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Abstract 

Channel routing plays a central role in the physical design of VLSI chips. For 

two-layer dogleg-free channel routing, dm,, and v,,, are the two traditional lower 

bounds. In this paper, we present two efficient algorithms for computing a tighter 

lower bound for the channel routing problem. Our algorithms succe:j~fully com- 

pute a lower bound of 26 for Deutsch's Difficult Example (DDE). The experiment 

on some large-scale randomly generated channel routing problems sholws that our 

lower bound algorithms are much tighter than the traditional lower bounds, and 

are much more efficient than Pals' algorithm [20] while obtaining similar (some- 

times better) results. 

Keywords: CAD on VLSI, physical design, channel routing, lower bound, DAG, transitive closure. 
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1 INTRODUCTION 

Channel routing plays a central role in the physical design of VLSI chips. To meet the increasing 

demands of functionality, the number of transistors on a chip today has increased considerably. 

For example, a new MPEG2 decoder chip consists of 700,000 transistors on an a,rea of 87.23 mm2. 

Most layout systems begin by placing modules on a chip, and then wiring together terminals that  

should be electrically connected in different modules. An efficient approach for solving the wiring 

problem is to  heuristically partition the chip into a set of rectangular channels, and then route each 

channel separately. This effectively divides a difficult problem into smaller subproblems that  can 

be conquered more easily. 

In this paper, we consider the two-layer restricted Manhattan model [17, 19, 261. Although a 

three-layer process is available, the two-layer model is still attractive for the following reasons: 

The yield is higher for the two-layer process. 

The two-layer process is much less expensive than the three-layer process. 

If a product is time critical on the market, the two-layer model provides a faster way of 

bringing the product to the market. 

A two-layer channel is a gridded rectangular area on a chip consisting of a metal layer running 

horizontally and a polysilicon layer running vertically (or vice versa). A wire in the horizontal layer 

is called a track and a wire in the vertical layer is called a column. There are fixed terminals on the 

top and bottom sides, and floating terminals on the left and right sides of the channel. Each set of 

terminals that  need to  be electrically connected is called a n.et. A net can connect terminals from 

the top and bottom of the channel and can exit the channel at  the left and right sides. Connections 

of wires on different layers are made through vias. A channel routing instance is :shown in Figure 1. 

A two-layer Channel Routing Problem (CRP) is the problem of assigning a set V of nets, 

1V1 = n ,  to  a minimum number of tracks such that  no nets overlap on any layer. We consider 

routings without doglegs, tha t  is, the horizontal segment of a net cannot be split. This wiring style 

has the advantage that  the number of vias is minimal [18, 19, 261. 

For a channel routing instance, let S* denote the minimum number of tracks required. If 

lb 5 S* 5 ub, then l b  is called a lower bound and ub is called an upper bound on S*.  Clearly, lb 
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Figure 1: A CRP example, its vertical constraint graph (VCG) and horizontal constraint graph 

(HCG). The small boxes represent the vias. 



(ub) should be as  large (small) as  possible, with the goal of having lb = S* = ub. Since the channel 

routing problem is NP-complete [19, 25, 261, most previous work has focused on finding a heuristic 

solution (an upper bound). In this paper, on the other hand, our objective i;s t o  find a tighter 

(larger) lower bound on S * .  This  lower bound approach [2, 41 is significant because: 

A solution tha t  equals the lower bound is optimal. 

A tight lower bound provides a good measurement of a heuristic's quality. 

A tight lower bound can be a powerful heuristic for node selection and pruning in branch- 

and-bound methods [18, 261. 

1.1 Horizontal Constraints and Vertical Constraints 

A channel routing problem can be characterized by two types of constraints, the horizontal con- 

straints and vertical constraints. 

T h e  constraint t ha t  two nets cannot overlap on the horizontal layer is called the  horizontal 

constraint. Let 1; be the leftmost and r; be the rightmost column of net i. A net i is said t o  span 

the  c-th column if 1; 5 c 5 r;. T h e  set of columns [li,ri] is called the span of net i .  

