type of mechanism enforces a given flow policy

by controlling processes' read and write access rights to objects: no

process may acquire read access for an input object, or write access for

an output object, unless the security class of every input flows into the

security class of every output -- even if some outputs depend on only a

subset of the inputs. ADEPT-50 [30] , the Case system [29], the MITRE

system [3» 23], and the Privacy Restriction Processor [26] are of this type.

These mechanisms are generally easy to implement because they make no

attempt to examine the structure of a program. A second type of (more

complex) mechanism accounts for program structures in order to determine

flows between specific input and output objects. Fenton's data mark

machine [10], the mechanism of Gat and Saal [13]» and the surveillance

mechanism of Jones and Lipton [19] are of this type. The surveillance

mechanism employs a program transformation to insure that all flows are

properly accounted for at run time. A detailed discussion of all these

mechanisms can be found in [7] .

2

This paper presents a compile time mechanism that certifies

a program only if it specifies no flows in violation of the flow policy.

Besides the aesthetic attraction of establishing a program's security

before it executes, a certification mechanism has important advantages.

It can be specified directly in terms of language structures, which facili-

tates its comprehension and its proof of correctness. It greatly reduces

the need for run time checking. It does not impair a program's execution

speed. (See also [23]) .

Prior certification does not completely eliminate the need for

run time checking. Run time support is needed to raise the tolerance against

hardware malfunctions and other threats to the integrity of certified

programs. It is needed to verify that computed addresses remain in the

ranges assumed for them during certification. It is needed to control

covert channels, which allow flows outside the storage objects of the system.

2 Lattice Model of Information Flow

We give a brief review of the flow model on which the certification

mechanism is based [6, 7]• The model generalizes earlier work as reported

in [3, 9, 10, 11, 23, 26, 29, 30].

2.1 Policy Description and,Properties

A flow policy can be represented by (s, , where S is a given set of

security classes and is a flow relation specifying permissible flows

between pairs of classes. Each storage object x -- e.g., constant, scalar

variable^ array» or file -- is assigned (bound) to a security class,

denoted by underbar, x. The notation x thus means that a flow from

object x to object y is permissible in the flow policy. We will suppose

that the binding of each object t;o a security class is static, and can

be determined from the declarations contained in a program.

Under the reasonable assumptions that there is a finite number of

security classes, that the flow relation is reflexive (i.e., x + ^ i s

always permissible), and that the flow relation is transitive (i.e.,

x̂ •*• £ £ inpl ies jk •*• z), we may suppose that {s, +) is a lattice.

This means that, corresponding to any pair of classes, there are unique

upper and lower bound classes. If (S, •+) is not a lattice, It may be

transformed into one by adding new classes as necessary without changing

the flows among the original classes [8]. The lattice properties are

exploited to construct an efficient certification mechanism.

The symbols ® and 8 denote, respectively, the associative and

commutative least upper bound and greatest lower bound operators of the

lattice (s, •+) [kt 28J. The least upper bound is defined so that x. •+ ^

for I • l,...,m is equivalent to the relation x, ® ... ® x •*• y. It can
—I —m -L-

be envisaged as requiring that flows from various operand classes must

pass through a single, common class en route to a given result class.

The greatest lower bound is defined so that x_-»• for J H 1 n is

equivalent to the relation x -*• ^ 8 ... 8 It can be envisaged as

requiring that flows from a given operand class must pass through a singl

common class en route to various result classes. There is a h i ghest

if

class H, which is the least upper bound of all classes, and a least class

L, which is the greatest lower bound of all classes.

All unnamed programming language constants are members of L. This

assumption is reasonable since the flow of an ordinary constant, say "99",

into a variable, say x, puts in x no information about any other object.

Only when "99" is known to be the value of an object y for which ^ A- x

must its flow be prevented; but this is done by restricting the flow

from y, not from "99".

Figures I and 2 illustrate lattices that arise frequently in practice.

Figure 1 is a linear "priority lattice" on n classes 0,l,..,,n-l, where

L s0 and H=n-1. This lattice applies to the simple confinement problem with

classes nonconfidential (0) and confidential (l) [10] and to the corwnon

military security problem with classes unclassified (0), confidential (1),

secret (2), and top secret (3) [30]. Figure 2 shows a more complex

"property lattice" representing the immediate inclusions among all 2 n

subsets of n=3 properties represented as bit vectors. It generalizes

easily to any value of n. It is used in systems where information may flow

only to a security class having at least the same properties as the

originating class [3, 23, 29, 30].

2.2 Flow

Information flows from object x to object y, denoted x -> y, whenever

information stored in x is transferred to, or used to derive information

transferred to, object y. A program statement specifies a flow x => y if

execution of the statement could result in a flow x => y.

n
S ={0,1,...,n-l} |

n-1
I -»• j i f f r <_ j {

t

i • j = max (i,J)

i 8 j = min (i,j)

L - 0, H - n - 1 0

Description Precedence graph

F i gure 1. Linear priority lattice

S = {000,001,..., 111}

A •+ B i ff 0R(A,B) = B

A • B - 0R(A,B)

A 8 B = AND(A,B)

L - 000, H = 111

Descr i pt ion

110 101 Oil

t X X t
100 010 001

000

Precedence graph

Figure 2 . Property lattice for n™3.

