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Electronic Properties of Silicon Nanowires
Yun Zheng, Cristian Rivas, Roger Lake, Senior Member, IEEE, Khairul Alam, Member, IEEE,

Timothy B. Boykin, Member, IEEE, and Gerhard Klimeck, Member, IEEE

Abstract—The electronic structure and transmission coefficients
of Si nanowires are calculated in a 3 5 model. The effect of
wire thickness on the bandgap, conduction valley splitting, hole
band splitting, effective masses, and transmission is demonstrated.
Results from the 3 5 model are compared to those from a
single-band effective mass model to assess the validity of the single-
band effective mass model in narrow Si nanowires. The one-dimen-
sional Brillouin zone of a Si nanowire is direct gap. The conduc-
tion band minimum can split into a quartet of energies although
often two of the energies are degenerate. Conduction band valley
splitting reduces the averaged mobility mass along the axis of the
wire, but quantum confinement increases the transverse mass of
the conduction band edge. Quantum confinement results in a large
increase in the hole masses of the two highest valence bands. A
single-band model performs reasonably well at calculating the ef-
fective band edges for wires as small as 1.54-nm square. A wire-
substrate interface can be viewed as a heterojunction with band
offsets resulting in reflection in the transmission.

Index Terms—Nanowires (NWs), silicon nanowires (SiNWs).

I. INTRODUCTION

SEMICONDUCTOR nanowires (NWs) have been widely
studied as nanoscale building blocks for nanoelectronics,

since they can function both as devices and wires that access
the devices. NWs are synthesized from a range of different ma-
terials [1], such as CdS and ZnS [2], GaN [3], p-GaN [4], Si, Ge
[5], [6], or InP [7], [8]. They have been assembled as field-ef-
fect transistors (FETs) [8], [9], inverters [10], photodetectors
[11], nanosensors [12], [13], light-emitting diodes and lasers
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[8], [14], decoder [15], nonvolatile memory and programmable
logic [16]–[18].

Simulations have been done to study the structures, elec-
tronic spectra, and transport properties of Si nanowires (SiNWs)
[19]–[21]. Thermal conductivity [22], [23] and optical proper-
ties [24] of SiNWs have also been studied. From an applications
point of view, it has been shown that doped p type and n type
SiNWS can be assembled to form p-n junctions, bipolar tran-
sistors, and complementary inverters [10], [25]. These results
have lead to the suggestion that SiNWs may become crucial
components for nanoscale electronics [9].

For this reason, we find it timely to study the electronic prop-
erties of SiNWs such as the band gap, valley splittings, and ef-
fective masses as functions of wire dimension. The band gap,
valley splittings, and effective masses are all relevant to the per-
formance of ultrascaled FETs built with SiNWs. An increased
bandgap exponentially suppresses parasitic interband tunneling
which is a limit to scaling of Si FETs [26]. For a wire grown
in a direction, valley splitting in the conduction band
pushes up the two electron valleys aligned along the axis
of the wire which reduces the effective mobility mass in the
transport direction. Quantum confinement pushes up the con-
duction band minimum composed of the four valleys whose
long axis is perpendicular to the wire axis. This results in a trans-
verse mass increased by about 35% for 2.5-nm-thick wires. The
corresponding hole masses are increased by a factor of about
six. The effective mass affects both the mobility and the den-
sity of states. Even for ultrascaled FETs, there are indications
that mobility will still be a relevant parameter governing per-
formance metrics [27]. The density of states directly enters into
the quantum capacitance and current drive which also affects
the performance of ultrascaled FETs [28].

The small splitting of the 4 valleys forming the conduction
band minimum is relevant to quantum computing implementa-
tions based on Kane’s original proposal [29]. Lifting the con-
duction bandedge degeneracy would remove the fast oscillating
factors in the exchange coupling between donors making donor
placement much less critical [30], [31].

For rapid design calculations, it would be convenient to be
able to use a simple model such as a single-band effective mass
model for calculating the properties of SiNWs. Therefore, we
assess the validity of the single-band model by comparing the
results calculated from that model to those obtained from a full-
band model.

