1990

Some Evaluation Results of HFC134a/PAG Mixtures for Refrigeration

N. Masuda
Mitsubishi Electric Corp.

Follow this and additional works at: http://docs.lib.purdue.edu/iracc

http://docs.lib.purdue.edu/iracc/114

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/Herrick/Events/orderlit.html
ABSTRACT

HFC134a (CH$_2$FCF$_3$) is primarily developed as an alternative to the ozone depleting refrigerant CFC12 (CCl$_2$F$_2$). In the case of the substitution of refrigerants for home refrigerators, a test, which is aimed at the evaluation of the influences on the material in the refrigerant in cycle, is necessary as well as thermodynamic characteristic test. The testing required includes both laboratory and system work. In order to make judgements about the reliability and performance of proposed new system, laboratory data are to be used. Therefore the laboratory testing has to simulate system work. This paper presents some laboratory data that may be needed in this effort.

(1) The stability of HFC134a and polyalkylene glycols (PAG), which are the leading candidate for lubrication of HFC134a, is discussed by using sealed glass tubes. After the test, gas analysis using the gas chromatograph is used in order to know the decomposition mechanism of HFC134a/PAG mixtures. Further, in order to determine the effect of water and molecular sieve on stability we tested.

(2) The heat resistance of PAG is studied by new method called Chemiluminescence (to be referred to as CL).

(3) The effectiveness of lubrication is tested by HAYAMA wear tester and MAX-WEILAND method. In addition, the effect of water on lubrication is further discussed.

(4) The compatibility of the HFC134a/PAG mixtures with magnetic wire is discussed by autoclave method in consideration of the influence of the water.

(5) The compatibility of the HFC134a/PAG mixtures with insulation film is also discussed by autoclave method in consideration of the influence of the water.

INTRODUCTION

In 1974, Rowland and Molina published their hypothesis that the atmospheric ozone was being depleted by chlorofluorocarbon compounds (CFCs 11, 12, 113, 114, and 115), leading to international agreement to reduce CFC production. The 1987 Montreal Protocol, under the auspices of the United Nations Environmental Programme (UNEP), established a plan to reduce CFC production to 50% of 1986 levels by mid-1998, beginning with a return to 1986 levels in mid-1989. Subsequent scientific information on ozone level reductions greater than expected provided the impetus for a reassessment of the adequacy of the Montreal Protocol.
resulting in recommendations in September 1989 for a complete CFC production phase-out by the year 2000. The recommendation will be considered by the second meeting of Parties to the Montreal Protocol in June 1990 in London.

The leading candidate for CFC12 substitution is HFC134a, a material that contains no ozone-depleting chlorine. Besides, its thermodynamic properties are similar to those of CFC12.

But when we use HFC134a, having application as the refrigerant for home refrigerators, as the substitute for CFC12, we have to pay attention to the following characteristics of HFC134a which has influences on the material in the refrigerant in cycle.1,2 The molecule of HFC134a (CH2FCF3) is relatively polar compared to CFC12(CCl2CF2) and HCFC22(CClF2) as revealed by dipol moments for these substances. The higher polarity of HFC134a contributes to low solubility in non-polar lubricants such as the mineral oils and synthetic hydrocarbons presently used as refrigeration compressor lubricants. Thereby requiring the use of a higher polarity synthetic oil family: polyalkylen glycols (PAG). The molecular structure of PAG(ex.R- O-(CB2 C(R)H-O)n-H)m has an ether linkage (O-) and hydroxyl terminal group (-OH), taking the form of hydrogen bond, water is more soluble than mineral oils and synthetic hydrocarbons. It is well known that the water causes the hydrolysis of organic insulation materials such as magnetic wire and insulation film which are used in motor.

We have conducted the following test with paying attention to the above-mentioned characteristics.
(1) The stability of HFC134a and PAG is discussed by using sealed glass tests.
(2) The heat resistance of PAG is studied by CL. We studied it in the air, because in the CFC12 refrigerant cycle, we often had known by experience the oxidative deterioration with refrigerating machine oil caused by extremely little oxygen.

