Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

1-26-1995

An Efhcient Lower Bound Algorithm For Channel
Routing

Heng Yi Chao
Purdue University School of Electrical Engineering

Mary P. Harper
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Chao, Heng Yi and Harper, Mary P,, "An Efficient Lower Bound Algorithm For Channel Routing” (1995). ECE Technical Reports.
Paper 110.
http://docs.lib.purdue.edu/ecetr/110

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.


http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages

AN EFFICIENT LOWER BOUND
ALGORITHM FOR CHANNEL
ROUTING

HENG-YI CHAO
MARY P. HARPER

TR-EE 95-3
JANUARY 1995

SCHOOL OF ELECTRICAL ENGINEERING

o€ o
e
S XA< 7 PURDUE UNIVERSITY
f,qr“’ WEST LAFAYETTE, INDIANA 47907-1285




An Efficient Lower Bound Algorithm For Channel Routing

Heng-Yi Chao and Mary P. Harper
School o Electrical Engineering
1285 Electrical Engineering Building
Purdue University
West Lafayette, IN 47907-1285
Phone: (317) 494-4652, Fax: (317) 494-6440
Email: hengyi @ecn.purdue.edu, har per @ecn.purdue.edu

January 26, 1995



Abstract

Channel routing plays a central role in the physical design o VLS| chips. For
two-layer dogleg-free channel routing, d,.. and v, are the two traditional lower
bounds. In this paper, we present two efficient algorithms for computing a tighter
lower bound for the channel routing problem. Our algorithms successfully com-
pute a lower bound o 26 for Deutsch's Difficult Example (DDE). The experiment
on some large-scale randomly generated channel routing problems shows that our
lower bound algorithms are much tighter than the traditional lower bounds, and
are much more efficient than Pals' algorithm [20] while obtaining similar (some-

times better) results.

Keywords: CAD on VLSI, physical design, channd routing, lower bound, DAG, transitive closure.
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1 INTRODUCTION

Channel routing plays a central role in the physical design of VLSI chips. To meet the increasing
demands of functionality, the number of transistors on a chip today has increased considerably.
For example, a new MPEG2 decoder chip consists of 700,000 transistors on an area of 87.23 mm?2.
Most layout systems begin by placing modules on a chip, and then wiring together terminals that
should be electrically connected in different modules. An efficient approach for solving the wiring
problem is to heuristically partition the chip into aset of rectangular channels, and then route each
channel separately. This effectively divides a difficult problem into smaller subproblems that can

be conquered more easily.

In this paper, we consider the two-layer restricted Manhattan model [17, 19, 26]. Although a

three-layer process is available, the two-layer model is still attractive for the following reasons:

e Theyield is higher for the two-layer process.
e The two-layer process is much less expensive than the three-layer process.

e If a product is time critical on the market, the two-layer model provides a faster way of

bringing the product to the market.

A two-layer channel is a gridded rectangular area on a chip consisting of a metal layer running
horizontally and a polysilicon layer running vertically (or vice versa). A wirein the horizontal layer
is called a track and a wire in the vertical layer is called a column. There are fixed terminals on the
top and bottom sides, and floating terminals on the left and right sides of the channel. Each set of
terminals that need to be electrically connected is called a net. A net can connect terminals from
the top and bottom of the channel and can exit the channel at the left and right sides. Connections

of wireson different layers are made through vias. A channel routing instance isshown in Figure 1.

A two-layer Channel Routing Problem (CRP) is the problem of assigning a set V of nets,
|[V| = n, to a minimum number of tracks such that no nets overlap on any layer. We consider
routings without doglegs, that is, the horizontal segment of a net cannot be split. This wiring style

has the advantage that the number of viasis minimal [18, 19, 26].

For a channel routing instance, let S* denote the minimum number of tracks required. If

Ib < S* < ub, then b is caled alower bound and ub is called an upper bound on S*. Clearly, b

1
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Figure 1: A CRP example, its vertical constraint graph (VCG) and horizontal constraint graph
(HCG). The small boxes represent the vias.



(ub) should be as large (small) as possible, with the goal of having b = S* = ub. Since the channel
routing problem is NP-complete [19, 25, 26], most previous work hasfocused on finding a heuristic
solution (an upper bound). In this paper, on the other hand, our objective is to find a tighter

(larger) lower bound on S*. Thislower bound approach [2, 4] issignificant because:

e A solution that equals the lower bound is optimal.
e A tight lower bound provides a good measurement of a heuristic's quality.

e A tight lower bound can be a powerful heuristic for node selection and pruning in branch-

and-bound methods [18, 26].

1.1 Horizontal Constraints and Vertical Constraints

A channel routing problem can be characterized by two types of constraints, the horizontal con-

straints and vertical constraints.

The constraint that two nets cannot overlap on the horizontal layer is called the horizontal
constraint. Let /; be the leftmost and r; be the rightmost column of net i. A net i issaid to span

the c-th column if I; < c<r;. Theset of columns [i;,r;] is called the span of net i.

There is a horizontal constraint between net i and net j if and only if their spans overlap. The
horizontal constraints are often represented by an undirected graph, the horizontal constraint
graph (HCG) (see Figure 1), where vertices represent the nets and edges represent the horizontal
constraints. In this paper, the horizontal constraints are also represented by a bit matrix hc such

that he(7,j) = 1 if and only if there is a horizontal constraint between i and j.

Let Z; be the set of nets that span the i-th column, d,,,, = max{|Z;| : i is a column) is called
the density of the CRP. Clearly, d,,., iS @ lower bound on S* because nets spanning the same

column cannot be assigned to the same track.

