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Interactions of Fano resonances in the transmission for an Aharonov-Bohm ring with two embedded quan-
tum dots are examined. As the interaction parameter between two quantum dots is modulated, two Fano dipoles
�a resonance zero-pole pair� in the complex-energy plane form a quasiparticle, which behaves as a coupled
object called a “Fano quadrupole.” In the strong overlapping regime of Fano resonance, the collision and
merging of resonance zeros take place and these zeros move off from the real axis of energy in complex
conjugate pairs. The periodic motion of both transmission zeros and resonance poles as a function of a
magnetic field is discussed.
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Transmission resonances in multibarrier resonant-
tunneling structures have been extensively studied, using
Breit-Wigner �BW� expressions in the description of reso-
nant tunneling effects. It is well known that resonant-
transmission phenomena are related to the quasibound states
of the systems. According to the BW formalism, the scatter-
ing amplitude of the transmission possesses a pole for each
quasibound state in the complex-energy plane. The real part
of a pole can be interpreted as the energy of a quasibound
state, and the imaginary part can be connected with the life-
time of this state.1 When more than one resonant quasibound
state is present in a one-channel system, for instance, in a
three-barrier system, the resonance levels interact each other
and result in the overlapping of resonances.2,3 In this situa-
tion, therefore, the single BW formula is no longer valid due
to the overlapping of resonances. Hence, the interference ef-
fects of resonances have been studied by examining the for-
mation of double poles in the transmission amplitude and the
effect on the collision of two poles �or merging of two reso-
nances� associated with the quasibound states.4–6

In contrast to multibarrier resonant-tunneling structures,
quantum nanostructures such as Aharonov-Bohm �AB� rings
and two-dimensional �2D� electronic waveguides, where al-
ternative electronic paths may be realized, possess both
transmission zeros and resonance poles. This characteristic
of a zero-pole pair, called Fano resonance,7 has been particu-
larly predicted and observed in a hybrid system of an AB
ring and a quantum dot �QD� both theoretically and
experimentally.8–21 This Fano effect arises from quantum
mechanical interference between the discrete state of the QD
in one arm and the continuum in the other arm. The profile of
the Fano asymmetric lineshape in the transmission depends
on the strength of the coupling between discrete and con-
tinuum states, and on the phase difference between the paths.
Here, the scattering amplitude near the zero-pole pair be-
haves like a dipole, where the pole plays the role of a particle
and the zero plays the role of a hole �antiparticle�.22–27 Fur-
thermore, the collapse of the particle and hole has been stud-

ied in a quasi-one-dimensional constriction with an attractive
and finite-size impurity by modulating the parameters of the
system.26,27

In this article we investigate the interaction of Fano reso-
nances in the transmission for an AB ring with coupled
double QDs. When the overlapping of two Fano resonances
takes place in the transmission, two Fano dipoles in the
complex-energy plane form a quasiparticle, which behaves
as a coupled object—a “Fano quadrupole.” In the regime of
strong overlapping resonances, which can be tuned by the
interaction parameter between two QDs, the collision of
transmission zeros occurs, and these zeros leave the real-
energy axis and move away in opposite directions in the
complex-energy plane. We also obtain an analytical expres-
sion of the transmission zeros, and show that these zeros are
generally complex when two quasibound states lie close to-
gether in energy. Finally, we show a periodic motion of the
resonance pole and transmission zero in the complex-energy
plane as a magnetic field through the AB ring is changed.

The model we study is an AB ring, where a coupled
double QD is embedded in one of its arms, as schematically
shown in Fig. 1. Here, double QDs can be formed by three
electrodes that play a role of the barriers for electrons in the
lower arm, and the coupling between two QDs is controlled
by the middle electrode. We consider both arms of the ring
and the leads as perfect waveguides and adopt a single-
propagating channel in the quasi-one-dimensional approxi-
mation. Propagating waves in the leads and perfect regions
of the arms are assumed to be in the form ��x ,y�
�e±ikx��y�, where x is the local coordinate along the wave-
guide, y is the transverse coordinate �transverse wave func-
tion is ��y��, and wave vector k=�2mE /� of an electron
with energy E in the open channel.