There is a horizontal constraint between net i and net j if and only if their spans overlap. The  

horizontal constraints are often represented by an  undirected graph, the horizontal constraint 

graph (HCG) (see Figure I), where vertices represent the nets and edges represent the horizontal 

constraints. In this paper, the horizontal constraints are also represented by a bit matr ix hc such 

tha t  hc(i, j )  = 1 if and only if there is a horizontal constraint between i and j. 

Let 2; be the  set of nets t ha t  span the i-th column, dm,, max{lZiI : i is al column) is called 

the density of the CRP.  Clearly, dm,, is a lower bound on S* because nets spanning the same 

column cannot be assigned t o  the same track. 

T h e  constraint t ha t  two nets cannot overlap on the vertical layer is called the vertical constraint. 

Note tha t  if net i connects t o  the c-th column in the top row and net j connects t o  the c-th column 

in the bot tom row, i # j, then net i must be assigned to  a track higher t han  net j. In this case, 

we say t h a t  net i must  precede net j and there is a vertical constraint from i to  j .  T h e  vertical 

constraints define a partial ordering between nets. The  vertical constraints are often represented by 

a directed graph,  the  vertical constraint graph (VCG) (see Figure l) ,  where vertices represent 

the nets and arcs represent the vertical constraints. In this paper, the vertical constraints are also 



represented by a bit matrix vc such that  vc(i, j )  = 1 if and only if there is a vertical constraint 

from i to  j .  

Note that  vertical constraints are transitive, i.e., if i < j and j 4 k, then i 4: k. Hence, if there 

is a path from i to j in the VCG, then i must be assigned to a track higher than j. In a directed 

graph G ,  we say that  an arc (i, j )  is a transitive arc if there exists k # i, j such that  there is a path 

from i to  k and there is a path from k to  j in G;  a direct arc if not. 

Note that  if there is a cycle in the VCG, a dogleg routing [8, 161 is necessary. Because we 

assume a dogleg-free routing, VCG must be a directed acyclic graph (DAG). Th~e length of a path 

P is t,he number of vertices on the path. Nets on any pat'h cannot be assigned to  the same track. 

Let v,,,, be the length of the longest path in the VCG. Clearly, v,,, is a lower bound on S*. 

From previous discussion, we can see that  the traditional lower bound max{d,,,, v,,,,) is an 

obvious lower bound on S* for CRPs. Note that an initial vertical constraint implies a horizontal 

constraint, that  is, if there is a vertical constraint from i to  j, then there is a horizontal constraint 

between i and j (because they share at  least one common column). Hence, usually dm,, 2 v,,,. 

The traditional lower bound may not constitute a tight lower bound on S* because of the interaction 

of constraints [2]. 

1.2 Our Approach and Contributions 

Our approach is to  integrate both the horizontal constraints and vertical constraints into a directed 

acyclic graph G by assigning labels to each vertex, and then traversing the graph to  compute a 

tighter lower bound using the labels. Our work is distinct from previous work i r ~  several respects: 

Our algorithms successfully compute a lower bound of 26 for Deutsch'c; difficult example 

[8, 19, 281. 

The experimental results (see Section 5) show that  our lower bounds are much tighter than the 

traditional lower bounds, which indicates that it is very important to  consider the interaction 

of constraints for multiple-constraint problems. 

Our lower bound algorithm effectively combines the effects of the horizon1;al constraints and 

vertical constraints into a directed acyclic graph. This technique is useful for other problems 

with capacity and precedence constraints [2] (we have used a similar approach t o  compute a 

tight lower bound for the superscalar pipeline scheduling problem [4]). 



The time complexity of our lower bound algorithm is O(n3) as opposed t o  (3(n6) in [20], while 

obtaining similar results. 

The rest of the paper is organized as follows. In Section 2, we review related work, and motivate 

our approach with a simple example. A new lower bound algorithm L B 2  is presented in Section 3, 

and a tighter lower bound algorithm L B 3  is presented in Section 4. Experimental results are detailed 

in Section 5, and conclusions are drawn in Section 6. 