6

F1ows a re explicit or i mp1i c i t. An exp1\c i t f1ow x => y occurs

whenever the operations generating it are independent of the value of x.

Assignment statements, I/O statements, and value-returning procedure calls

generate explicit flows. An implici t flow x »> y occurs whenever a

statement specifies a flow from some arbitrary z to y, but execution

depends on the value of x. Consider for example the statements

y: = 1; j_f x=0 then y: =0,

where x is either 0 or 1. On termination of these statements, x=y

whether or not the then clause was executed. Hence the j_f statement

causes an implicit flow x a > y. In general, all conditional structures

generate implicit flows.

It should be noted that the relation => is transitive, that is,

x => y => z implies x => z. If x => y because some function having x

as an operand stores its result in y, the flow Is di rect; otherwise it

is ind i rect. An assignment "y f (...,x,...)" thus causes flow x => y

directly, while the pair "z := f(...,x,...); y g(...,z,...)" causes

flow x => y indirectly.

2.3 Security Requirements

A program p is secure if and only if no execution of p results in

a flow x => y unless x . ^ necessary and sufficient condition for the

securlty of p is then

(1) "x => y for some execution of p only If x •»•

7

Unfortunately, condition (1) Is generally undecldable. Any procedure

purported to decide It could be applied to the statement

If f(x) halts then y := 0,

and thus provide a solution to the halting problem for an arbitrary recursive

function [2k]. (in a related study, Harrison, Ruzzo, and Ullman have shown

that, without severe restrictions, protection systems contain Intractable,

if not undecidable, accessing Questions [16]).

The undecldabi1Ity Is removed If we replace (?) with the security

condi tIon

(2) "x => y Is specified by p only If x +

The previous J_f statement can clearly be tested for this condition.

However, security condition (2) gives less precision In program certification

than (1). For example, consider the program

I f x-0 then i f xj<0 then y z

and a flow relation that disallows only z => y. This program Is secure by

(1) since no execution of it can result in z •»> y; but it will not be certified

by a mechanism based on (2) since it specifies z => y. There Is no reason

to believe that loss of precision is avoidable; Jones and Lipton, for example,

have shown that it Is not even possible to construct a mechanism that rejects

exactly the Insecure executions of a program £193 -

The certification mechanism to be presented is based on condition (2).

It determines whether a given program specifies Invalid flows.

Irrespective of whether the program can ever execute them.

9

3 The Certification Mechanism

When the security classes of variables are declared in a program and

are static, it is easy to incorporate the certification process into the

analysis phase of a compiler. The mechanism wi11 be presented in the form

of certification semantics — actions for the compiler to perform, along

with usual semantic actions such as type checking and code generation, when

a string of a given syntactic type Is recognized. This procedure differs

from an information tracing procedure given by Moore 125]: ours verifies

program flows against a standard, whereas Moore's seeks primarily to

construct a flow graph.

When external objects, such as files and separately compiled procedures,

are bound to a program, the linker must verify that the actual security

class of each such object corresponds properly to the security class declared

formally for it in the program. This must be done before a program is executed.

The certification mechanism exploits lattice properties for efficiency.

The transitive flow relation Implies that sequences of secure direct flows

are secure and, hence, the semantics need only certify the direct flows

implied by each syntactic type. The least upper and greatest lower bound

properties greatly simplify the amount of information needed to track the

origins and destinations of flows. Suppose x^ x m are sources of infor-

mation for some receiving object y, as in an assignment statement "y

f{xj,...,xm)" or in an output statement "output x^ x m is y". Rather

than certify ^ separately for each i, the compiler may form A =

2S.J ® • ® a s t h e source objects are recognized, and verify simply A -»• —

y

only a single internal variable representing the maximal class of the

source objects is needed. Now, suppose y,,...,y are to receive information
i n

derived from some source object x, as in an input statement "input yj,...,y

from x", or in a structure generating implicit flows from an object x in a

conditional expression to objects yj in that structure's scope. Rather

than certify x •*• ^ separately for each j, the compiler may form B =

9 ... 8 ^ as .the receiving objects are being recognized, and verify simply

x -»• B -- only a single internal variable representing the minimal

class of the receiving objects is needed.

The presentation of the full mechanism has been divided into four

parts: a) assignment, I/O, and simple control structures; b) general control

structures and complex data structures; c) procedure calls; and finally

d) exception handling.

3.1 Assignment, 1/0, and Simple Control Structures

We consider a programming language that supports only the elementary

data types integer, Boolean, and fi1e. Extensions to other types are

straightforward. Arithmetic and Boolean expressions are formed from variables

and constants as in Pascal [31]. The control structures specify assignment,

Input and output with files, selection (by an \f_ statement), and iteration

(by a while statement). A program comprises a list of declarations, including

security class declarations, followed by the executable statements. An

example program is given in Figure 3(a).