II. APPROACH

We consider two types of structures, ideal infinite Si wires
passivated with H, and semi-infinite Si wires sitting on a planar
Si substrate also passivated with H. Fig. 1 on the left shows the

0018-9383/$20.00 © 2005 IEEE
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Fig. 1. (Left) unit cell of the 1.54-nm square Si wire passivated with H. (right)
H passivated octagonal Si wire on a substrate. The distance between opposite
faces is 1.15 nm.

unit cell of an ideal 1.54-nm square Si wire passivated with H.
Fig. 1 on the right shows elevations of a Si wire on a Si sub-
strate. The grey atoms are Si and the black ones are H. The ideal
wires are square with sides along equivalent directions
and their long axis along the direction. The wire on sub-
strate is round or, more exactly, octagonal with faces along the
equivalent and directions.

Two different models are used. The first is a three-dimen-
sional (3-D) discretization of the single-band effective mass
equation. This model is of interest for fast design calculations,
so we assess its accuracy and utility by comparing its results
with those from the fullband model.

The single-band effective mass equation is solved by finite
difference on a square grid aligned along the , and direc-
tions with a grid spacing of approximately 2 chosen to
give a good fit to the square box in and . Hamiltonian ma-
trix elements to points on the grid that lie outside of the box
are set to 0, the equivalent of hard wall boundary conditions.
The effective mass equation is discretized to include the lon-
gitudinal and transverse effective masses of Si. For example,
the diagonal element resulting from the kinetic energy term is

. The nearest neighbor
off-diagonal elements are where , ,
or , and is the matrix element coupling nearest-neighbor grid
points in the , , or directions. To simulate the valley near
(100) for electrons, , , and where

and are the longitudinal and
transverse electron masses of Si, respectively. For the valence
band, the averaged density of states masses are used for all direc-
tions: , , and .

The open boundaries on the ends are included via boundary
self-energies calculated from the surface Green functions of
the semi-infinite regions above and below the NW. The wire
consists of layers of grid points in the direction. Layers

lie in the left contact. Layers lie
in the “device” and layers lie in the right
contact. The surface Green functions are calculated using [32,
Eqs. (A1) and (A2) ] similar to those described first in [33].

The surface Green functions are, for the semi-infinite region
below the NW

(1)

and for the semi-infinite region above the NW

(2)

where we have used block matrix notation. Each bold symbol
represents an matrix where is the number of grid
points in a layer. is the energy and is an imaginary po-
tential that is nonzero only in the leads. For these calculations,

meV. The are the intra-layer blocks of the Hamil-
tonian and the are the inter-layer blocks of the Hamiltonian.
The numerical subscripts and refer to layer indexes in the
direction.

The procedure is exactly as described following [32, Eqs.
(A1) and (A2)]. The matrix of generalized eigenvectors and
eigenvalues are calculated from the generalized eigenvalue
equation described in [34]. They are sorted into left and right
moving eigenstates as described in the text surrounding [32, Eq.
(A14)] where is, in the single-band model, . The sub-
scripts and indicate whether the matrices are composed of
the left or right moving states, respectively. In this case, left
moving indicates propagation in the negative direction and
right moving indicates propagation in the positive direction.

The second model is the nearest neighbor model,
where the Hamiltonian matrix elements, (described by Boykin
et al., [35]) are optimized with a genetic algorithm. Previous
calculations by others [21] and ourselves [36] used the
parameters of [37]. Table I shows a comparison of bulk Si prop-
erties calculated from those parameters and the ones optimized
by Boykin et al. [35] that we use here. Since we focus on the
effect of confinement on the effective mass, we felt that it was
important to begin with bulk values that were as accurate as pos-
sible. The bulk values of the longitudinal and transverse electron
masses obtained from the parameters of [35] are significantly
closer to the experimentally accepted values than those of [37].