In order to connect incoming and outgoing waves at the
junctions of the ring and the leads, we employ a simple junc-
tion model,28 where a scattering matrix describes the split-
ting of the electron wave functions at the junction. Using the
amplitudes of electron waves in the ring where the relevant
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parameters are defined in Fig. 1, the electron transmission
from left to right leads through both the upper and lower
arms can be expressed by

�Āu

B̄u

� = e−i�/2Mu�Au

Bu
�, �Āl

B̄l

� = ei�/2Ml�Al

Bl
� . �1�

Here, �=2�� /�0 describes the phase shift introduced by
the magnetic flux � threading the AB ring ��0=h /e is the
elementary flux quantum�, and Mu and Ml are the transfer
matrices through the upper and lower arms, respectively. In
order to find the transfer matrix Ml in the lower arm, we
consider the coupled QDs that are formed by three short-
range potential barriers �Vj, j=1,2 ,3�. Then, the transfer ma-
trix of each barrier has the form

Mj = �1 − iuj − iuj

iuj 1 + iuj
� , �2�

where uj =mVj /k with j=1,2 ,3. The dimensionless matrix
element of the potential uj describes the strength of the re-
pulsive potential barrier. Therefore, the transfer matrix Ml for
the lower arm with two QDs can be expressed by

Ml = X�Ll − L3�M3X�L3 − L2�M2X�L2 − L1�M1X�L1� , �3�

where X�x�=diag�eikx ,e−ikx�, Ll is the upper arm length, and
the L1, L2, and L3 are distances from the left junction to the
first, second, and third electrodes, respectively. On the other
hand, the transfer matrix Mu for the upper �reference� arm
has a simple form as Mu=X�Lu�, where Lu is the length of the
upper arm.

Using the transfer matrix and the junction matrices,28 we
can write connections between the amplitudes:

t = ���Āu + Āl� , �4�

Au = �� + aBu + bBl, B̄u = aĀu + bĀl,

Al = �� + bBu + aBl, B̄l = bĀu + aĀl. �5�

Here, � plays the role of a coupling parameter between the
leads and ring, and the coefficients a and b are expressed as
a function of � :a= 1

2 ��1−2�+1� and b= 1
2 ��1−2�−1�. After

some matrix manipulations, we obtain the full transmission
amplitude t�E ,�� analytically as

t�E,�� =
i�ei�N�E,��

D�E,��
. �6�

Here, the numerator of Eq. �6� can be written as

N�E,�� = ei�	+2�
+����N0�E,�� + �N1�E,��� , �7�

where

N0�E,�� = 4i�sin 	 + ei�/2�4u sin 
�cos 2� sin 
 + �cos 


+ u sin 
�sin 2�� + sin 2�
 + ��	� ,
and

N1�E,�� = 8iuei�/2�cos � sin 
 + �cos 
 + 2u sin 
�sin �� ,

with u
u1=u3, 
=kL1, �=k�L2−L1�, 	=kLu, and the inter-
action parameter between two QDs is ��
u2 /u1=V2 /V1�. On
the other hand, the denominator of Eq. �6� can be expressed
by

D�E,�� = D0�E,�� + �D1�E,�� , �8�

where

D0�E,�� = ei�	+2�
+����1 + ei�� + ei�/2u2�e4i
 + 4e4i�

+ e2i�	+2��� − 4e2i
u�u − i� + 4�u − i�2 − ei�/2�e2i	�u

− i�2 + 4e2i�
+2��u�u + i� − e4i�
+���u + i�2� ,

and

D1�E,�� = iei��/2+2	�u3�e2i� − 1�2 − iei��/2−2�
+���

�sin 
�3i cos � + sin ��1 + 6iu� − cos 
�cos �

+ �2u − i3�sin ��2�	 . �9�

From Eqs. �7� and �8�, we can determine the positions of
transmission zeros and resonance poles by setting N�E ,��
=0 and D�E ,��=0. We solve these two transcendental equa-
tions numerically by using standard routines. In addition, the
total transmission probability through the ring as a function
of the electron energy and a magnetic flux is given by T
= �t�E ,���2 and the conductance is defined by G= �2e2 /h�T
according to the Landauer-Büttiker formalism.

