August 2008

Single-walled carbon nanotube transistors fabricated by advanced alignment techniques utilizing CVD growth and dielectrophoresis

S Kim
Purdue University

Y Xuan
Purdue University

P. D. Ye
Birck Nanotechnology Center and School of Electrical and Computer Engineering, Purdue University, yep@purdue.edu

Saeed Mohammadi
School of Electrical and Computer Engineering, Purdue University, saedm@purdue.edu

S W. Lee
Yonsei Univ, Dept Biomed Engn

Follow this and additional works at: http://docs.lib.purdue.edu/nanopub
Short Communication

Single-walled carbon nanotube transistors fabricated by advanced alignment techniques utilizing CVD growth and dielectrophoresis

S. Kim, Y. Xuan, P.D. Ye, S. Mohammadi, S.W. Lee

School of Electrical and Computer Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, United States
Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon 220-710, South Korea

Abstract

Single-walled carbon nanotube field effect transistors (SWNT-FETs) are fabricated by two different alignment techniques. The first technique is based on direct synthesis of an aligned SWNTs array on quartz wafer using chemical vapor deposition. The transistor with three SWNTs and atomic layer deposited (ALD) Al2O3 gate oxide shows a contact resistance of 280 kΩ, a maximum on-current of 7 μA, and a high I_on/I_off ratio (>10^3). The second technique is based on room temperature self-assembly of SWNT bundles using dielectrophoresis. By applying AC electric fields, we have aligned nanotube bundles between drain and source contact patterns of a transistor at room temperature. Transistors based on twisted bundle of SWNTs show high contact resistance (MΩ range) and low current drive in the order of tens of nA.

1. Introduction

Since their discovery in 1991 [1], carbon nanotubes (CNTs) have been the focus of extensive research for many potential applications, including sensing, chemistry, biology, and electronics [2–4]. Due to perfect one-dimensional crystalline structure, SWNTs exhibit unusual physical, chemical, mechanical and electrical properties. Single-walled carbon nanotube field effect transistors (SWNT-FETs) were first demonstrated in 1998 [5]. It has been shown that these transistors can achieve ballistic transport and can sustain high current densities while dissipating very low DC powers [5–6]. Despite the advantages of SWNT-FETs, these devices have not been utilized in industry due to two major hurdles in realization of large area and/or complex circuits based on these transistors. These two issues are: (1) Difficulty in the separation of semiconducting from metallic single-walled carbon nanotubes. (2) Difficulty in alignment and placement of the nanotubes to the device structure in a controlled and reproducible pattern.

Up to now, various methods for selective deposition or growth of single walled carbon nanotubes (SWNTs) on two electrodes have been developed [7–10]. In this paper, we have fabricated, characterized and compared SWNT-FETs fabricated by two advanced aligning techniques. In the first technique, alignment of nanotubes is achieved through high temperature CVD synthesis of nanotubes on a quartz wafer. Parallel arrays of individual SWNTs with a controlled density are utilized to construct high performance SWNT-FETs. This technology allows implementation of SWNT-FETs with low contact resistance, high mobility, and high saturation current. In the second method, room temperature device fabrication is achieved based on dielectrophoresis. SWNT bundles suspended in ethanol solution display a positive dielectrophoresis which facilitate their alignment and placement through a very simple processing technology. Electrical performance of these devices is limited by their high contact resistance of SWNT bundles which is in the order of a few MΩ. Based on the observed electrical characteristics, it can be concluded that individual nanotubes in the channel achieve lower contact resistance than the nanotubes in a bundle, resulting in better overall device performance.

2. The aligned array SWNT-FETs in CVD growth

Aligned SWNT arrays are grown on miscut single-crystal quartz substrate by thermal CVD. Quartz wafer is annealed for 8 h at 900 °C in air. Single-walled carbon nanotubes (SWNTs) are synthesized by chemical vapor deposition (CVD) of methane on the substrate using iron catalyst. Source and drain contacts are formed by electron beam deposition of Pd metal. Al2O3 films are deposited.
Fig. 1. Scanning electron microscope (SEM) images of aligned SWNT arrays on quartz wafer. (a) SEM images of the grown aligned arrays of SWNTs using patterned iron catalysts with spacing 10 μm. (b) The enlarged image the edge of catalyst. The SWNTs in corner of a catalyst still shows the tube-tube crossing. Pd patterns of source and drain cover in the tube-tube crossing entirely. (c) The SEM images of perfectly aligned arrays SWNT between source and drain spacing 3 μm with width of 15 μm.