The above-mentioned two experiments were carried out in attempt to define the chemical stability of HFC134a and PAG.
(3) The effectiveness of lubrication is tested by HAYAMA wear tester and MAX-WEILAND method. HAYAMA wear tester is simulated the behavior of the slide between vane point and rolling piston in rotary compressor. And MAX-WEILAND method also simulated the behavior of slide between axis and bearing.
(4), (5) The compatibility of the HFC134a/PAG mixtures with magnetic wire and insulation film are tested by autoclave method. Autoclave method bears remembrance to the atmosphere of the compressor, we can know the influence of HFC134a/PAG mixtures to them at accelerated conditions with temperature and pressure.

As the result of this study,
(1) In general HFC134a/PAG mixtures were more stable than CFC12/mineral oil mixtures. But even HFC134a/PAG mixtures were observed some decomposition and copper plating phenomena on steel. (2) Further the influence of water was
concerned with stability and copper plating phenomena. Concerning with this work we observed water had the bad effect of stability rather than in the case of no water. The effect of molecular sieve desiccant made good influence of the stability of HFC134a/PAG mixtures than no addition. But we didn’t recognize the difference of the effect of stability between commercial molecular sieve and developmental molecular sieve. The heat resistance of PAG ranked according to increasing reactivity were as follows: alkylbenzene and synthetic paraffinic oil mixture < PAGs < (naphthenic)mineral oil. Lubricity was different to each other. In addition, the effect of water was not good for lubricity. We will be able to use ester-imide/amide-imide (E/AI) double coated magnetic wire in less than 0.5%-water-dissolved PAG. Similarly we will be able to use polyethyleneterephthalate (PET) film for insulation film in less than 0.0%-water-dissolved PAG.

Experimental

Materials

(1) Refrigerating machine oils
Six refrigerating machine oils, Oil A, Oil B, Oil C, Oil D, Oil E and Oil F, were used. The colors, specific gravities, viscosities, miscibilities, pour points, water contents and compositional features of oils are summarized in Table 1.

<table>
<thead>
<tr>
<th>Oil</th>
<th>Color</th>
<th>Sp. Gr.</th>
<th>Viscosity (37.8°C) cSt</th>
<th>Miscibility</th>
<th>Pour Point</th>
<th>Water Content</th>
<th>Compositional Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>L1.0</td>
<td>0.9143</td>
<td>30.03</td>
<td>none</td>
<td><=40</td>
<td>20</td>
<td>Naphthenic, Mineral</td>
</tr>
<tr>
<td>B</td>
<td>L0.5</td>
<td>0.8724</td>
<td>34.55</td>
<td>none</td>
<td><=45</td>
<td>430</td>
<td>Alkylbenzene, Paraffinic, Mixture</td>
</tr>
<tr>
<td>C</td>
<td>L0.5</td>
<td>0.8569</td>
<td>24.89</td>
<td><=60</td>
<td><=50.0</td>
<td>300</td>
<td>Polysiloxane Glycol</td>
</tr>
<tr>
<td>D</td>
<td>L0.5</td>
<td>0.8560</td>
<td>24.1</td>
<td>>90</td>
<td><=40</td>
<td><=50.0 <=85</td>
<td>Polysiloxane Glycol</td>
</tr>
<tr>
<td>E</td>
<td>L0.5</td>
<td>-**</td>
<td>22.5</td>
<td>>90</td>
<td><=70</td>
<td><=50.0 100</td>
<td>Polysiloxane Glycol</td>
</tr>
<tr>
<td>F</td>
<td>L0.5</td>
<td>0.896</td>
<td>32.5</td>
<td>>65</td>
<td><=70</td>
<td><=50.0 20</td>
<td>Polysiloxane Glycol</td>
</tr>
</tbody>
</table>

* U-CST : Upper-Critical Solution Temperature
* L-CST : Lower-Critical Solution Temperature
* Oil A & B were measured with CFC12
* Oil C - I were measured with HFC134a
* ** not measured

(2) Refrigerant
We used commercial refrigerant CFC12 and HFC134a aimed for study as they were. Their purities were severally 99.99%
and 99.9%.