In our calculations, we present results for the following
parameters of the ring and dots: the effective electron mass is
m=0.067m0 for GaAs and the geometrical parameters of the
ring and positions of gates are chosen to be Lu=Ll=80 nm,
L1=10 nm, L2=40 nm, and L3=70 nm. The scattering pa-
rameters describing two coupled QDs in the lower arm are
used for asVj =0.2 eV nm �j=1,3�, where the width and
heights of the barriers are set to as=4 nm and V1=V3
=50 meV, respectively. The interaction between two QDs,
which leads to the overlapping of resonances due to the cou-
pling between the quasibound states, can be controlled by the

FIG. 1. Geometry of the AB ring with coupled QDs. Three
electrodes in the lower arm produce the depletion regions in the
two-dimensional electron gas and play the role of the barriers for
electrons with potentials V1, V2, and V3. The interaction between
two QDs is controlled by the middle electrode marked by a black
color.
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interaction parameter �. A maximum coupling between the
ring and the leads is used for �= 1

2 so that the coefficients of
Eq. �5� become a=−b= 1

2 .
First, we study the interaction of Fano resonances in the

transmission through the AB ring in the absence of a mag-
netic field by investigating the behavior of transmission am-
plitude for energy near zero-pole pairs. We consider two qua-
sibound states in the double QDs, where even and odd
quasibound states have the energies Eb and Ea, respectively.
In Fig. 2, we show both overlapping of the Fano resonances
in the transmission as a function of electron energy and a
contour plot of transmission in the complex-energy plane for
different values of the interaction parameter �. In the weak
coupling between two QDs, �=2.5, two distinct Fano reso-
nances in the transmission appear in Fig. 2�a� due to the
quantum interference between the continuum states in the
upper arm and two discrete states from the coupled QDs in
the lower arm. Notice that the width �a of Fano resonance
through the odd quasibound state at E�5.3 meV is less than
the width �b of Fano resonance through the even quasibound
state at E�4.7 meV ��a��b�. The two transmission zeros

�Ea
0 and Eb

0� and two resonance poles �Ẽa
R=Ea− i�a and Ẽb

R

=Eb− i�b� in the complex-energy plane are seen in Fig. 2�d�,
where two zeros are separate on the real-energy axis. As �
becomes a critical value �c=3.77, the two Fano resonances in
the transmission merge �Fig. 2�b�� and the transmission zeros
move toward each other and collide on the real-energy axis
�Fig. 2�e��. When �=5.5��c, a minimum of Fano resonance
in the transmission does not reach to zero �Fig. 2�c�� and
transmission zeros leave the real-energy axis and move away
in opposite directions in the complex-energy plane �Fig.
2�f��.

In order to see the behavior of transmission zeros and
resonance poles in detail, we calculate the trajectories of the
zeros and poles with the explicit expressions from Eqs. �7�
and �8� and present in Fig. 3 the trajectories of zeros and
poles in the complex-energy plane for a variation of the in-
teraction parameter �. As � increases, one of Fano resonance

FIG. 2. The total transmission of a nanoscale
AB ring as a function of electron energy �the left
column� and contour plots of the transmission in
the complex-energy plane �the right column� with
an increase of the interaction parameter �. The
two distinct Fano resonances are shown in �a� and
�d� for the weak overlapping regime ��=2.5�.
Here, there are two poles �Eb

R= �4.70
− i0.11� meV and Ea

R= �5.30− i0.08� meV� and
corresponding zeros �Eb

0=4.81 meV and Ea
0

=5.21 meV� that both zeros are placed on the real
axis of energy. When �=�c=3.77, the collision of
Fano resonances and merging of transmission ze-
ros appear in �b� and �e� with the same zero po-
sition as Eb

0=Ea
0=5.12 meV. In the strong over-

lapping regime of Fano resonances ��=5.5�, two
transmission zeros �E±

0 ��5.19± i0.11� meV�
move away in opposite directions from the real-
energy axis in �c� and �f�.

FIG. 3. �Color online� The trajectories of resonance poles

�Ẽa
R , Ẽb

R� and transmission zeros �Ea
0 ,Eb

0� in the complex-energy
plane with an increase of the coupling parameter ��2���10�.
When � increases, two zeros Ea

0 �red arrow� and Eb
0 �pink arrow�

move toward each other and the collision and merging take place at
�c=3.77. After merging, two zeros move away from the real-energy
axis in opposite directions as complex conjugate pairs �denoted by

E+
0 and E−

0 with green arrows�. The resonance pole Ẽb
R associated

with an even quasibound state moves to the higher energy �blue

arrow�, and Ẽa
R arising from the odd quasibound state is nearly

motionless �Ẽa
R��5.30− i0.08� meV�.
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zeros Eb
0 �shown as diamonds� arising from even quasibound

state in the QDs moves to the higher energy and another zero
Ea

0 �shown as stars� arising from odd quasibound state in the
QDs moves to the lower energy. When �=�c, the collision
and merging of Eb

0 and Ea
0 takes place at Ea

0=Eb
0=5.12 meV.