10

Table I gives the syntax and certification semantics for this language.

To avoid ambiguities in the semantics, multiple occurrences of the same

syntactic type are distinguished (e.g., <x>, <x>^, and < x >
2) •

 T h e security

class of a syntactic type <x> is denoted by <x>. A compiler variable,

CERTIFIED, Is initialized to true and set to false if the compiler ever

detects a flow specification violating the flow relation. A program is

certified as secure if and only if CERTIFIED = true after the entire program

has been analyzed. The reader ;s referred to Gries [15, Sect. 12.2] for

an exposition of additional semantic actions, e.g., code generation, that

must be defined to complete the compiler.

Figure A illustrates the certification of a simple assignment

"c := a*2+b". The overall parse can be represented as a syntax tree for the

statement. The security classes (in parentheses) are shown opposite each

subtree. The semantic actions in effect propagate the security classes of

expressions up the tree and verify the flow when the assignment operator

is accounted for at the top.

Figure 3(b) shows the certification actions for the example program.

When the selection and iteration statements are recognized (lines 20 and

22), the implicit flows from the controlling expressions (the • of the

operand classes) to the variables receiving flows in their scopes (the 8

of all such variable classes) are checked. The example program is certified.

11

1 begin
2 i,n: integer security class L;
3 flag: Boolean security class L;
k f1,f2: file security class L;
5 x,sum: Integer security class H;
6 f3,fk: file security class H;

7 begin
8 I {L L)
9 n 0; 0 + n (L + L)

sum 0; 0 -»- Turn (L -> H)
M while I < 100 do ~
12 begin
13 Input flag from f I; f]_ flag (L -»• L)
U output flag to f2; flag f2 (L •+• L)
15 Input x from f3; f3 •+ x "Th H)
16 H flag then ~
17 begin
1 8 n n + 1; n • j_ ji (L <+ L)
19 sum := sum + x sum 9 x sum (H H)
2 0 end; flag -»• n 9 sum (l -»• L)
21 i i + 1 ! • I * " ! TIT- L)
2 2 end; 1 9 100 + flag 9 f2 8 x 8

n̂ 9 sum 8 J_ (L •*• L)
23 output n, sum, sum/n Jto n 9 sum 9 sum 9 n -*• f<» (H •+• H)
2k end — —
25 end

a) Program b) Certification Checks

Figure 3. A Program and its Certification.

Syntax Rule

Declarations

1 <type> : i n t e g e r [Boolean | file

2 <Idl1st> <ident> | <IdIist> , <ident>

3 <decl> <id1ist> : <type> securi ty class

A <decllst> <decl>] <declist> ; <decl>

Expressions

5 <addop> ::= + | - | v

6 <mulop> : * | / | a

7 <relop> : : = < | l l = | » t) l] >

8 <var> ::= <ident>

9 <file> ::= <ident>

10 <factor> <var>

11 <factor> : < c o n s >

12 <factor> : (<exp>)

13 <factor> - <factor>j

14 <term> ::»<factor>

15 <term> : <term>j <mulop> <factor>

16 <aexp> <term>

17 <aexp> ::= <aexp>j <addop> <term>

18 <exp> <aexp>

19 <exp> ::» <aexp>. <relop> <aexp>^

Table i. Basic Certification Semantics.

Certification Semantics

<security class> for each <ident> In <idlist> associate
<security class> with <ident> in the symbo
table entry for <ident>

<var> := < i den t>

<fi1e> := <ident>

<factor> := <var>

<factor> L (the least class)

<factor> :«= <exp>

<factor> := <factor>j

<term> := <factor>

<term> <term>| A <factor>

<aexp> :° <term>

<aexp> := <aexp>| • <term>

<exp> := <aexp>

<exp> := <aexp>. C <aexp>„

Syntax Rule

Assignment

20 <stmt> <var> <exp>

Input

21 <Inllst> ::» <var>

22 <In Ii st> : < I n 1 i st>| , <var>

23 <stmt> : i n p u t <inl i st> from <file>

Output

2U <outllst> <exp>

25 <outli st> ::=> <outlist>j , <exp>

26 <stmt> : o u t p u t <outlist> to <flle>

Compound

27 <stlist> : < s t m t >

28 <stlist> <stllst>1 ; <stmt>

29 <stmt> begin <stlist> end

Selection

30 <stmt> j_f <exp> then <stmt>j [else <stmt>2]

Iteratlon

31 <stmt> ::•» whl le <exp> do <stmt>j

Program

32 <prog> begin <declist> ; <stmt> end

Table I, cont.