Fig. 2. Output characteristics of an aligned array SWNT-FET with a 50 nm thick ALD Al₂O₃ oxide. (a) The transfer characteristics of transistor with a width of 6 μm. (b) Energy band diagram for an ambipolar characteristic of SWNT-FETs depending on whether V_g > 0 or V_g < 0. (c) The I_d-V_ds curves of an aligned array SWNT-FET (inset). The equivalent circuit of SWNT-FET with source and drain resistance (contact resistance).
using ASM Micro-chemistry F-120 ALCVD™ Reactor. ALD Al₂O₃ (50 nm) layers are grown on SWNTs at 300 °C by using precursor of Al(CH₃)₃ (the Al precursor) and H₂O (the oxygen precursor). Cr/Au (20/400 nm) gate electrodes are finally deposited.

Nearly perfect alignment of SWNTs can be achieved with direct growth on miscut quartz as shown in Fig. 1. The degree of alignment is influenced by annealing of quartz before SWNT growth. Increasing the annealing time, which increases the degree of order in the crystal lattice near the surfaces as well as the degree of order of the steps, improves SWNT alignment [8–9]. SWNTs are parallel to the ST-miscut quartz from catalyst patterns. Fig. 2c shows SWNTs between source and drain are parallel with non tube-tube cross. The use of a well-aligned SWNT array allows devices in which the current flow is through a number of individual SWNTs. Therefore, individual SWNTs can sustain their intrinsic mobility in an aligned array of SWNTs.

Fig. 2 shows the IV characteristics for a 1.5 μm gate length aligned array of SWNT-FETs with a 50 nm thick Al₂O₃. Fig. 2a and c shows the electric characteristics of aligned SWNT array-FETs with a width of 6 μm having the maximum intrinsic transconductance gₑᵣ = dI/dVₛₑᵣ = 0.1 V of 0.5 μS and the maximum on-current of −7 μA. The Iₚₒᵣ/Iᵣₒ for a SWNT-FET with three semiconducting SWNTs is high and equal to 4 × 10⁴. The IV curves of SWNT-FETs resemble an ambipolar behavior, exhibiting an operating regime at positive and negative Vgs. Consider now the case where Fermi-energy (E₉) is located around midgap. For the positive gate bias, the conduction band pushes down, and the Schottky barrier becomes narrower, resulting in an increase of electron tunneling current (N-FET). For the negative gate bias, the valence band pulls up, leading to an increase of hole tunneling current (P-FET) as shown in Fig. 2b. The slope of the IV curves at high gate voltages and low drain voltages (linear region) is roughly the inverse of the extrinsic source and drain resistances Rₛ + Rₚ. From Fig. 2c, the estimated drain and source contact resistance is around 280 kΩ.

3. Device fabrication using dielectrophoresis

We have used SWNTs with diameters of ∼1.5 nm synthesized by laser ablation from Carbon Nanotechnologies Inc. Au metal patterns are deposited on a thermally grown SiO₂ with a thickness of toₓ = 150 nm on P + Si substrate. The gap size between the Au electrodes is 4 μm and the width of the electrodes is 5 μm. Single-walled nanotubes suspended in ethanol with a concentration of 10 ng/ml are first subjected to ultrasonic vibration for several hours in order to untangle the nanotubes. Once AC electric fields (5 MHz) between all source/drain Au metals are established, diluted ethanol with suspended nanotubes is applied on the SiO₂ surface. Dipoles of SWNT bundles are induced under an external field. The alignment of nanotubes is maximized by adjusting the electric field strength and duration. The AC electric field is terminated, and the nanotubes are allowed to settle onto the SiO₂ surface. The SWNTs are then etched with 0.1% HCl, which selectively removes the catalyst remnants. The SWNTs are attached to the SiO₂ surface, and the SWNTs are then placed in a vacuum chamber to release the nanotubes from the ethanol. The SWNTs are then deposited onto the Au electrodes, and the SWNT-FETs are finally fabricated.
electric field. The AC electric fields are applied until the ethanol solution completely dries at room temperature. Following the ethanol evaporation, 6 μm width of source/drain Pd metals with spacing 1.5 μm are deposited on the Au electrodes, and patterned to form contacts on nanotube.

In order to find an optimal deposition and alignment condition, the amplitudes of AC signals are changed step by step. The optimal condition of AC signal for the deposition and alignment is empirically found to be a field with an amplitude of 0.6 V/μm (frequency of 5 MHz) as shown in Fig. 3a [10]. Under optimized condition, the aligned SWNT-FETs are highly reproducible with a yield of about 70% with one bundle of nanotube per device with an average bundle diameter of 15 nm. For further discussion, a SWNTs bundle is assumed to be an isotropic ellipsoid. The induced DEP torque acting on the bundle under an external electric field (E) can be expressed as [11]

\[
T_{\text{DEP}} = \frac{\pi r^2 l}{2} \left(\frac{e_2 - e_1}{r_1} \right)^2 \frac{E^2 \sin 2\theta}{[r_1 (e_2 - e_1) L_0]} \]