In the strong overlapping regime of Fano resonances ��
��c�, the transmission zeros, denoted by E+

0 and E−
0 �shown

as circles�, move away from the real-energy axis in opposite
directions as complex conjugate pairs.

It is interesting to note that the behavior of the resonance

poles �Ẽb
R and Ẽa

R� is different from that of transmission zeros

�Eb
0 and Ea

0�. The resonance pole Ẽb
R arising from an even

quasibound state in the QDs is shifted to the higher energy as

� increases. However, the movement of Ẽb
R to the higher

energy is hindered by one of the transmission zeros E−
0 at

E�5.24 meV, which prevents the collision of the resonance

poles Ẽb
R and Ẽa

R. On the other hand, the resonance pole Ẽa
R

arising from the odd quasibound state in the QDs is nearly
motionless because the odd quasibound state of the double
QDs is weakly affected by � due to short-range potentials in
the lower arm of the ring.

In order for zeros of transmission amplitude to confirm to
move away from the real axis in the case of overlapping
Fano resonances, we calculate the transmission zeros analyti-
cally by employing a simple model shown in Fig. 4. We
consider two nearest quasibound states in the dots that are
even and odd levels with energies Eb and Ea, respectively.
These two orthogonal states of the dots in the lower arm can
be connected with the junction states of the ring by the ap-
propriate matrix elements VLb, VbL, VaL, and VLa. On the
other hand, Vr is defined as the matrix element of the junc-
tions through the reference arm. Notice that these matrix
elements are generally complex numbers, and they are de-
pendent on the phase difference between localized wave
functions in the dots and propagating waves in the leads. If
the energy of an incoming electron from the lead is near the
resonant energies of the dots, then the matrix elements that
couple an even �odd� quasibound state to the left and right of
the dots are real and have same �opposite� signs: VLb�0 and
VbL�0 �VLa�0 and VaL�0�. With these matrices, we can
obtain an exact expression for the scattering amplitude,
which has the same structure of Fano zero-pole pairs, as
expressed in Eq. �6�. Here, the numerator of the scattering
amplitude has the form

N�E� = �E − Eb��E − Ea� − �E − Eb�Uaa − �E − Ea�Ubb,

�10�

where

Uaa =
VaLVLa

Vr
and Ubb =

VbLVLb

Vr
.

Then, the transmission zeros �Eb
0 and Ea

0� can be exactly ob-
tained from the equation N�E�=0, which gives

Ea,b
0 =

1

2
�Ea + Eb + Uaa

+ Ubb ± ��Ea − Eb + Uaa − Ubb�2 + 4UaaUbb� .

�11�

The examination of Eq. �11� indicates that Eb
0 and Ea

0 are off
from the real axis of energy when

Ea − Eb � Ubb + �Uaa� + 2��Uaa�Ubb, �12�

where Ubb�0 and Uaa�0. This implies that when even and
odd quasibound states lie close together in energy, the trans-
mission zeros move off from the real axis of energy. Using
the location of these zeros and poles that are generally com-
plex numbers, the transmission amplitude of Eq. �6� near the
resonances in Fano overlapping regime can be expressed as

tF�E� �
�E − Ea

0��E − Eb
0�

�E − Eb + i�b��E − Ea + i�a�
, �13�

which characterizes the transmission line shape in the vicin-
ity of the transmission zeros and resonance poles.