Certification Semantics

<stmt> :- <var>
if not (<exp> -»• <var>) then CERTIFIED fa ise

<inlist>

<inlist>

<stmt> := <in 11st>
if not (<file> <lnlist>) then CERTIFIED false

<var>

<inlist>, 8 <var>

<outli st> := <exp>

<outl i st> : =• <out 1 ist>^ $ <exp>

<stmt> :- <file>

if not (<outl ist> <f i le>) then CERTIFIED false

<stl ist> :• <stmt>

<stlist> <stllst>t 8 <stmt>

<stmt> := <st]i st>

<stmt> := <stmt>. [8 <stmt>2]
if not (<exp> <stmt>) then CERTIFIED false

<stmt> <stmt>1

if not (<exp> -*• <stmt> then CERTIFIED false

if CERTIFIED then certify <prog> else report security
violation. (CERTIFIED is initialized to true and set to
false if a violation is detected)

1<I

a • b •*• c 7

<aexp> (a) <addop> 7 ^ r m > (b)

<term> (a)

< te rm> (a) <mulop> <factor> (L)

I " I I
<factor> (a) * <cons> (L)

I I
<var> (a) 2

<ident> (a)

I

<factor* (b)

I
<var> (b)

<ident> (b)

I
b

• F ? 9 u r e V Certification Tree of an Assignment Statement.

15

The correctness of the certification semantics is straightforwardly

established. Let Xj x^ denote the operands (source objects) in an

<exp> or an <outlist>, and y 1 y^ the results (receiving objects) in

an <inlist> or <stmt>. From Table I, it is easy to deduce that

(pi) <exp> - <outllst> " X . 9 ... 9 x
• 1 ———— —I —m

(p2) <lnl lst> = <stmt> = ^ 9 ... 9 ^

We wish to prove:

Theorem. A program is certified only if it is secure.

The proof is an induction on the structure Index i of a given program p; i

is simply the number of <stmt> nodes in a syntax tree for p. As a basis,

consider i«l. There are three cases for the single simple <stmt> constituting

1) Suppose <stmt> = "<var> :• <exp>". Let x. x denote the operands l m

of <exp>; by (pi), <exp> » x^ 9 ... 6 The program Is certified only

if <exp> -»• <var> (Rule 20), and thus only when it is secure. 2) Suppose

<stmt> «= "input <inlist> from <flle> n. Let y^ y n denote the variables

in <in1ist>; by (p2), <inlist> = ^ 9 ... program Is certified

only if <f i ie> -»• <inl ist> (Rule 23), and thus only when it is secure.

3) Suppose <stmt> - "output <oytlist> to <file>". Let xj,...,xm be all

the objects in <outlist>; by (pi), <out1 lst> a Xj • ••• ® x ^ The program

Is certified only If <outlist> <f I le> (Rule 26), and thus only when It

is secure. Thus the theorem holds for all programs of one simple statement.

As an induction hypothesis, assume that the theorem holds whenever the

program's structure Index satisfies 1 £ i < J, and consider a program

16

p for which i » J. There are two cases. I) p Is d compound statement of the

form <stmt> » "begin <stlist> end." The semantics assume that <stmt> Is

certified whenever <stlist> Is (Rule 29). Since <stllst> denotes a sequence

of statements each with index not exceeding J-l, and since the transitivity

of the flow relation implies that any sequence of secure flows is secure,

<stmt> Is secure when <stlist> is. 2) p Is a selection or iteration

statement of the form <stmt> = "jrf <exp> then <stmt>j [else <stmt> 2]" or

"while <exp> do <stmt>j". Let x.,..., x be the operands of <exp>; by (pi),

<exp> x. ®...® x . Let y,,...,y be the objects receiving flows specified
• J —m i n

by <stmt>j [and <stmt>2]; by (p2) and Rule 30, <stmt> = <s_tmt> | [8 <stmt>^j -

0 ... By induction <stmt>^ [and <stmt> 2], having structure indices

not exceeding J-l, are certified only if secure. However, Rules 30 and 31

certi fy <stmt> only ifx^ ® ... • ^ 8 ... a n d t f i u s 0 0 ^ w* 1 e n

the selection or iteration statement is secure. This completes the correct-

ness proof of the certification semantics.

3.2 General Control and Data Structures

The method of certifying the jj_f and whi le statements can be extended

to any selection or Iteration structure expressible as a single statement.

This Includes, for example, the Pascal repeat, for, and case statements 13?3.

The prl nciple is to identify the operands xj,...,xm of the controlling expres-

sion and the objects yj y n receiving flows within the scope of the struc-

ture, and then verl fy that ® ... 8 • • •

This technique can be extended to control structures arising from

arbitrary goto statements. However, certifying a program with unrestricted

1/

gal£s requires a control flow analysis of the program to determine the objects

receiving flows within the scope of a conditional expression. (This analysis

Is unnecessary If gotos are restricted — e.g., to loop exits - - s o that

the scope of conditional expressions can be determined during syntax analysts).

Following is an outline of the analysis required to do the certification.

All basic blocks (single-entry, single-exit substructures) are Identified.