2 RELATED WORK 

The channel routing problem has been studied extensively [8! 12, 14, 15, 16, 17, 18, 20, 21, 22, 24, 

26, 27, 281. However, most previous work has focussed on finding a routing, and little work has 

been done on finding a tighter lower bound for CRPs. In recent years, several branch-and-bound 

type algorithms have been proposed t o  find optimal solutions 118, 261. These algorithms require 

maintaining a search tree and finding all cliques for each node in the search tree. For the simplest 

case where the VCG has no arcs, an optimal routing can be obtained easily by using the left-edge 

algorithm [13, 16, 281. In this case, however, an enormous number of nodes is expanded in the 

search tree. 

For channel routing problems, researchers have used the examples in [8] as benchmarks to  

test their algorithms, especially the so-called Deutsch's difficult example [8, example B]. However, 

there are conflicting results in the literature for DDE routed without doglegs (see Table 1). For all 

examples but DDE in [8], dm,, > v,,,, which is not surprising since an initial vertical constraint 

implies a horizontal constraint. 

K.  K.  Lee and H.  W. Leong [17] improved the traditional lower bound hy considering the 

impact of the horizontal constraints on the vertical constraints. Let S be a set of nets. If net 

i # S has a horizontal constraint with every net in S ,  then i is said t o  intersec~! with S. For each 

path P in the VCG, let S, be the set of nets that  are not in P but intersect with P. A lower 

bound on S* is tp := IPI + max Iclique(Sp:~ 1. For some of their randomly genera1,ed examples, they 

obtained an improvement of one or two over the traditional lower bounds. However, no improvement 

was obtained for DDE. Furthermore, the lower bound is computed by using a branch-and-bound 

method, which may not be efficient (for DDE, their algorithm A took 15 hours and 30 minutes and 

algorithm B took 104.88 seconds t o  terminate [17]). 



Table 1: Conflicting results for Deutsch's difficult example. 

1 authors 1 ref. I results 

1 Deutsch 1 [8] 1 The best routing obtained by using the branch-and-bound 

Wang and Lee 

R. K.  Pal et al. [20] improved the traditional lower bound by considering the impact of the 

vertical constraints on the horizontal constraints. Note that the HCG is an iliterval graph, and 

hence is chordal (triangulated) [ lo ,  201 (an undirected graph is called chordal if every cycle of length 

strictly greater than three possesses a chord, that is, an edge joining two nonconsecutive vertices 

of the cycle [lo]). The chromatic number and maximal cliques in a chordal graph G = (V, E) can 

be computed in O((V1 + [El)  time [ lo ,  page 981. 

Bernstein 

For each shortest path from i to j in the VCG, an edge ( i ,  j) is added to the HCG if the resulting 

graph is chordal (chordality of an undirected graph G = (V, E )  can be tested in O(IVI+ IEl) time 

[ lo,  chapter 41). They try to add as many edges as possible to  the HCG whille maintaining the 

chordality of the resulting graph. Finally, the size of the maximal clique in the modified HCG 

becomes a lower bound on S*. We will refer to the lower bound (the size of the maximum clique 

in the final modified HCG) computed by Pals' algorithm as L B l  in the rest of tlie paper. 

[26] 

Pals' approach [20] yielded quite significant improvements for several small examples (see Ta- 

ble 3).  Pal et al. also reported that they computed a lower bound of 25 for DDE. However, the 

algorithm may not be efficient to implement in practice as the time complexitlr is O(n6) because 

it requires O(n2) time for each chordality test and in the worst case this test has to  be executed 

O(n4) times (since there are O(n2) shortest paths). Furthermore, it is not clear in which order 

the paths should be scanned so that the modified HCG has the largest possible chromatic number 

(in [20], paths are scanned in increasing order by length and lexicographic label). Hence, a more 

efficient algorithm is needed to compute a tighter lower bound. 

gram (an exhaustive search) of [16] used 26 tracks. 

S* = 27 using their OCR algorithm (an exhaustive search). 

[19] There was a typographic error in [8]. The longest path length 

in the vertical constraint graph is 28 (this again may be a typo- 

graphic error since v,,, = 23 for DDE). 