In the model, the surface of the Si NW in and
is treated in a similar way to that of the discretized single-band
model described above. Matrix elements to Si atoms that fall
outside of the device domain are set to zero. The Si atoms that
are the nearest neighbors to the ones within the device domain
are replaced with H atoms to get rid of the surface states. Our
perspective on the H atoms is that they are simply a numerical
method to eliminate the surface states. The perspective is iden-
tical to that described by Lee et al. [38] in which they state that,
“The proper BC for a reduced buffer should efficiently eliminate
all nonphysical surface states and at the same time should mini-
mally affect physical interior states.” Lee et al. transformed the
atomic orbital basis into the hybridized orbitals, increased
the energy of the surface dangling ones well above the energy
range of interest, and then transformed back into the atomic
orbital basis. We used a genetic algorithm to determine H pa-
rameters to produce the same effect of eliminating the surface
states. On each H atom, there is one orbital. Its nonzero matrix
elements with the Si atomic orbitals consist of , , ,
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TABLE I
K MINIMA (AS A PERCENT OF THE X � � DISTANCE) AND EFFECTIVE

MASSES (IN UNITS OF THE FREE-ELECTRON MASS)

TABLE II
HAMILTONIAN MATRIX ELEMENTS FOR HYDROGEN IN EV

and as shown in Table II. Surface reconstruction is not
considered.

The transmission coefficients are calculated using the
nonequilibrium Green function (NEGF) formalism with a re-
cursive Green function algorithm. The algorithms are described
in detail in [39]. Transmission coefficients that we plot are
summed over all spin and orbital channels at a given energy.
Formally, they are defined by where
the trace is over all orbitals and the notation corresponds to that
of [39].

We calculate the dispersion relation of the wires, and
we calculate transmission coefficients for wires of 16 unit cells.
For the calculations and valence band transmission cal-
culations, spin-orbit coupling is included. For the conduction
band transmission coefficients, spin-orbit coupling is ignored
since we found that it had no noticeable effect on the results. We
calculate transmission coefficients for a wire on a substrate as
shown in Fig. 1 and compare to an ideal wire. We also compare
transmission coefficients for a 1.54-nm wire, calculated from
both the fullband and single-band models.

III. NUMERICAL RESULTS

Fig. 2 shows a typical energy versus wavevector relation for a
Si NW. In this case, the NW is 1.54-nm square. The conduction
band edge at in the one dimensional (1-D) Brillouin zone is
formed from the four equivalent valleys of the bulk Si, and
it is therefore labeled in the figure. The next higher valleys
are formed from the two equivalent valleys which point
along the vertical axis of the Si wire. The 1-D Brillouin
zone of the Si wire is 1/2 as long as the length of the bulk Si
Brillouin zone along the line. In real space, the 1-D Si
wire primitive unit cell consists of four atomic layers, whereas
the bulk 3-D Si primitive unit cell consists of two Si atoms. The
position in the 1-D Brillouin zone of the valley minimums
at 0.37 can be qualitatively understood in terms of zone
folding. The valley minimum which in bulk Si occurs at 0.81

(with our parameters), is folded back into the first half of
the 1-D Brillouin zone.

In the valence band, there is significant mixing and splitting
of the hole bands. The bandgap is increased by quantum con-
finement. For reference, for bulk Si, the valence band edge is at

Fig. 2. Si 1.54 � 1.54-nm NW band structure calculated from the empirical
tight-binding sp d s model. (a) Conduction bands and (b) valence bands. The
lattice constant a = 5:4 �A.

Fig. 3. Si NW bandgap versus Si wire thickness.

and the conduction band edge is at eV. In the
1-D Brillouin zone of a wire, Si is a direct gap material.

In Figs. 3–7, we display the results of calculations of band
energies and effective masses for a series of ideal wires cor-
responding to unit cells as shown in Fig. 1 with dimensions
ranging from 0.8 0.8 nm (5 5 atoms) to 2.7 2.7 nm
(15 15 atoms).

Fig. 3 shows the effect of quantum confinement on the
bandgap as a function of wire thickness. The bandgap is 2.5 eV
for a 1.2-nm wire and it falls to 1.56 eV for a 2.7-nm wire.