A control flow graph is constructed, showing transitions among basic blocks;

associated w|th block bj is an expression ej that selects the successor of b.

In the graph. (How to do this is detailed In [I, 22]). The security class

of block bj Is the greatest lower bound of the security classes of all objects

receiving flows In bj (If there are no such objects, this class Is H). The

Immediate forward dominator IFD(b.) Is computed for each block b^; It is the

closest block to b. among the set of blocks which lie on all paths from b.

to the program exit. Define Bj as the set of all blocks on some path from

b. to IFD(b.). The security class Bj is the greatest lower bound of the

classes of blocks in B { . Since the only blocks directly conditioned on the

selector expression e. of b. are those In B^, the program is secure If each

block b. Is Independently secure and B_j for all i. Full details of this

procedure, with examples, are given In [6].

The mechanism can also be extended to handle complex data structures.

We shall consider arrays and records to Illustrate the method; Table M shows

the semantics. We assume .that, Just as they are of the same data type, the

elements of an array are of the same security class. The certification

semantics specify that, as an array reference Is processed, the classes of .

the subscripts should be Joined with that of the array, yielding a class

21

<array ref> « <ident> • <subllst> (Rule 35). This Is sufficient as long as

the array reference is a source object In an expression. If, however, the

array reference is a receiving object, e.g., on the left side of an assignment

statement, the relation <subl lst> <Ident> must also be verified. This is

because information about the subscripts flows Into the array iri this case —

e.g., after the assignment "a[i] 1" is made on an all-zero array, the

value of i can be deduced by searching for the first non-zero element.

Since <array ref> • <ident> 9 <subllst> is computed for any array reference

(Rule 35)» and since then <sublist> <ldent> implies <sublist> ® <Ident> -

<ident>, this check reduces to testing whether <array ref> «» <ident> when

<array ref> is recognized as receiving a flow. We have not shown this check

in the certification tables.

As a general rule, certification semantics must generate code that

verifies whether computed addresses refer to the objects assumed during

certification. Thus the array semantics must verify that the subscripts

select elements in the declared range of the array (Rule 35). Without this,

a statement like Ma[i] :»b" might cause an Invalid flow b •> c, where c is

an object addressed by a[i] when I Is out of range.

A record r Is a structure comprising fields x,,...,x , the I'th element
i m

being referenced by the compound name r.x.. Having a distinct name, each

element can be assigned to a different security class. The notation ®r_ denotes

r.Xj ® — • r , x m ' is similarly defined. An operation copying a record

from a file f into r is secure only If f_ An operation copying a

record r into a file f Is secure only I f •*• f_. An assignment "r :- s"

for two records of Identical structure Is secure only If s.x^ r.Xj for

each I. (A stronger, but not equivalent, requirement is_ •*• Bjr would be

easier to implement).

Syntax Rule

Arrays

33 <sublist> : < e x p >

3b <subllst> <sublist>j , <exp>

35 <array ref> : < i d e n t > [<subllst>]

Records

36 <stmt> input <rec> from <flle>

37 <stmt> ::» output <rec> to <flle>

38 <stmt> ::= <rec>. := <rec>„

Table II. Certification of Arrays and Records

Certification Semantics

<sublist> := <exp>

<subl?st> <subl Ist>^ ® <exp>

<array ref> <Ident> 9 <sub1ist>
generate subscript range checking code

<stmt> : = 8 <rec>

If not (<fi 1e> <stmt>) then CERTIFIED :- false

<stmt> := <file>

if not (C<rec> <stmt>) then CERTIFIED false

if <rec>j and <rec>^ have corresponding elements X i « « * i fX
1 n

then

if not (<rec>j .x. -*• <rec>^ .x. for all i)

then CERTIFIED := false

<stmt> 8<re_c> |

else TYPE ERROR true

3.3 Procedure Calls

A program p Is secure only If It cal1s certifled procedures for which

the linkage flows are secure. Let q be a procedure with formal input

parameters x^ x^ and formal output parameters yj,...,y . Consider

a call to q in p of the form

cal1 q (a) , . . . b j , . . . , b),

where are taken as th-i actual input parameters and bj tr

as the actual output parameters of the call. The security of the call

requires three conditions be verified:

a) q is secure,

* —] f o r ' = ' ' • • • > m > a n d

c) ij kj for j =• 1,.. .,n.

Should the cal1 statement appear in the scope of conditional expressions

the Implicit flows from to objects that could receive

values during execution of q, must be verified. To this end, the compiler

of q must Identify all objects Cj,...,^ to wliich q specifies flows; among

them will be the formal output parameters of q. The security of the calI

statement requires that

d) e, • ... • e. -»- c, 8 ... 0 c„.
—I —k —I HI

If (d) is verified, then by (c) e ̂ « ... 6 e^ -+• ^ bj for each actual

output bj of q.