2.1 Motivation of Our Lower Bound Approach 

The traditional lower bound, max{dm,,,vm,,), provides a good estimate of S* for many CRPs. 

Usually, dm,, is the dominant component (for all examples but DDE in [28], the optimal solution 

equals dm,,). However, if the combined effects of the horizontal and vertical constraints are not 

considered, the error can be as large as 100% as shown in the following example. 

Consider the C R P  in Figure 1, dm,, is 4 and v,,, is 3, but S* is 7. The lclwer bound cannot 

be improved by using the algorithm in [17]. For example, (5,4,3) is a path of length 3,  but no net 

intersects with the path. The lower bound of 7 can be obtained by using L B I :  however, it can be 

computed more efficiently. Consider the VCG, nets 5,6,7 must precede net 4, while net 4 must 

precede nets 1,2,3. Three tracks are required for nets {1,2,3) and {5,6,7) because of the horizontal 

constraints. Therefore, at  least three tracks are needed above net 4, and three tracks are needed 

below it.  Hence, a t  least 3+1+3=7 tracks are required for the CRP. 

In the next two sections, we present two efficient lower bound algorithms, LB2 and LB3.  Al- 

gorithm LB2 is based on labeling a directed acyclic graph G ,  which is essentially the VCG of the 

CRP. Algorithm LB3 improves on LB2 by separately handling the nets that  cannot be placed in a 

track with other nets. We will show the performance of these lower bounds in Section 5. 

3 A NEW LOWER BOUND, LB2 

Our first lower bound algorithm LB2 is based on labeling a directed acyclic graph G,  which is 

essentially the VCG of the CRP. In this section, we first introduce basic DAG terminology, then 

define some useful labels, and finally use these labels to  compute a tighter lower bound for CRPs. 

Let G be a directed acyclic graph. If there is an arc from i to j in G ,  then i is called a parent 

of j, and j is called a child of i. If there is a path from i to j in G ,  then i is called an ancestor of 

j, and j is called a descendant of i. The set of ancestors of i is denoted A;; the set of descendants 

of i is denoted D;. A vertex i is called a head vertex if A; is empty, a tail vertex if D; is empty. 

If the cost c; of each vertex i is one, then the cost of a path P (CiEP c;) is the number of vertices 

on the path.  An induced subgraph of G with vertex set V is denoted as G[V] .  For convenience, 

we will add two pseudo vertices 0 and X (with zero cost) to G ,  adding an arc from 0 to  i if i is a 

head vertex and an arc from i to  X if i is a tail vertex. Thus, G becomes a single-entry, single-exi2 

DAG . 



3.1 Labeling a DAG 

In this section, we introduce various labels and co-labels (see Table 2) to  compute a tighter lower 

bound for the channel routing problem. A label (height, density, lower-bound) is computed over 

the descendant set; a co-label (co-height, co-density, co-lower-bound) is computed over the ancestor 

set. Height h; is the critical path length in the subgraph G[i + D;]. Density cl; is the density of 

G[D;]. Lower-bound lb; is computed by combining height and density. A counterpart of hi, d;, and 

lb; can be computed similarly over the ancestor set. 

Table 2: Definitions of height hi, density d;, lower-bound lb;, and their co-lab'el counterparts. 

1 label I notation I definition 1 
1 height I hi I max{hj : j E child(i)} + c; I 

co-lower-bound lb: max 

co-height 

density 

CO-density 

The following two lemmas are fundamental to the development of our new lower bound. 

Lemma 1 describes the way we partition a problem into subproblems to  determine a tighter lower 

h: 

di 

d: 

bound. Lemma 2 states that  for any subproblem GI of G,  its dmax and vmax are lower bounds of 

S* (GI). 

maxihi  : j E parent(i)) + c; 
dmax(G[DiI) 

dmax(G[Ai]) 

Lemma 1 [Partition] If A; is the set of ancestors of i and D; is the set of descendants of i, then 

S*(G[A; + i + D;]) = S*(G[A;]) + ci + S* (G[D;]). 

Proof: It follows from the fact that  i must be assigned to a track below all ancestors of i and 

above all descendants of i. 