(3) Molecular sieve desiccant
Two types of molecular sieve desiccants were used. One (to be referred to as A molecular) was commercial molecular sieve desiccant of 4 Angstrom pore size for CFC12, another (B molecular) was development molecular sieve of 3 Angstrom pore size for HFC134a.

(4) Magnetic wire
We used two types of commercial magnetic wires (Nominal diameter of conductor 1.0 mm), one was polyester which is used for CFC12 at present, another was polyester-imide/amide-imide (to be referred to as EI/Al) which was used for HCFC22 Air Conditioner at present.

(5) Insulation film
One commercial PET film were used for insulation film.

The Method for the evaluation of the influences on the material in the refrigerant in cycle.

(1) Stability
Fig.1 shows the sealed-glass-tube test which is useful in determining stability: oil and refrigerant are added to a glass tube with test materials such as steel, copper, aluminum. Subscribing for a purpose, we added water and molecular sieve desiccant, still more. And we placed in an oven for 56 days at 175°C. After aging gas samples from sealed tubes were analyzed by a Shimadzu GC-4A gas chromatography (GC) with a flame ionization detector (FID) and a Porapak Q column to indicate HFC134a decomposition or reaction. In addition the behavior of a system to copper plating on the surface of steel was measured by JEOL JXA-840 Electron Probe Micro Analyzer (EPMA).

(2) Heat resistance
The heat resistance of refrigerating machine oils were studied by chemiluminescence (to be referred as CL) analyzer (Tohoku Denshi Sangyo Model CLD100). Fig.2 shows a schematic diagram of its apparatus. Generally we use Fig.3 to explain the very faint light emission-mechanism in the reaction of "A+B→[E]→P".

Chemical species in excited states (P+) which is produced by chemical reactions fall to ground state (P) emitting visible light, and this is called "CL". The photomultiplier having high sensitivity makes it possible to catch a very first stage of oxidation of organic compounds by counting this extremely weak luminescence (10^-5W). On the other hand, it should be recognized that the stability of polymers basically depends upon the chemical changes in structure caused by degradation. Then, the structure of polymer is one of the important factor concerning the stability. From these points of view, we have studied of the CL phenomenon in refrigerating machine oils induced by heat.

(3) Lubricity
Fig.4 and Fig.5 show the schematic diagram of apparatus used for study of lubrication. They call BAYAMA wear tester (ISHIHARA SEISAKUJO) and MAX-WIELAND method. The test condition are shown in Table 2.
Table 2 The wear test condition.

<table>
<thead>
<tr>
<th></th>
<th>HAYANA</th>
<th>MAX-WIELAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST PIECE</td>
<td>VANE : steel (HRC 58)</td>
<td>PIN : steel (HRC 45)</td>
</tr>
<tr>
<td>R/PISTON</td>
<td>PC (HRC 45)</td>
<td>BUSH : PC (HRC 20)</td>
</tr>
<tr>
<td>Load</td>
<td>15 Kgf</td>
<td>300 Kgf</td>
</tr>
<tr>
<td>Sliding speed</td>
<td>3 m/s.</td>
<td>0.065 m/s.</td>
</tr>
<tr>
<td>Sliding length</td>
<td>65000 m</td>
<td>712 m</td>
</tr>
<tr>
<td>Oil volume</td>
<td>800 cc</td>
<td>30 cc</td>
</tr>
<tr>
<td>Oil temperature</td>
<td>about 60°C</td>
<td>about 60°C</td>
</tr>
<tr>
<td>Water content in oils</td>
<td>Initial water content (about 500ppm)</td>
<td>0.1, 0.5 and 1.0%</td>
</tr>
</tbody>
</table>

After the test, by means of measurement of wear volume we can anticipate the differences in performance arising from the effect of the new refrigerant/new oil mixtures.