Unless p and q are compiled together, conditions (a)-(d) cannot be

verified at the same time. However, the certifier can output Into the

21

separately compiled p and q information used subsequently by a linker to

certify the linkage flows. On recognizing a call to q in p, the certifier outputs

the list of rrrt-n+1 classes (a, a : b.,.. . ,b ; e. ® ... ® e.) . For
—i —— l —n —I —k

procedure q, it outputs the list of m+n+1 security classes (x,,...,x ;
—I —m

^j,...,^; £j 9 ... 9 . By matching these lists, the linker can verify

condi t ions (b)- (d) .

This mechanism permits constructing a procedure q which outputs results

of a higher class than the inputs. This is convenient when q itself., or

confidential information used by q to compute its results, must be protected.

The flow of information computed by q can be restricted to actual outputs

of high security classes.

The foregoing approach poses a serious limitation in designing a procedure

q for handling arbitrary classes of information, as is typical of library

procedures. The formal inputs xj,...,xm must be declared in the highest

secur i ty class H so that _x. (i = 1,... ,m) can be ver i f i ed for all ca 11 s .

This implies that y,,-..,y must also be declared in H, since they will be
I n

derived from xj,...,x m. This in turn implies that no call on q can be

verified unless the caller has assigned b,,...,b to H, even if a.,...fa
I n I m

are all in the least class L. The foregoing mechanism cannot therefore

be used to construct unrestricted procedures that yield low security

results from data in arbitrary security classes.

One solution, analogous to the PL/I GENERIC procedure for different

data types [17], is to prepare a separate version of q for each possible

combination of input security classes. The viability of this approach is

questionable when there are many possible combinations of parameter security

22

classes. A more attractive solution results when q is restricted in two

ways: its output parameters are derived solely from the input parameters

and information in the least class L; it is not permitted to write into

any other nonlocal objects. (Local objects can be written if their values

are erased when q returns.) The security of a call on such a restricted

procedure is verified whenever

a) a. © ... 9 a •+ b, 8 8 b , and
—1 —m — I -n

b) e. 9 . . . 9 e. + b, 6 ... fl b .
—1 —k —1 —n

Table III gives the semantics for certifying these conditions. Note that

condition (b) is verified by assigning the class b, B ... 9 b to the node
—I —n

of the syntax tree associated with the cal1 statement, so that the implicit

flow is handled the same as in other statements.

A special case of these restricted procedures is the "function" type

procedure (e.g., SORT, LOG, SIN). Here a procedure f is called during

expression evaluation (e.g., by f (a j , . . .) and returns with a single

result derived entirely from the input parameters and constants. Since

there are no explicit output parameters, the function call can be treated

as any other expression with operands a.,...,a . Table 111 shows the syntax
I m

and semantics for this case.

Syntax Rule

39 <Inparams> ::= <exp>

<inparams> ::= <rnparams>^, <exp>

Al <outparams> :: = <var>

<outparams> <outparams>^, <var>

*»3 <stmt> :: =
cal1 <ident> (<inparams> ; <outparams>)

M cfnca!l> ::= <ident> (<inparams>)

<factor> ::= <fncall>

Table III. Certification of Restricted Procedure

Cert i f i cat ion Semant i cs

<inparams> := <exp>

<inparams> := <inparams>^ ® <exp>

<outparams> :~ <var>

<outparams> := <outparams>^ 0 <var>

if not <i npararcis> -+• <outparams> then
CERTIFIED false

<stmt> := <outpar?ms>

<fnca11> := <i nparams>

<factor> := <fncal1>

24

3.** Exception Handling

Program traps caused by exceptional conditions -- underflow, overflow,

divide-by-zero, array subscript range, endfile, and so forth — require

special care [12], They may cause statements subsequently executed to

depend on the variables that caused them. The resulting flows will not

be detected by the mechanism defined so far.

The program in Figure 5 will be certified by our mechanism. A

problem arises when sum overflows and the trap handler terminates the

program: the value of x can be approximated by MAX/LASTi, where MAX is the

largest value that can be stored in a register and LASTi is the last value

of i entered into file f. The trap has effectively caused a flow of class H

information (x) into a class L file (f). Had the programmer indicated the

possible loop termination by replacing the wh ile express ion e with "not

overflow sum", the invalid implicit flow from sum to f would have been

detected [5].

One solution -- inhibit all traps -- can be rejected, for it defeats

the purpose of traps. Another solution would have the compiler test, for

each type of trap possible after each statement, the flow that would arise

should that trap occur. This may be rejected for sheer inelegance and

i mpract i ca1i ty.

A practical solution is based on inhibiting all traps except those

for which actions have been defined explicitly by the program. Such

definitions could be made with a statement similar to one used in PL/I £17 3-

on <condition> <ident> do <stmt>,

p: begin

i: ? nteger secur? ty class L;

e: Boolean secur i ty class L;

f: file security class L;

x, sum; integer security class H;

begin

sum := 0;

i := 0;

e := true;

whi1e e do

begi n

sum := sum + x;

i := i + 1 ;

output I ̂ o f

end

end

end

Figure 5- A program with invalid flow caused by a trap.