Since the coupled Fano resonances in the transmission
can be tuned by the magnetic flux � threading the AB ring,
we study a magnetic field dependence of transmission zeros
and resonance poles in a strong Fano overlapping regime.
The trajectories of zeros and poles in the complex-energy
plane as a function of magnetic flux are shown in Fig. 5 for
a given interaction parameter �=5.5. As � increases, the two
zeros at E+

0 = �5.19+ i0.11� meV and E−
0 = �5.19− i0.11� meV

for �=0 start to move to the higher �green arrow with
circles� and lower �red arrow with stars� energies, respec-
tively, until they reach to the real axis. When �= 1

2�0, these
complex conjugate pairs become real numbers �E+

0

=5.45 meV and E−
0 =4.95 meV�, which indicates a full re-

flection of the transmission. When 1
2�0����0, these ze-

ros continue to move on the other half of the trajectories to
complete a stadiumlike orbit. Then, the zero E+

0 comes to
initial position of E−

0 and vice versa for �=�0. In other
words, the upper zero E+

0 circumscribes half of the orbit and
then the lower zero E−

0 replaces the same part of the orbit
after the flux is changed by a period. On the other hand, the
behavior of the resonance poles is quite different. As � in-
creases, each pole at Eb

R= �5.06− i0.12� meV �shown as tri-
angles� and Ea

R= �5.30− i0.08� meV �shown as diamonds� for
�=0 moves a short nearly straight line periodically. �If �
= 1

2�0, these two poles are located at the opposite end of the
starting points along these lines.�

It is worthwhile noting here that the transmission through

FIG. 4. A schematic diagram for even and odd quasibound states
with energies Eb and Ea, connecting with the junction states of the
ring by the appropriate matrix elements VLb, VbL, VaL, and VLa. The
matrix element of the junctions through the upper arm is denoted by
Vr.
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the ring is a periodical function of magnetic flux, which
changes the interference between the parts of the wave func-
tion in the arms. Hence, the transmission zeros are more
sensitive to the magnetic flux because they are defined by
wave interference. However, the resonance poles are defined
by quasibound energy and move slowly in a magnetic field.

Finally, we present an analytical expression for zero tra-
jectories in the presence of magnetic field using the same
model shown in Fig. 4. If a magnetic flux is applied to the
loop in the perpendicular direction, each wave function gives
a phase shift on the links. The phase shift on the links con-
necting the dots with the leads is � /4 so that the matrix
elements between the dots and the leads are replaced by
Vn,m→Vn,me±i�/4, where the sign depends on the propagation
direction of an electron. On the other hand, the phase shift
through the reference arm is � /2, and so we can set Vr
→Vre

−i�/2. Then, the effective matrix elements can be writ-
ten as Uaa→Uaaei� and Ubb→Ubbei�, and the analytical ex-

pression for the transmission zeros in the presence of mag-
netic field is

Ea,b
0 =

1

2
�Ea + Eb + �Uaa

+ Ubb�ei� ± ��Ea − Eb + �Uaa − Ubb�ei��2 + 4UaaUbbei2�� .

�14�

This expression indicates the periodic trajectories for trans-
mission zeros as � changes, which is shown in Fig. 5. We
note that for the nonoverlapping regime when Fano dipoles
exist, the zeros move in separate circular orbits near their
associated poles �not shown here�. In the strong overlapping
regime, however, the zeros as a coupled object move in a
common stadiumlike orbit around two coupled poles. This
means that two overlapped Fano resonances can be consid-
ered as a combined object called the “Fano quadrupole.”

In summary, the Fano interference effects have been in-
vestigated in an AB ring with two coupled QDs in the pres-
ence of magnetic field. In this system, we have examined
new effects on the collision of Fano dipoles and its manifes-
tation in the transmission. It was shown that the proximity of
the Fano dipoles leads to the shift of zero resonances in the
complex-energy plane. The scattering amplitude near a Fano
zero-pole pair behaves like the amplitude of a dipole when
the pole and the zero play the role of a particle and a hole
�antiparticle�, respectively. In a nonoverlapping regime these
dipoles behaves as independent objects. We have shown here
that in the strong Fano overlapping regime, the trajectories
for transmission zeros as a function of a magnetic flux move
in a common stadiumlike orbit around two coupled poles and
then two Fano dipoles behave as a coupled object—the
“Fano quadrupole.” Therefore, we can consider this Fano
coupled object as two-level systems that have additional pa-
rameters for quantum control of device’s conductance.

ACKNOWLEDGMENTS

This work is supported by the Indiana 21st Century Re-
search and Technology Fund, and the National Science Foun-
dation under Grant No. EEC-0228390.