Lemma 2 For any subgraph GI of G ,  S*(G1) > dm,,(G1) and S*(G1) > vm,,(G1), where dm,,(G1) 

computes the density in GI, vm,,(G1) computes the longest path length in GI. 

Lemma 3 Let hx = 0, D; be the set of descendants of i .  Define the height hi of vertex i  as 

h; := max{hj : j  E child(i)) + c;. Define the density of vertex i  as di := d,,a,,(G[Di]). Then 

S*(G[D;])  2 d;  and S*(G[i  + D;]) > hi. 

Proof: Note that  hi computes the length of a longest path from i  t o  X ,  hence, hi := vma,,(G[i + D;]) .  

G[D;] and G[i  + D;] are subgraphs of G.  The results follow directly by Lemma '2. 

Theorem 1 defines the lower-bound Zb; of vertex i  and proves that Zb; is a lower bound for G[i  + D;]. 

Theorem 1 Let lbx = 0 and define the lower-bound Zb; of vertex i  as: 

lb; = max di + ci ,  I 
Then S*(G[i  + D;])  > Zb; 

Proof: I t  can be proven by induction on depth. 

(i) basis: S * ( X )  > lbx. 

(ii) hypothesis: suppose S*(G[ j  + Dj]) > lbj. 

(iii) induction: Let i  be a parent of j .  Three inequalities must be maintained: 

S* (G[ i  + D;])  > hi by Lemma 3. 

S*(G[D;])  _> di  by Lemma 3. By Lemma 1, S*(G[i  + Di]) = c; + S*(G[Di]) .  It follows that  

S*(G[i + D;])  2 C;  + d;. 

S*(G[D;])  > S * ( G [ ~  + D j ] )  > lb, because G[j  + Dj]  is a subgraph of G[D;]. By Lemma 1 ,  

S*(G[i  + D;])  = c; + S*(G[D;]) .  It follows that  S*(G[i  + D;]) > c; + Zbj. 

The conclusion follows directly. w 

The  duals of Lemma 3 and Theorem 1 for co-labels are parallel t o  the previous proofs. Algo- 

rithm LB2 computes a tighter lower bound than traditional lower bounds for a CRP. To compute 

the density and co-density requires finding the transitive closure of G. The trailsitive closure of a 



Algorithm LB2(vc, he) 

1. compute the transitive closure vcS and transitive reduction vc-- of vc 

2. construct VCG from vc- 

3. compute the density d; and co-density dl for each vertex 

4. compute the height h; and co-height hi for each vertex 

5. compute the lower-bound lb; and co-lower-bound lb: for each vertex 

6. return max{lb; - c; + lb: : 0 < - i < - ,Y) 

DAG can be computed in O(n3) time [l, 3, 61. It can also be obtained by logn matrix multiplica- 

tions. Each matrix multiplication can be computed in O(n2.'l) time by using Strassen's algorithm 

[I ,  61. The other labels (hi, h:, lb; and Eb:) can be computed in a depth-first faslhion in O(n + IGI) 

time [6], where n is the number of vertices and IG( is the number of arcs in G. Hence, the overall 

time complexity is O(n3) (or O(n2.'' logn)), which is dominated by the time for computing the 

transitive closure of G .  Theorem 2 demonstrates that  LB2 computes a lower bound for a CRP. 

Theorem 2 S* 2 LB2 = max{lb; - c; + lbl : 0 5 i 5 X )  

Proof: For each vertex i, S*(G[D;]) > lb; -c; by Theorem 1. Similarly, S* (G[,4;]) > lb: -c;. Hence, 

by Lemma 1, S*(G[A; + i + D;]) = S*(G[A;])+c;+S"(G[D;]) > ( l b : - ~ ~ ) + ~ ~ + ( l b ~ - c ~ )  = lb;+lb:-c;. 

It  follows that  S* 2 max{S*(G[A; + i + D;]) : 0 5 i 5 X )  2 LB2. 

It is worth noting that  our lower bound LB2 subsumes the traditional lower bounds, dm,, and 

v,,, since do = dm,, and ho = v,,, by definition. 

