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Abstract
While the energy bands of solids are often thought of as continuous functions
of the wavevector, k, they are in fact discrete functions, due to the periodic
boundary conditions applied over a finite number of primitive cells. The
traditional approach enforces periodicity over a volume containing Ni primitive
unit cells along the direction of the primitive lattice vector ai . While this method
yields a simple formula for the allowed k, it can be problematic computer
programs for lattices such as face-centred cubic (FCC) where the boundary
faces of the primitive cell are not orthogonal. The fact that k is discrete is of
critical importance for supercell calculations since they include only a finite
number of unit cells, which determines the number of wavevectors, and have a
given geometry, which determines their spacing. Rectangular supercells, with
the faces orthogonal to the Cartesian axes, are computationally simplest but are
not commensurate with the FCC unit cell, so that the traditional approach for
determining the allowed k-values is no longer useful. Here, we present a simple
method for finding the allowed k-values when periodic boundary conditions
are applied over a rectangular supercell, answering the question in both its
practical and pedagogical aspects.

1. Introduction

The problem of finding the allowed wavevectors in the first Brillouin zone is a seemingly
simple one, treated in solid state physics texts [1–4]. The traditional presentation quite
correctly asserts that bulk properties such as the energy bands cannot be sensitive to the exact
boundaries over which periodic conditions are enforced so long as the volume of the repeated
cell (i.e., supercell) can completely fill all space when replicated. The supercell in real space
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is taken to consist of Ni primitive unit cells along the direction of the primitive lattice vector
ai . For this supercell, the allowed wavevectors are shown to be of the form [1–4]

k = n1

N1
b1 +

n2

N2
b2 +

n3

N3
b3, ni integers (1)

where bi are primitive reciprocal lattice vectors such that ai · bj = 2πδi,j . In addition, using
this definition it is a straightforward exercise to show that there is one k in the first zone for
each primitive cell in the supercell, for a total of Nc = N1N2N3 wavevectors, where Nc is the
number of primitive cells in the supercell.

This presentation is often sufficient and satisfactory for most students and professors, so
that other shapes for supercells are hardly ever considered; for the simple cubic lattice no
other supercell would be realistically contemplated. The face-centred cubic (FCC) lattice is
another matter entirely. This technologically important lattice (it is the Bravais lattice for both
the diamond and zinc blende crystals) has non-orthogonal primitive direct lattice translation
vectors. Curious students might wonder about the allowed wavevectors when the supercell is
rectangular (i.e., a rectangular parallelepiped), so this issue clearly has pedagogical relevance.

Finding the allowed wavevectors for a rectangular supercell is especially important since
this shape supercell is the easiest to implement in a computer program. The details of the
supercell determine both number of allowed k (equal to Nc) and the spacing between the
k, which equation (1) shows is determined by the supercell geometry. Hence, bulk solids
simulated with supercell programs produce energies only at certain k, and it is essential to
know exactly which k should be found on projecting bulk states out of the supercell states [5].
This step is also important in verifying supercell programs. The issue of allowed k-values is
thus of significant practical interest as well.

2. Method for the FCC lattice

2.1. Determination of the wavevectors

Basic geometry shows that the rectangular supercell, which has a fixed number of cubes
Nα, α ∈ {x, y, z}, along each of the Cartesian axes, is not commensurate with a fixed number
of FCC primitive cells along each of the non-orthogonal primitive cell directions ai . (For
example, the number of cells along a3 at a boundary is in general a function of the number of
cells along the other two directions on the boundary.) Equation (1) thus no longer applies, and
another approach is necessary. Observe that if one can determine the allowed wavevectors
when periodic boundary conditions are applied over the conventional (non-primitive) cubic
unit cell containing four (4) primitive cells, one can find them for any rectangular supercell.
This follows from the fact that periodicity over the conventional cube is commensurate with
periodicity over an integral number of such cubes along each Cartesian axis.