2b

where <condition> names a trap condition (underflow, overflow, endfile,

etc.), <ident> is the identifier to which the condition applies, and <stmt>

contains no gotos. All on̂ statements must appear as part of a program's

declaration section. When the trap occurs, <stmt> is executed and control

is returned to the point of the trap. Now: suppose there is an on statement

"on <condi t ion> y do <stmt>j", z is a variable receiving a flow in <stmt> J P

another statement <stmt>2 in the program contains a reference (either

read or write) to y, and <exp> is a conditional expression in whose scope

<stmt>2 lies. Since <stmt>1 is potentially executed immediately after the

reference to y in <stmt>2» the implicit flow <exp> ^ ẑ must be verified.

To avoid having the compiler backtrack to the on^ statement to verify

<exp> z_, it is simpler to verify a stronger condition: ^ -»• £ when the

on statement is processed, and <exp> ^ when <stmt>2 is processed. The

requires a modification in the semantics: the class of any <stmt> is

defined as the greatest lower bound of all x̂ such that x ei ther receives

a flow, is an on^ condition identifier referenced, in <stmt>. Only those

traps for which on_ statements have been declared will be enabled by the

compiler.

The program in Figure 5 would be (trivially) certified by this mechanism

since it would run with traps inhibited. Had the programmer made clear his

intentions via the statement "or^ overflow sum do e: s fa 1se," the program

would not be certified.

27

flpplications

4.1 The Confinement Problem

A service procedure Is confined as long as the system guarantees that

It can neither retain any customer Information nor encode It into any

value transmitted by a storage object [20, 21]. It is selectively

confined if this restriction applies only to confidential customer information

[5, 10]. Mechanisms enforcing varying degrees of confinement exist or have

been proposed [2, 14, 18, 20, 26, 27].

Our certifier is capable of verifying the partial, or total, confine-

ment of a procedure (see Section 3-3). Let p be a procedure with input para-

meters Xj,. .. » x
c»* c +|»• • • »

x
m ,

 a r |d suppose that p is permitted to retain

information derived from the nonconfidential inputs xj,...,x , but not

from the confidential inputs x i l (....x . The confinement of p hinges
c+1 m

on three properties: 1) p must be Internally secure, 2) p must not write

Into any nonlocal object z for which •> z_ (c+l £ i <_ m), and 3) p

must Invoke only confined procedures. By our definition of security,

property (1) implies that confidential information cannot be encoded in

supposedly nonconfidential results. Property (2) insures that any Informa-

tion output from p is not derived from confidential Inputs, (it does not,

however, prevent p from returning confidential results to the customer

through the output parameters.) Property (3) requires that p cannot be

linked to any other procedure which might violate properties (1) or (2).

28

k.2 State Variables

Invalid flows ("leaks") can occur in some systems when an observer

may examine system state variables and deduce information encoded in them

[6, 20, 26]. For example, a process could transmit a confidential value x

by locking out files fj,...,f ; an observer could determine x by counting

the number of locked files. These flows can be regulated by associating

security classes with all state variables, and verifying flows to and

from them as with any other object in the system [21].

M Data Bank Confidentiality

Suppose a system (or network of systems) has a large data base con-

taining different classes of information about individuals. One class

might be employment records, another health records, others credit records,

tax records, criminal records, and so on. Assuming that all access to the

data base must be performed using certified query and update procedures,

controlling flows is straightforward. Let each user u have a clearance,

i.e., a static security class u_. If u submits a query involving records

Xj,...,x mof the data base, the query procedure would verify ® ... € x^ -*•

before accepting the request. Similarly, if u submits an update request for

records yj,...,y n, the update procedure would verify u_-y ^ 0 ... 0 ^

before accepting the request.

zy

5 Limitations

Lampson has identified three classes of paths, or "channels", by which

processes can transmit information out of their immediate environments [20]

Legitimate channels are the declared, formal outputs of the process; storage

channels are other storage objects in the nonlocal environment of the process;

and covert channels are any other transmission methods not Involving values

stored anywhere in the system. Since the first two channels involve informa-

tion transmitted through storage objects In the system, their flows can be

verified by our mechanism. The third, however, employs physical phenomena

to connect events within the computer with those outside; examples include

program running time, power consumption, noise, and electromagnetic radiation.

Flows along these channels are beyond the pale of our certification mechanism.

Various run time mechanisms must be used to deal with them. Fenton [9, 10],

and Jones and Lipton [19], have shown how to construct mechanisms that prevent

an isolated program's running time from depending on confidential information.

After a careful analysis, Lipner has concluded that sealing covert channels

associated with program running time is at best difficult, and may be impossible

in systems of shared resources [21].

Acknowledgements

We are grateful for stimulating discussions with J. S. Fenton,

R. S. Gaines, G. S. Graham, S. B. Lipner, J. K. Millen, and H. D. Schwetman.

We are particularly grateful to C. Ellison and B. W. Lampson, whose comments

on the trap mechanism were most influential.