1 M. Goldberg and K. Watson, Collision Theory �Wiley, New York,
1964�.

2 G. García-Calderón, R. Romo, and A. Rubio, Phys. Rev. B 47,
9572 �1993�.

3 Zhi-an Shao and W. Porod, Phys. Rev. B 51, 1931 �1995�.
4 F.-M. Dittes, Phys. Rep. 339, 215 �2000�.
5 J. S. Bell and C. J. Goebel, Phys. Rev. 138, B1198 �1965�.
6 K. E. Lassila and V. Ruuskanen, Phys. Rev. Lett. 17, 490 �1966�.
7 U. Fano, Phys. Rev. 124, 1866 �1961�.
8 A. Yacoby, R. Schuster, and M. Heiblum, Phys. Rev. B 53, 9583

�1996�.
9 P. S. Deo and A. M. Jayannavar, Mod. Phys. Lett. B 10, 787

�1996�.

10 R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and
H. Shtrikman, Nature �London� 385, 417 �1997�.

11 C. M. Ryu and S. Y. Cho, Phys. Rev. B 58, 3572 �1998�.
12 K. Kang, Phys. Rev. B 59, 4608 �1999�.
13 J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H.

Shtrikman, D. Mahalu, and U. Meirav, Phys. Rev. B 62, 2188
�2000�.

14 W. Hofstetter, J. König, and H. Schoeller, Phys. Rev. Lett. 87,
156803 �2001�.

15 A. A. Clerk, X. Waintal, and P. W. Brouwer, Phys. Rev. Lett. 86,
4636 �2001�.

16 K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, Phys. Rev.
Lett. 88, 256806 �2002�.

FIG. 5. �Color online� The trajectories of zeros and poles as a
function of a magnetic flux for a fixed interaction parameter �
=5.5. The two zeros for �=0 at E+

0 = �5.19+ i0.11� meV and E−
0

= �5.19− i0.11� meV start to move to the right �green arrow� and left
�red arrow�, respectively, and they reach to the real axis for �

= 1
2�0 that is a full reflection of the transmission. These zeros con-

tinue to move on the other half of the trajectories and complete a
stadiumlike orbit for 1

2�0����. The resonance poles at Eb
R

= �5.06− i0.12� meV and Ea
R= �5.30− i0.08� meV for �=0 move a

short nearly straight line periodically.

INTERACTIONS OF FANO RESONANCES IN THE… PHYSICAL REVIEW B 72, 115310 �2005�

115310-5



17 O. Entin-Wohlman, A. Aharony, Y. Imry, Y. Levinson, and A.
Schiller, Phys. Rev. Lett. 88, 166801 �2002�.

18 T. S. Kim, S. Y. Cho, C. K. Kim, and C. M. Ryu, Phys. Rev. B
65, 245307 �2002�.

19 A. Aharony, O. Entin-Wohlman, and Y. Imry, Phys. Rev. Lett.
90, 156802 �2003�.

20 T. S. Kim and S. Hershfield, Phys. Rev. B 67, 235330 �2003�.
21 K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, and Y. Iye,

Phys. Rev. B 70, 035319 �2004�.
22 E. Tekman and P. F. Bagwell, Phys. Rev. B 48, 2553 �1993�.
23 Zhi-an Shao, W. Porod, and C. S. Lent, Phys. Rev. B 49, 7453

�1994�.
24 J. U. Nöckel and A. D. Stone, Phys. Rev. B 50, 17 415 �1994�.
25 R. C. Bowen, W. R. Frensley, G. Klimeck, and R. K. Lake, Phys.

Rev. B 52, 2754 �1995�.
26 C. S. Kim, A. M. Satanin, Y. S. Joe, and R. M. Cosby, Phys. Rev.

B 60, 10962 �1999�.
27 C. S. Kim, O. N. Roznova, A. M. Satanin, and V. B. Shtenberg,

JETP 94, 992 �2002�.
28 S. Datta, Electronic Transport in Mesoscopic Systems �Cambridge

University Press, Cambridge, 1995�.

JOE, SATANIN, AND KLIMECK PHYSICAL REVIEW B 72, 115310 �2005�

115310-6


	Purdue University
	Purdue e-Pubs
	9-13-2005

	Interactions of Fano resonances in the transmission of an Aharanov-Bohm ring with two embedded quantum dots in the presence of a magnetic field
	Yong S. Joe
	Arkady M. Satanin
	Gerhard Klimeck