(4) Compatibility of Magnetic Wire

Fig. 6 shows the schematic diagram of apparatus used for study of compatibility of the HFC134a/PAG mixtures with magnetic wire. The test condition are summarized as Table 3.

Table 3 The test condition of compatibility of the HFC 134a/PAG mixture with magnetic wire.

<table>
<thead>
<tr>
<th></th>
<th>Polyester-wire</th>
<th>EI/Al-wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples</td>
<td>380 cc</td>
<td>1900 cc</td>
</tr>
<tr>
<td>Figure of samples</td>
<td>Twist pair</td>
<td></td>
</tr>
<tr>
<td>Refrigerating machine oil volume</td>
<td>380 cc</td>
<td></td>
</tr>
<tr>
<td>Autoclave volume</td>
<td>1900 cc</td>
<td></td>
</tr>
<tr>
<td>Water content in oil</td>
<td>initial (about 500ppm), 0.5% and 1%</td>
<td></td>
</tr>
<tr>
<td>Aging condition</td>
<td>175°C x 7 days</td>
<td></td>
</tr>
<tr>
<td>Pressure (at 175°C)</td>
<td>30 Kgf/cm²</td>
<td></td>
</tr>
</tbody>
</table>

After aging, magnetic wires were measured break-down-voltage (B.D.V) by B.D.V-measurement-apparatus.

(5) Compatibility of Insulation film

The compatibility of the HFC134a/PAG mixtures with insulation film was also studied by autoclave method. The test condition are summarized as Table 4. After aging we measured the volume of oligomer extraction from PET film with refrigerant/oil mixtures by 0.45 μm pore-sized-membrane filter. And also tensile strength were measured.
Table 4 The test condition of compatibility of the HFC 134a/PAG mixture with insulation film.

<table>
<thead>
<tr>
<th>Sample</th>
<th>PET-film</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure of sample</td>
<td>Shape of dumbbell</td>
</tr>
<tr>
<td>Sample volume</td>
<td>50 g</td>
</tr>
<tr>
<td>Refrigerating machine oil volume</td>
<td>800 cc</td>
</tr>
<tr>
<td>Autoclave volume</td>
<td>2000 cc</td>
</tr>
<tr>
<td>Water content in oil</td>
<td>initial (about 500 ppm), 0.2%, 0.5% and 1%</td>
</tr>
<tr>
<td>Aging condition</td>
<td>150°C x 7 days</td>
</tr>
<tr>
<td>Pressure (at 175°C)</td>
<td>30 kgf/cm² G</td>
</tr>
</tbody>
</table>

RESULTS & DISCUSSION

(1) The stability of HFC134a/PAG mixtures

Fig. 7 shows the stability of HFC134a/PAG mixtures compared to CFC12/oil mixtures. In general, HFC134a/PAG mixtures were more stable than CFC12/oil mixtures. But after aging we analyzed the gas by GC and analyzed catalysts such as steel by EPMA. Table 5 shows the results of GC analysis.

Table 5 The results of GC analysis.