30
9

References

[1] Allen, F. E., "Control Flow Analysis," Proc. of a Symposium on Compiler
Optimization, SIGPLAN Notices, 5., 7, July 1970, 1-19.

[2] Andrews, G. R., "COPS - A Protection Mechanism for Computer Systems,"
Ph.D. dissertation, Univ. of Wash., July 1974.

[3] Bell, D. E. and LaPadula, I. J., "Secure Computer Systems: Mathe-
matical Foundations," The MITRE Corp., Bedford, Mass., ESD-TR-73-278,
Vol. I-III.

[4] Birkhoff, G. Lattice Theory, Amer. Math. Soc. Col. Pub., XXV, 3rd ed.,
1967-

[5] Denning, D. E., Denning, P. J., and Graham, G. S., "Selectively Con-
fined Subsystems," Proc. International Workshop on Protection in
Operating Systems, IRIA-Laborla (France), August 1974, 55-61.

[6] Denning, D. E.t "Secure Information Flow in Computer Systems," Ph.D.
Thesis, Purdue Univ., Computer Sci. Dept., May 1975-

[7] Denning, D. E., "A Lattice Model of Secure Information Flow," Comm. ACM 19, 5

(May 1976).

[8] Denning, D. E., "On the derivation of lattice structured information
flow policies", Tech Rpt. TR-179, Dept. of Computer Science, Purdue
University, (March 1976).

[9] Fentpn, J. S., "Information Protection Systems," Ph.D. Dissertation,
Univ. of Cambridge, England, Computer Lab, 1973-

[10] Fenton, J. S.? "Memoryless Subsystems," Computer Journal, 17, 2,
May 1974, 143-147-

[11] Fenton, J. S., "An Abstract Computer Model Demonstrating Directional
Information Flow," Univ. of Cambridge, 1974.

[12] Goodenough, J. B. "Exception handling: Issues and a proposed notation."
Comm ACM 18, 12 (Dec. 1975), 683-696.

[13] Gat, I. and Saal , H. J., "Memoryless Execution: A Programmer's View-
point," IBM Tech. Rept. 025, IBM Israeli Scientific Center, March 1975-

[14] Graham, G. S. and Denning, P. J., "Protection - Principles and Practice,"
Proc. AFIPS 1972 SJCC 40. 417-429-

[15] Gries, D., Compiler Construction for Digital Computers, Wiley, 1971-

Harrison, H. A., Ruzzo, W. L. , and Ullman, J. D. , "On Protection in
Operating Systems," Proc. of the Fifth Symposium on Operating Systems
Principles, Nov. 1975, U - 2 4 .

IBM, "System/360 PL/I (F) Language Reference Manual, " IBM Report
No. GC28-8201-3, 1971.

Jones, A. K., "Protection in Programmed Systems," Ph.D. Thesis,
Carnegie-Mellon Univ., June 1973-

Jones, A. K. and Lipton, R. J., "The Enforcement of Security Policies
for Computation," Proc. of the Fifth Symposium on Operating Systems
Principles, Nov. 1975, 197-206.

Lampson, B. W., "A Note on t-he Confinement Problem," Comm. ACM,
_[6, 10, Oct. 1973, 613-615.

Lipner, S. B., "A Comment on the Confinement Problem," Proc. of
the Fifth Symposium on Operating Systems Principles, Nov. 1975, 192-196.

Lowry, E. S. and Medlock, C. W., "Object Code Optimization," Comm. ACM,
JU, 1, Jan. 1969, 13-22.

Millen, J. K., "Security Kernel Validation in Practice," Com\. ACM 19> 5
(May 1976).

Minsky, M. L., Computation: Finite and Infinite Machines, Prentice-
Hall, 1967-

Moore, C. G. M i , "Potential Capabilities in ALGOL-1 ike Programs,"
TR 7^-211, Dept. of Computer Science, Cornell Univ., Sept. 1974.

Rotenberg, L. J., "Making Computers Keep Secrets," Ph.D. Thesis,
MIT Project MAC, MAC-TR-115 (Feb. 1974).

Schroeder, M. D., "Cooperation of Mutually Suspicious Subsystems in
a Computer Utility," Ph.D. Thesis, MIT Project MAC, MAC-TR-10i| (Sept. 1972)

Stone, K. S., Discrete Mathematical Structures and Their Applications,
Science Research Associates, 1973-

Walter, K. G. et al.."Structured Specification of a Security Kernel,"
Proc. International Conf. on Reliable Software, SIGPLAN Not ices, 10,
6 (June 1975), 2B5-293- ~

Weissman, C., "Security Controls in the ADEPT-50 Time-Sharing System,"
Proc. AFIPS 1969 FJCC .35, 119-133-

Wirth, N., "The Programming Language Pascal," Acta Informatlca 1, 1
(1971), 35-63.

	Certification of Programs for Secure Information Flow
	Report Number:
	

	tmp.1307986960.pdf.MBVVt