Fig. 4 shows the effect of wire thickness on the (a) and
conduction band valley energies, (b) the splitting, and
(c) the splitting at the conduction band minimum labeled in
Fig. 2. The splitting results from the different quantum
confinement energies for the and valleys. In a single-
band picture, the effective mass of the valleys in the direction
of the confinement is the transverse electron mass. The effective
mass of the valleys in the direction of the confinement is
a combination of both the longitudinal and transverse electron
masses. The splitting is 285 meV for the 1.2-nm wire and it falls
to 117 meV for the 2.7-nm wire.

The splitting at the conduction band minimum shown in
Fig. 4(c) is a two-dimensional analogue of the splitting recently
investigated in planar Si quantum wells [40]. Lifting the degen-
eracy of the lowest conduction band state is useful for quantum
computing implementations based on Kane’s model [29]–[31].
In Fig. 4(c) the lowest energy is the reference energy
for each wire dimension. The conduction band minimum is
composed of four valleys from the bulk Si. It thus can split
into four values as opposed to the two values for the planar
quantum wells analyzed in [40]. However, for wires greater
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Fig. 4. Effect of Si wire thickness on the (a) � and � conduction band
valleys, (b) the � �� splitting, and (c) the splitting at the conduction band
minimum labeled � in Fig. 2. In (c), the lowest conduction band energy for
each wire cross section is used as the reference energy and set to 0. The next
three highest band energies are labeled E , E , and E , respectively. At
1.2 nm, E , is closely degenerate with E and thus off the scale of the plot.

Fig. 5. Effect of Si wire thickness on (a) the maximum energy of the three
highest valence bands and (b) their energy splitting. In (a), the three highest
valence band energies are labeled from high to low, E , E , and E ,
respectively. For each thickness in (b) the highest valence band energy [E
from (a)] is used as the reference at E = 0. The energies E and E are
plotted with respect to E .

than 1.54 nm, the two middle energies become essentially
degenerate, and they are split evenly between the lowest and
highest energy. For the 1.2-nm wire, the two lowest energies
are degenerate. We also observe oscillatory and decay behavior
as is seen in the planar quantum wells.

The conduction band valley is composed of the two el-
lipses which lie along the axis of the wire. The confinement does
not couple these valleys, so splitting is neither expected nor ob-
served in the valleys.

Fig. 5 shows the effect of quantum confinement on the three
highest valence bands and their splitting as a function of wire
thickness. In Fig. 5(b), the energy of the highest valence band is

Fig. 6. Conduction electron effective masses versus wire thickness at (a) the
conduction band minimum and (b) the � valley.

Fig. 7. Effective masses of the three highest valence bands as a function of wire
thickness. In the legend, the valence bands are numbered from the highest energy
to the lowest so that “valence 1” corresponds to the highest energy valence
band, “valence 2” corresponds to the second highest energy valence band, and
“valence 3” corresponds to the third highest energy valence band.

used as the reference energy corresponding to for each
wire dimension.

Fig. 6 shows the conduction electron effective masses versus
wire thickness at (a) the conduction band minimum and at (b)
the valley. These masses are calculated from the dis-
persion relations such as that shown in Fig. 2 from the relation

. Since the conduction band min-
imum is composed of the four valleys with the transverse
mass in the direction of the axis of the wire, one would expect
the effective mass of the conduction band minimum to corre-
spond to the bulk Si electron transverse mass equal to in
this model. The value of for the thickest wire (2.7 nm)
is 35% greater than the bulk value. The valley is composed
of the two ellipses which lie along the axis of the wire, and thus
one would expect the effective mass to correspond to the longi-
tudinal electron effective mass equal to in this model.
For the thickest wire, the mass is . The valley splitting
reduces the averaged mobility mass along the axis of the wire,
but quantum confinement increases the transverse mass of the
conduction band edge.