<table>
<thead>
<tr>
<th>Refrigerant oil</th>
<th>M/S</th>
<th>Water content in oil</th>
<th>HFC134a</th>
<th>CFC12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFC12 (in.)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>99.996</td>
</tr>
<tr>
<td>CFC12</td>
<td>A</td>
<td>none</td>
<td>about 30ppm</td>
<td>79.861</td>
</tr>
<tr>
<td>CFC12</td>
<td>B</td>
<td>none</td>
<td>about 30ppm</td>
<td>89.080</td>
</tr>
<tr>
<td>HFC134a (in.)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>99.932</td>
</tr>
<tr>
<td>HFC134a</td>
<td>C</td>
<td>none</td>
<td>about 500ppm</td>
<td>99.925</td>
</tr>
<tr>
<td>HFC134a</td>
<td>D</td>
<td>none</td>
<td>about 500ppm</td>
<td>99.924</td>
</tr>
<tr>
<td>HFC134a</td>
<td>D</td>
<td>none</td>
<td>1%</td>
<td>99.872</td>
</tr>
<tr>
<td>HFC134a</td>
<td>D</td>
<td>A</td>
<td>about 500ppm</td>
<td>99.924</td>
</tr>
<tr>
<td>HFC134a</td>
<td>D</td>
<td>B</td>
<td>about 500ppm</td>
<td>99.917</td>
</tr>
</tbody>
</table>

Analysis condition

(GC-FID)

Column: Porapak Q
Column Temperature: 150°C
Injection Temp.: 200°C
Carrier gas rate: 20ml/min

Fig. 8 shows the results of element analysis on the surface of the steel by EPMA. From Table 5 and Fig. 8 we recognized the decomposition of refrigerant and copper plating phenomena on steel were occurred. Generally copper plating is induced by chlorine ion which is decomposition of CFC12 (CC12F2). Similarly the extremely little contamination of chlorine compounds in HFC134a induced copper plating in...
HFC134a/PAG mixtures we considered.

(2) Fig. 9 and Table 5 show the influence of water. 1% water content system produced more copper plating and less stability than no water content system.

(3) Similarly Table 5 shows the effect of molecular sieve desiccant. In addition, it made good influence of the stability, but we didn't recognize the difference of the effect of stability between A molecular and B molecular.

(2) The heat resistance of PAG Fig. 10 and Table 6 are the results of the heat resistance measured by CL analyzer. The heat resistance of PAG ranked according increasing reactivity were as follows :

OIL B < OIL C < OIL D < OIL F < OIL E < OIL A

[alkylbenzen (parafinic oil) mixture]

This method is very useful to evaluate the stability of oxidation deterioration of refrigerating machine oil under extreme little oxygen such as in the refrigerant in cycle.

Still more the molecular structure of PAG has especially a ether linkage and hydroxyl terminal group, in the process of heat decomposition at local hot spot such as between bearing surface, it might produce alkoxy radicals (RO \cdot) and/or alkyl peroxy radicals (ROO \cdot) by itself. So this method is useful to know the resistance of oxidation deterioration under extreme little oxygen and decomposition of PAG by itself.

The different behavior of CL intensity, which was observed in PAGs in this work, came from the difference of molecular structure and additives.

Table 6 Temperature dependence of increment CL from oils.

<table>
<thead>
<tr>
<th>Oil</th>
<th>Temp.</th>
<th>20°C</th>
<th>50°C</th>
<th>100°C</th>
<th>150°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>399112</td>
<td>1078535</td>
<td>7656891</td>
<td>70238904</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>22833</td>
<td>24880</td>
<td>61845</td>
<td>267111</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>25615</td>
<td>27192</td>
<td>82884</td>
<td>665255</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>24977</td>
<td>27453</td>
<td>91206</td>
<td>858260</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>355019</td>
<td>1030926</td>
<td>8254648</td>
<td>6275616</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>29531</td>
<td>42333</td>
<td>712965</td>
<td>6053329</td>
<td></td>
</tr>
</tbody>
</table>

(3) The effectiveness of lubricity

Oil E and oil F indicated the similar wear volume to oil A and oil B, but oil C and oil D indicated 2 ~ 3 times wear volume (Fig. 12). And Fig. 11 shows the less water content in PAG, the smaller wear volume were indicated, especially oil C and oil D were rather influenced. These behavior of lubrication mainly depend on not refrigerant (it means lubricity effect of refrigerant, ex. chlorine ion) but on the molecule structure of refrigerating machine oil and additives.