Lemma 4 LB2 2 d,,,, LB2 2 v,,,. 

4 A TIGHTER LOWER BOUND, LB3 

Although LB2 performs very well for many CRPs (as we will see in Section 5), improvements can 

still be made if we consider the criticalnets in a CRP. Two nets i and j are said to be incompatible 

if vc+(i, j )  = 1 or vcS(j, i) = 1 or hc(i, j )  = 1, that is, there is either a horizontal constraint or a 

(transitive) vertical constraint between them. Obviously, incompatible nets cannot be assigned to  

the same track. We can construct an undirected graph, the InCompatibility Graph (ICG), where 



vertices represent the nets and edges represent the incompatibility relation between nets. Thus, 

the cardinality of the maximal clique in the ICG is a lower bound on S*. We say that a net i is 

critical if it is incompatible with all other nets. For example, in Figure 1, all nets are critical (e.g., 

net 4 has vertical constraints with all other nets, net 5 has vertical constraintis with nets 1,2,3,4 

and horizontal constraints with nets 6,7). 

A critical net must occupy an individual track (no other nets can share the track with it). Note 

that the set of critical nets is contained in all cliques of the ICG. Hence, the critical nets can be 

factored out as described in the following lemmas. 

Lemma 5 If S is a set of critical nets in V, then S*(V) = IS1 + S*(V\S) 

Proof: In an optimal routing of V, each net in S occupies an individual track (IS1 tracks are 

required by these critical nets), and the nets in V\S (the set difference of V and S) share the other 

S*(V) - IS1 tracks. 

Algorithm LB3(vc1 hc) 

1. compute the transitive closure .uc+ of vc 

2. find the set S of critical nets 

3. if n - IS( < 1 then return n 

4. construct vc' and he' from vc+ and hc respectively by eliminating nets in S 

5. return IS1 + LB2(vc1, hc') 

Algorithm LB3 computes an improved lower bound for a CRP. It first computes the transitive 

closure vc+ of vc which represents the vertical constraints. This step is essential as we want to 

eliminate the critical nets (S) without changing the precedence constraints (reachability) for the 

remaining nets (V\S). For example, in Figure 1, if we just remove net 4 in the VCG, the path 

from 5 to 1 would be lost. To recover the vertical constraint from 5 to 1, a transitive arc from 5 to 

1 should be added to the VCG. Lemma 6 justifies the correctness of adding transitive arcs. 

Lemma 6 [Equivalence] Let the VCGs of two CRPs be GI and G2 respectively. If GI and Gz are 

transitively equivalent (i.e., have the same transitive closure) and both CRPs have the same HCGs, 

then both CRPs are equivalent, that is, a feasible routing for one CRP is feasible for the other. In 

other words, the solution of a CRP is not changed by adding the transitive arcE, in the VCG. 



Proof: As GI  and G2  are transitively equivalent, there is a path from i to  j iin GI if and only if 

there is a path from i t o  j in G2.  Hence, a feasible routing of one C R P  is feasible for the other 

since both CRPs have equivalent constraints. 

The time complexity of algorithm LB3 is O(n3) (or O(n2.'' log n) ) ,  which is dominated by the 

time t o  compute the transitive closure of vc. However, the problem size is reduced from n t o  n-  IS1 

when L B 2  is called t o  compute a lower bound for nets in V\S.  In Section 5, we observe a significant 

improvement in the lower bound by using LB3 for many large scale CRPs. 

An optimal routing of a C R P  example (RKPC3 in 1201) is shown in Figul-e 2. The (initial) 

VCG and HCG of the C R P  are shown in (a) and (b). It  is easy to  see tha t  v,,,, is 3 in (a) and 

dm,, is 4 in (b). Nets 1, 2 and 3 are critical nets, hence, S = {1,2 ,3) .  The VC:G and HCG after 

factoring out nets 1,2,3 are shown in (c) and (d). Note that  for each pair of nets in V \ S  ({4,5,6)), 

the vertical constraints and horizontal constraints are the same before and after the critical nets 

are removed. T h a t  is, for each pair of nets i, j in V\S,  there is a path from i to  .i in (a) if and only 

if there is a path from i to  j in (c); there is an edge between i and j in (b) if and only if there is 

an edge between i and j in (d). It  is easy to  see that  v,,, is 2 in (c) and dm,, is 2 in (d). Hence, 

a lower bound of the original C R P  is 3 + max{2,2) = 5. 