Figure 1 shows the conventional FCC unit cell, a cube of side a, which contains four
(4) lattice points (one set of four points is indicated by solid balls). Enforcing wavefunction
periodicity over this cube results in the following relations for the wavevectors, q:

aeα · q = 2πnα ⇒ q(α) = 2πnα

a
, α ∈ {x, y, z}, nα integer. (2)

Obviously the zero vector, nx = ny = nz = 0, is allowed. Examination of the FCC
first Brillouin zone (figure 2) reveals that there are three additional allowed values. These
are the triples n = (1, 0, 0), (0, 1, 0), (0, 0, 1), which correspond to three of the X-points,
k = 2πex/a, 2πey/a, 2πez/a. (The remaining three X-points are related to these by FCC
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Figure 1. Conventional (non-primitive) cubic unit cell (side a) for FCC. The cube contains four
primitive cells; a set of four lattice points for these cells is indicated by solid balls in the figure.
A rhombohedral FCC primitive cell is shown inside the conventional cube. Although it appears
larger, its volume is a3/4, as one can verify from the formula volume = |a1 · (a2 × a3)|, where the
FCC primitive lattice vectors are: a1 = a(ey + ez)/2, a2 = a(ex + ez)/2 and a3 = a(ex + ey)/2.

X

L

Figure 2. First Brillouin zone for the FCC lattice. The point labelled X has k = (2π/a)ey while
that labelled L has k = (π/a)(ex + ey + ez). Note that the X-point k = −(2π/a)ey is not in the first
zone as it differs from (2π/a)ey by the FCC reciprocal lattice vector b1 + b3 = (4π/a)ey . From
the values of the X- and L-points it is clear that only the triples n = (1, 0, 0), (0, 1, 0), (0, 0, 1) in
equation (2) yield nonzero wavevectors in the first zone. This figure (without labels) was generated
with MAPLE 8 using the TruncatedOctahedron and draw commands.

reciprocal lattice vectors and hence are not in the first zone.) There are thus four (4) allowed
wavevectors, one per primitive cell in the conventional cube, and we may take them to be

q0 = 0, q1 = 2π

a
ex, q2 = 2π

a
ey, q3 = 2π

a
ez. (3)

We remark that for body-centred cubic (BCC), the conventional cube has only two primitive
cells, and only two allowed wavevectors (q0 and, say, q1) since q2 and q3 differ from q1 by
BCC reciprocal lattice vectors.

Having found the allowed wavevectors for a single conventional cube, we need only
enforce wavefunction periodicity over the rectangular supercell of Nα, α ∈ {x, y, z} cubes
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along each of the Cartesian axes. The customary calculation leads to allowed supercell
wavevectors,

Kn = 2π

a

[
nx

Nx

ex +
ny

Ny

ey +
nz

Nz

ez

]
(4)

where the integers nα, α ∈ {x, y, z}, satisfy

nα =






− (Nα − 1)

2
, . . . ,

(Nα − 1)

2
; Nα odd

− (Nα − 2)

2
, . . . ,

Nα

2
; Nα even.

(5)

As noted above, the wavevectors qj are automatically compatible with periodicity enforced
over an integral number of cubes along each Cartesian axis. It therefore follows that any
wavevector Kn + qj is also compatible with these boundary conditions. Thus, for each of the
NxNyNz wavevectors Kn there are four independent wavevectors

kn,j = Kn + qj , j = 0, 1, 2, 3 (6)

so that the total number of allowed wavevectors in the first Brillouin zone equals the number
of FCC primitive cells in the supercell, Nc = 4NxNyNz.

It is useful to rewrite the wavevectors, equation (6), in terms of the FCC primitive
reciprocal lattice vectors [4],

b1 = 2π

a
(−ex + ey + ez), b2 = 2π

a
(ex − ey + ez), b3 = 2π

a
(ex + ey − ez). (7)

Doing so, we find

kn,0 = 1
2

(
ny

Ny

+
nz

Nz

)
b1 +

1
2

(
nx

Nx

+
nz

Nz

)
b2 +

1
2

(
nx

Nx

+
ny

Ny

)
b3 (8)

kn,1 = 1
2

(
ny

Ny

+
nz

Nz

)
b1 +

1
2

(
nx

Nx

+
nz

Nz

+ 1
)

b2 +
1
2

(
nx

Nx

+
ny

Ny

+ 1
)

b3 (9)

kn,2 = 1
2

(
ny

Ny

+
nz

Nz

+ 1
)

b1 +
1
2

(
nx

Nx

+
nz

Nz

)
b2 +

1
2

(
nx

Nx

+
ny

Ny

+ 1
)

b3 (10)

kn,3 = 1
2

(
ny

Ny

+
nz

Nz

+ 1
)

b1 +
1
2

(
nx

Nx

+
nz

Nz

+ 1
)

b2 +
1
2

(
nx

Nx

+
ny

Ny

)
b3. (11)

Note the contrast between equations (8)–(11) and equation (1), especially the fact that the
spacing between allowed wavevectors differs considerably from the commensurate supercell
case.