Compared Fig. 11 with Fig. 12, we didn't recognize the clear difference of wear volume of initial water content
in various oils by HAYAMA wear test (Fig. 11). The reason is a point of the way of oil feed. In real rotary compressor, the motion of slide between vane point and rolling piston were used under the condition of boundary lubrication. But when enough oil was supplied in HAYAMA wear test, the condition of lubrication were occured not under boundary lubrication but closely under hydrodynamic lubrication.

(4) The compatibility of HFC134a/PAG mixture with magnetic wire

Fig. 13 shows the influence of water on two types of magnetic wire. A matter of course EI/AI wire was hardly caused the hydrolysis by in less than 0.5%-water-dissolved PAG. On the side of heat resistance, polyester wire was damaged under every conditions.

(5) The compatibility of HFC134a/PAG mixture with insulation film

Similar to above-mentioned polyester wire, PET film for insulation film was easily caused the hydrolysis under law temperature and law content of water in PAG. In less than 0.1%-water-dissolved PAG (Fig. 14) and considering its heat resistance, we can use it for insulation film in HFC134a/PAG mixtures system.

CONCLUSION

This paper presents some evaluation data that should be useful to those who are developing HFC134a with polyglycols as the lubricant in refrigerator. We have discussed the chemical stability, heat resistance, lubrication, magnetic wire compatibility and insulation film compatibility for the HFC134a/PAG mixtures comparing CFC12/mineral oil mixture.

These results lead to the conclusion that:

(1) In general, HFC134a/PAG mixtures were more stable than CFC12/mineral oil mixture. But some decomposition and copper plating phenomena on steel were observed. Water had the bad effect of the stability and copper plating.

Molecular sieve desiccant had the good effect of the stability, but we didn't recognize the difference between 4Å molecular and 3Å molecular.

(2) The heat resistance of PAG ranked according to increasing reactivity were as follows: alkylbenzen and parafinic oil mixture < PAGs < mineral oil

(3) Lubricity was different to each other. In addition, the effect of water was not good for lubricity.

(4) We will be able to use ester-imide/amide-imide (EI/AI) double coated magnetic wire in less than 0.5%-water-dissolved PAG.

(5) Similarly, we will be able to use polyethylene terephthalate (PET) film for insulation film in less than 0.1%-water-dissolved PAG and considering its heat resistance.

304
ACKNOWLEDGEMENT

The technical assistance of S.Aoki and S.Ogasawara are greatly acknowledged and the encouragement and support of J.Enomoto, K.Shimamura and A.Katata are greatly appreciated.

REFERENCES

Fig. 1 Schematic representation of a chemiluminescence analyzer. A sample placed in the sample cell inside a light-light box can be heated to a desired temperature, and resulting emission of light is detected with photomultiplier being cooled.

Fig. 2 Schematic diagram of HAYAMA wear tester.

Fig. 3 Heat: light emission mechanism is the reaction of "A→E→P".

Fig. 4 Schematic diagram of HAYAMA wear tester.
Fig. 5 Schematic diagram of MAX-WIELAND wear tester. Fig. 6 The schematic diagram of apparatus used for study of compatibility of the BFC134a/PAG mixture with magnet wire.

Fig. 7 Oil color in sealed tube vs. time. Oil color were measured by light transmittance at 540 nm.

Fig. 8 Elemental analysis on the surface of the steel compared with BFC134a/PAG and Cu11/oil.

Fig. 9 Elemental analysis on the surface of the steel compared with D and PE/water.

Fig. 10 Change in the chemiluminescence intensity of oils at 110°C.
Fig. 11 Wear volume vs. water content in oils by HAYAMA.

Fig. 12 Wear volume in various oils by HAYAMA.

Fig. 13 The compatibility of magnet wire vs. water in PAC.

Fig. 14 The compatibility of PET-film vs. water in PAC.

Explanations of code:
- : EI/A3 wire
- : polyester wire
- : PET film

Explanations of code:
- : oil C × EC134a
- : oil D × EC134a
- : oil E × CF112