(1)

where, \(r \) and \(l \) are the length and radius of SWNTs bundle. \(e_1 \) and \(e_2 \) are the permittivity of the ethanol and SWNTs bundles. \(L \approx 4r^2/\pi[\ln (lr) - 1] \) and \(\theta \) are the depolarization factor and the angle between the axis of the SWNTs bundle and the external field, respectively. Moreover, a net DEP force exerts on the bundle is

\[
F_{\text{DEP}} = \frac{\pi r^2 l}{2} e_1 Re \left(\frac{e_2 - e_1}{r_1^2 + (e_2 - e_1) L_0^2} \right) \nabla E^2
\]

(2)

where \(l \) are the length and radius of bundle. \(e_1 \) and \(e_2 \) are the permittivity of the ethanol and SWNTs bundles. \(\sigma_1 \) and \(\sigma_2 \) are the conductivity of the ethanol and SWNTs bundles, respectively. Since \((e_2 - e_1) > 0 \) and \((\sigma_2 - \sigma_1) > 0 \) the real part of \((e_2 - e_1)/[r_1^2 + (e_2 - e_1) L_0^2] \) is positive. Therefore, SWNTs bundle would be expected to move toward the region of maximum electric field gradient, which is the outmost edges of round electrodes in the experiment [12], due to the net DEP force. In addition, the axis of SWNTs bundle would be expected to parallel to the electric field under steady-state condition, according to Eq. (2). The SWNTs bundle is well-aligned between two rounded electrodes by the combination of the twisted and rotated forces, as shown in Fig. 3a.

Fig. 3b and c shows the typical DC characteristics for SWNT-FETs with \(L = 1.5 \mu m \) fabricated using dielectrophoresis technique. Prior to IV measurements, electrical burning is performed to remove metallic SWNTs through self-heating of SWNTs at high drain currents. The extracted transconductance is found to be 52 nS for devices with one nanotube bundle. \(I_{\text{ds}} - V_{\text{ds}} \) characteristics show current capabilities in several hundreds of nA range, which is at least one order of magnitude smaller than that of an aligned array SWNT-FET. Current saturation is not observed in these devices due to high contact resistances of source and drain estimated at around 10.1 MΩ. Strong van der Waals force causes SWNTs to tunnel a twisted bundle in the solution. Due to twisted nature of these bundles, source/drain Pd metallizations do not reach individual SWNTs in the bundle. Moreover, carriers cannot freely move among adjacent SWNTs in a bundle, as the only conduction mechanism among SWNTs is tunneling current. This results in high resistance among adjacent SWNTs. Devices with \(I_{\text{ds}}/I_{\text{off}} \) ratio of higher than 10^3 show contact resistance values of 2.8–10.1 MΩ [13,14].

Recently there has been a report on high performance SWNT-FETs fabricated by single bundle SWNT. [15] In this work the nanotubes are suspended in 1,2-dichloroethane and are aligned to source/drain contact metallization using an AC electric field alignment technique similar to the dielectrophoresis technique reported here. The contact resistance of single bundle SWNTs is significantly reduced by a novel ultrasonic nanowelding technique, achieving near-ideal contact resistance of 10–20 KΩ per nanotube and an average maximum on-current of 10–15 μA per nanotube [15,16].

4. Conclusion

In this paper we report and compare IV characteristics of transistors based on aligned arrays SWNTs on quartz and single bundle of SWNTs using dielectrophoresis, where both devices have the same device geometries including gate length (1.5 μm), width of source drain contacts (6 μm), and Pd metallization. However, the position of the gate in the two devices is different. In the device composed of aligned nanotubes on quartz, the gate is above the nanotube separated by a 50 nm ALD Al2O3 gate oxide. In the device fabricated by dielectrophoresis, a 150 nm thermal SiO2 separates the nanotube from the bottom gate. Both techniques achieve a high alignment of SWNTs between source/drain electrodes. The observed IV trends of SWNT–FETs are essential to contact individual nanotubes and nanotube bundles for high performance. The transport in an aligned array of non-overlapping SWNTs provides low contact resistance, high mobility, and large on-current. On the other hand, transport between neighboring nanotubes of a twisted bundle in SWNT–FETs induces a high tunneling resistance in the range of 2.8–10.1 MΩ, which leads to high contact resistance, low transconductance, low maximum current, and non-saturating current–voltage behavior. In order to improve these problems, the ultrasonic nanowelding and untanglingCNTs in the solutions helps SWNT–FET fabricated by dielectrophoresis to achieve high performance of transistor.

Acknowledgement

This work is supported by National Science Foundation NIRT (Grant No. CCF-05-6660).

References