The effect of confinement on the effective mass is most pro-
nounced in the valence band. Fig. 7 shows the valence band ef-
fective masses for each wire thickness. For the wire thickness
range (0.8–2.7 nm) that we have considered, the effective
mass for the highest valence band is at least six times heavier
than that for the bulk heavy hole, and the second highest band
is even heavier. The effective mass for the third highest band
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Fig. 8. Transmission versus energy for a 1.54-nm wire. (a) Conduction band
calculated in both the fullband and single-band model. (b) Fullband calculation
of the valence band transmission. (c) Single-band calculation of valence band
transmission.

falls to for wires thicker than 2.3 nm which is 47%
heavier than that of the bulk light-hole. For reference, the bulk
valence band masses in this model are ,

and .
Fig. 8 shows the comparisons of transmission coefficients

for the 1.54-nm wire in both the conduction and valence bands,
based on the fullband model and a single-band
model. Fig. 8(a) shows an initial turn on of the conduction band
transmission to eight. This corresponds to the eight channels
formed by the four valleys and two spins which form the
conduction band minimum. The effect of confinement on the
conduction band edge is 100 meV larger in the single-band
model than in the fullband model. However, the single-band
model quickly becomes completely inaccurate at higher ener-
gies. The fullband calculation of the transmission coefficient
in the valence band is shown in Fig. 8(b). The corresponding
single-band calculation is shown in Fig. 8(c). The entire full-
band result of Fig. 8(b) lies between the two arrows in Fig. 8(c).
The single-band calculation predicts the valence band edge
shifted down 18 meV further than the fullband calculation.
Nothing else is remotely correct in the single-band calculation
for the valence band.

Fig. 9(a) shows a comparison of the calculated transmission
coefficients for an ideal wire and a wire on a substrate as shown
on the right in Fig. 1. The relation of the ideal wire is
shown in Fig. 9(b). The difference between the two transmis-
sion coefficients in Fig. 9(a) can be understood if one thinks of
the Si wire on bulk Si as a heterostructure. The Si wire is a wider
bandgap material than the bulk Si with a conduction band offset
of 0.95 eV. Thus, reflection occurs at the bulk-wire interface re-
ducing the transmission coefficient from its ideal values. The
dip in the fullband transmission at 2.52 eV occurs when the en-
ergy rises above the cusp at in the plot. A transmission

Fig. 9. (a) Comparison of transmission through an ideal wire and wire on
substrate calculated in the sp d s model for the 1.15–nm octagonal wire
shown on the right in Fig. 1. (b) Conduction band structure of the ideal wire.

channel disappears but immediately turns back on when the en-
ergy crosses the minimum right above the cusp. The three steps
in the initial turn-on of the transmission are the result of the
three-fold splitting of the conduction band minimum. Note that
the first step is a factor of four indicating that the lowest energy
is two-fold degenerate.

IV. CONCLUSION

In the conduction band, valley splitting reduces the averaged
mobility mass along the axis of the wire, but quantum con-
finement increases the transverse mass of the conduction band
edge. For the wire thickness range that we have considered,
the effective mass at the conduction band edge is at least 35%
heavier than that of transverse mass of bulk Si. Quantum con-
finement has the largest effect on the effective masses in the va-
lence band. The effective mass at the valence band edge is at
least six times heavier than that of the bulk. The effective mass
of the next highest band is even heavier. Small energy split-
ting also occurs at the conduction band minimum. For wires
greater than 1.54-nm thick, the four bulk valleys which com-
pose the conduction band minimum are split into three energies.
The center energy is twofold degenerate roughly evenly split
between the lowest and highest energy. The single-band model
performs reasonably well at calculating the effective band edges
for the 1.54-nm wire. However, the accuracy of the single-band
calculation quickly becomes nonexistent as one moves away
from the band edges. The representation of the valence band
with the effective mass model is shown to be meaningless. The
wire-substrate interface acts as a heterojunction with a band
offset between the bulk and the wire resulting in reflection in
the transmission.

We have become aware of earlier work addressing the elec-
trical and optical properties SiNWs motivated by an interest in
porous Si[41]–[48]. In particular, [41] and [42] describe second
neighbor empirical sp d s electronic bandstructure calcula-
tions in qualitative agreement with the results presented here,
and [48] uses those results to compute transport properties.
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