Theorem 3 L B 3  computes a lower bound for a C R P  

Proof: As the solution is not changed by adding the transitive arcs in the VCG by Lemma 6, we 

can simply consider uct. Note that  vcl(hcl) is obtained from ,uct(hc) by eliminating the critical 

nets (S). Hence, both the vertical and horizontal constraints between each pair of nets in V \ S  are 

the same before and after the critical nets are removed. By Lemma 5, the total. number of tracks 

required equals the number of nets in S plus the tracks required by the nets in V\S. 

Given an  optimal routing for the nets in V ,  an optimal routing for the nets in V \ S  can be 

constructed simply by removing the tracks occupied by the nets in S .  

Given an  optimal routing for the nets in V\S,  an optimal routing for the nets in V can be 

constructed as follows: 
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Figure 2: A CRP example (RKPC3) for demonstrating LB3 



foreach i E S 

tl := the lowest track in which an ancestor of i is assigned 

t2  := the highest track in which a descendant of i is assigned 

create a new track and assign i to the track 

insert the track between tracks tl and t2  

end 

LB2 computes a lower bound given vc' and hc' (which represents the problem of routing V\S). 

Hence, to route V requires at least IS1 + LB~(VC' ,  hc') tracks. 

5 EXPERIMENTAL RESULTS 

To test the effectiveness of our lower bound algorithm, we have implemented the algorithms in 

C language on a Sun SPARC/5 workstation running SunOS 5.3. For channel routing problems, 

Deutsch's examples [a] are used extensively as benchmarks for evaluating the performance of new 

algorithms, especially the so-called Deutsch's difficult example. For all these examples but DDE, 

the density is a tight lower bound (a routing using dm,, tracks can be obtained by using Yoshimura's 

algorithm [28]); hence, they are not considered in this paper. The lower bounds for DDE and the 

examples in [20] are compared in Table 3. Note that both LB2 and LB3 compute a lower bound of 

26 for DDE. 

In addition to  the benchmarks reported in the literature, we have also tested some randomly 

generated examples using the channel routing generator in [5]. Our benchmark examples are listed 

in Tables 6 and 7. There is a net number in each column. A 0 in a column indicates that there is 

no net connected to  the column in that row. For instance, an optimal routing of HYCl is shown 

in Figure 3. 

The performance of various lower bounds for our benchmarks are compart:d in Tables 4 and 

5, where LB1 corresponds to the maximal clique size in the final HCG by using the algorithm in 

[20]. The computed lower bounds are compared in Table 4; the running times are compared in 

Table 5, where #(test) is the number of chordality tests LBl has performed. :Some observations 

can be drawn from the experimental results: 

Our lower bounds are much tighter than the traditional lower bounds (dm,, and v,,,), which 



Table 3: Comparison of lower bounds for some benchmark CRPs. 

problem 

RKPCl 

column 

[20] 

25 

5  

6 

7 

7 

7 

Figure 3: An optimal routing of HYC1. 
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26 
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optimal 

28 
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indicates that  it is very important to consider the interaction of constraints for multiple- 

constraint problems. 

LB3 has achieved a significantly tighter lower bound than LB2. 

Our algorithms LB2 and LB3 are much more efficient than LBI. For instamce, it took about 

25 minutes for LBI to compute a lower bound of 62 for HYC8; while LB3 computed the same 

lower bound in less than 0.03 seconds. 

For DDE, HYC4, and HYC7, LB3 is a tighter lower bound than LBI.  For other cases, LB3 is 

the same as or very close to LBI (off by one). 