2.2. Independence of the wavevectors

Using equations (8)–(11), it is straightforward to establish that none of the kn,j differ by a FCC
reciprocal lattice vector. For fixed n any two kn,j differ by (1/2)(bj ± bj ′), j &= j ′, which
is clearly not a reciprocal lattice vector. Establishing that the difference kn,j − kn′,j ′ is not a
reciprocal lattice vector involves treating only two cases, say kn,1 − kn′,0 and kn,3 − kn′,2, as
the others follow using the cyclic permutations x → y → z → x, b1 → b2 → b3 → b1,
etc. In either case, the coefficient of each reciprocal lattice vector bj must be an integer if the



Allowed wavevectors under the application of incommensurate periodic boundary conditions 9

difference is to be a reciprocal lattice vector. Consider first the difference kn,1 − kn′,0: if this
is to be a reciprocal lattice vector, then

ny − n′
y

Ny

+
nz − n′

z

Nz

= 2m1,

nx − n′
x

Nx

+
nz − n′

z

Nz

+ 1 = 2m2,

nx − n′
x

Nx

+
ny − n′

y

Ny

+ 1 = 2m3

(12)

where mj are integers. Adding the first two of equations (12), subtracting the third and
dividing by 2 yields

nz − n′
z

Nz

= m1 + m2 − m3. (13)

From the limits in equation (5) it is clear that the only possible solution of this equation is
n′

z = nz. In this case, however, the first of equations (12) likewise implies n′
y = ny for the

same reason. The last two of equations (12) now imply (nx − n′
x)/Nx = 2m2 − 1 = 2m3 − 1

which is impossible since mj are integers and (nx − n′
x)/Nx cannot be a nonzero integer.

The difference kn,3 − kn′,2 is treated in a like manner. If this difference is to be a reciprocal
lattice vector, then

ny − n′
y

Ny

+
nz − n′

z

Nz

= 2m1,

nx − n′
x

Nx

+
nz − n′

z

Nz

+ 1 = 2m2,

nx − n′
x

Nx

+
ny − n′

y

Ny

− 1 = 2m3

(14)

where again mj are integers. Adding the last two of equations (14), subtracting the first and
dividing by 2 yields

nx − n′
x

Nx

= m2 + m3 − m1. (15)

As before the only possible solution is n′
x = nx . However, the second of equations (14) now

implies (nz − n′
z)/Nz = 2m2 − 1 which is impossible for the reasons stated above. Likewise,

the third of equations (14) now implies (ny − n′
y)/Ny = 2m3 + 1 which is again impossible.

Hence, equations (8)–(11) indeed define independent k-vectors.

2.3. Shifting wavevectors back into the first zone

We briefly mention that some of the kn,j as written in equations (8)–(11) might fall outside the
FCC first Brillouin zone, but are easily shifted back into the zone by adding the proper FCC
reciprocal lattice vector. One method for determining the required reciprocal lattice vector
takes advantage of the fact that a wavevector k lying on the Brillouin zone face satisfies

(k − k0) · n = 0 (16)

where k0 is a fixed point on the face and n is the outward normal to the face. For FCC, k0 is
one of the six X-points or eight L-points (e.g., k0 = π(ex + ey + ez)/a) and n = k0/|k0|. If
k is outside the zone then (k − k0) · n > 0, as shown for the vector k> in figure 3. Likewise,
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n

k<

k>

k0

k k> − 0

k k< − 0

Figure 3. Geometrical construction for determining whether a wavevector lies above or below
a plane. The wavevector k> lies above so that (k> − k0) · n > 0, while k< lies below so that
(k< − k0) · n < 0.

if k is inside the zone then (k − k0) · n < 0, as shown for the vector k< in figure 3. Thus, a
wavevector kn,j is tested against each of the Brillouin zone faces as in equation (16) and if it
is outside the appropriate reciprocal lattice vector is added to shift it back inside.

3. Conclusions

We have therefore shown how to find the allowed wavevectors for a rectangular supercell
in the FCC lattice. By decomposing the problem into first a wavevector due to periodicity
enforced over the conventional cubic unit cell and second a wavevector due to periodicity
enforced over the supercell, we have shown that the number of wavevectors equals the number
of primitive cells in the supercell, as required. This procedure also gives explicit formulae for
the allowed wavevectors. We have also shown a simple method for shifting any wavevectors
falling outside the first Brillouin zone back inside.
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