The timings were obtained by using gettimeofday in the standard C library. The initialization 

overheads were ignored. All algorithms assume that  the horizontal constraints (represented by hc) 

and the vertical constraints (represented by vc) are given. In our implementation, HCG and VCG 

are in linked list form, hc and vc are in bit matrix form. For LBI ,  the HCG and hc need to be 

updated whenever an edge is added. As the time required for computing the labels hi! hi, Ib; and 66: 

is proportional to the number of arcs in the VCG, we compute the transitive cloisure and transitive 

reduction [3, 111 before the VCG is constructed. 

6 CONCLUSION 

In this paper, we have presented two efficient algorithms, LB2 and LB3, for computing a tighter 

lower bound for the channel routing problem. Algorithm LB2 is based on partitioning and labeling 

a directed acyclic graph. Algorithm LB3 improves LB2 by factoring out the critical nets. Our 

algorithms have efficiently obtained a tighter lower bound than previous work for Deutsch's difficult 

example and some other large scale CRPs. 

The capacity constraints and precedence constraints are two important constraints for many 

optimization problems. For the channel routing problem, the vertical constraint is a precedence 

constraint, while the horizontal constraint can be considered a capacity constraint. To determine 

a tight lower bound for problems with these two constraints requires careful consideration of the 

interaction of constraints. The presented technique provides an efficient way of integrating the 

precedence constraints and capacity constraints, and is applicable to other problems impacted by 

these two constraints (for example, the data  dependency graphs in superscalar pipeline scheduling 

problems [4, 231 and microcode compaction problems [7, 91). 



Table 4: Comparison of computed lower bounds for our benchmark CRPs. 

Table 5: Comparison of running times (seconds) for our benchmark CRPs. 

problem 

HYCl 

HYC2 

HYC3 

HYC4 

HYC5 1 HYC6 ~ Ei: ~ f44 1 f3: 1 EI: 1 f3; 1 1 HYC7 

HYC8 21 43 62 47 62 62 

dm,, 

7 

8 

11 

20 

35 

problem 

HYCl 

HYC2 

HYC3 

HYC4 

HYC5 

HYC6 

HYC7 

HYC8 

v,,, 

7 

7 

8 

22 

32 

LB2 

0.001155 

0.000952 

0.002006 

0.021058 

0.026399 

0.053892 

0.046057 

0.054984 

LB 3 

0.000814 

0.000698 

0.000874 

0.103750 

0.014310 

0.019800 

0.413557 

0.027951 

LB 1 

0.008658 

0.008105 

0.037368 

318.003003 

14.590356 

268.003396 

756.686119 

1499.201131 

L B l  

15 

31 

45 

#(test) 

11 

10 

41 

77745 

2819 

26109 

91872 

182601 

LB2 

8 8 8  

9 9 9  

15 

31 

39 

LB3 

15 

33 

44 

optimal 

8 

9 

15 

? 

45 
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Table 6: Random CRP examples - set I. 

7 0 6 5  
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Table 7: Random CRP examples - set 11. 

problem 

HYC6 

HYC7 

HYC8 

L 
top 

bottom 

top 

bottom 

bottom 

column 

5 6 5 12 4 19 17 18 25 27 31 31 32 28 36 
3 4 2 10 32 38 28 34 34 24 22 13 42 40 21 

24 24 32 46 1 58 41 16 50 59 14 47 45 43 57 
20 56 45 62 63 38 55 46 8 39 64 1 8 30 3 
39 11 6 44 47 30 58 48 29 63 60 28 35 60 15 
19 55 25 48 33 52 33 6 7 43 0 9 42 23 30 
35 0 69 27 37 2 35 26 51 37 34 54 67 49 59 
68 0 50 0 53 61 66 70 0 62 
8 10 7 13 6 21 18 19 29 35 38 37 38 33 41 
5 5 4 11 36 41 32 39 38 28 23 14 rL4 42 22 

26 25 40 50 4 61 42 17 51 60 15 54 47 44 59 
24 58 46 65 65 43 57 49 10 43 66 3 L2 33 9 
40 13 12 45 50 32 60 54 30 64 62 31 2L3 63 16 
20 56 27 50 36 55 34 7 13 48 0 13 48 24 31 
37 0 70 30 40 9 36 30 53 41 37 55 68 54 61 
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