The constraint that two nets cannot overlap on the vertical layer is called the vertical constraint.
Note that if net i connects to the c-th column in the top row and net j connects to the c-th column
in the bottom row, i # j, then net i must be assigned to a track higher than net j. In this case,
we say that net i must precede net j and there is a vertical constraint fromi to j. The vertical
constraints define a partial ordering between nets. The vertical constraints are often represented by
adirected graph, the vertical constraint graph (VCG) (see Figure 1), where vertices represent

the nets and arcs represent the vertical constraints. In this paper, the vertical constraints are also



represented by a bit matrix vc such that ve(i,j) = 1if and only if there is a vertical constraint
fromitoj.

Note that vertical constraints are transitive, i.e., if ¢ < j and 5 < k, then ¢ < k. Hence, if there
is a path from ¢ to j in the VCG, then ¢ must be assigned to a track higher than j. In a directed
graph G, wesay that an arc (i, j) is a transitive arc if there exists k # 4,7 such that thereis a path

from i to k and there is a path from k to j in G; a direct arc if not.

Note that if there is a cycle in the VCG, a dogleg routing [8, 16] is necessary. Because we
assume a dogleg-free routing, VCG must be a directed acyclic graph (DAG). The length of a path
P is the number of vertices on the path. Nets on any path cannot be assigned to the same track.

Let v.,q, be the length of the longest path in the VCG. Clearly, v,,,, is a lower bound on S*.

From previous discussion, we can see that the traditional lower bound max{daz, Vmaz} 1S @n
obvious lower bound on S* for CRPs. Note that an initial vertical constraint implies a horizontal
constraint, that is, if there isa vertical constraint from ¢ to 7, then there is a horizontal constraint
between ¢ and j (because they share at least one common column). Hence, usualy d,qz > vpmas.
The traditional lower bound may not constitute a tight lower bound on S* because of the interaction

of constraints [2].

1.2 Our Approach and Contributions

Our approach istointegrate both the horizontal constraints and vertical constraintsinto a directed
acyclic graph G by assigning labels to each vertex, and then traversing the graph to compute a

tighter lower bound using the labels. Our work is distinct from previous work in several respects:

e Our algorithms successfully compute a lower bound of 26 for Deutsch’s difficult example
[8, 19, 28].

e Theexperimental results (see Section 5) show that our lower bounds are much tighter than the
traditional lower bounds, which indicates that it is very important to consider the interaction
of constraints for multiple-constraint problems.

e Our lower bound algorithm effectively combines the effects of the horizontal constraints and
vertical constraints into a directed acyclic graph. This technique is useful for other problems
with capacity and precedence constraints [2] (we have used a similar approach to compute a

tight lower bound for the superscalar pipeline scheduling problem [4]).



e Thetime complexity of our lower bound algorithm is O(n®) as opposed to O(r®) in [20], while

obtaining similar results.

Therest of the paper isorganized asfollows. In Section 2, wereview related work, and motivate
our approach with a simpleexample. A new lower bound algorithm LB2 is presented in Section 3,
and atighter lower bound algorithm L B3 is presented in Section 4. Experimental results are detailed

in Section 5, and conclusions are drawn in Section 6.

2 RELATED WORK

The channel routing problem has been studied extensively [8, 12, 14, 15, 16, 17, 18, 20, 21, 22, 24,
26, 27, 28]. However, most previous work has focussed on finding a routing, and little work has
been done on finding a tighter lower bound for CRPs. In recent years, several branch-and-bound
type algorithms have been proposed to find optimal solutions [18, 26]. These algorithms require
maintaining a search tree and finding all cliques for each node in the search tree. For the simplest
case where the VCG has no arcs, an optimal routing can be obtained easily by using the left-edge
algorithm [13, 16, 28]. In this case, however, an enormous number of nodes is expanded in the

search tree.

For channel routing problems, researchers have used the examples in [8] as benchmarks to
test their algorithms, especially the so-called Deutsch's difficult example [8, example B]. However,
there are conflicting resultsin the literaturefor DDE routed without doglegs (see Table 1). For all
examples but DDE in [8], dinaz > Umaz, Which is not surprising since an initial vertical constraint

implies a horizontal constraint.

K. K. Lee and H. W. Leong [17] improved the traditional lower bound by considering the
impact of the horizontal constraints on the vertical constraints. Let S be a set of nets. If net
i ¢ S has a horizontal constraint with every net in .S, then ¢ issaid to intersect with S. For each
path P in the VCG, let S, be the set of nets that are not in P but intersect with P. A lower
bound on S*ist, := |P| + max |clique(S,)|. For some of their randomly generated examples, they
obtained an improvement of one or two over the traditional lower bounds. However, noimprovement
was obtained for DDE. Furthermore, the lower bound is computed by using a branch-and-bound
method, which may not be efficient (for DDE, their algorithm A took 15 hours and 30 minutes and
algorithm B took 104.88 seconds to terminate [17]).

5
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Table 1. Conflicting results for Deutsch's difficult example.

authors ref. results

Deutsch [8] | The best routing obtained by using the branch-and-bound pro-
gram (an exhaustive search) of [16] used 26 tracks.

Wang and Lee [26] S* = 27 using their OCR algorithm (an exhaustive search).

Bernstein [19] There was a typographic error in [8]. The longest path length
in the vertical constraint graph is 28 (this again may be a typo-

graphic error since v,,,, = 23 for DDE).

R. K. Pal et al. [20] improved the traditional lower bound by considering the impact of the
vertical constraints on the horizontal constraints. Note that the HCG is an interval graph, and
hence is chordal (triangulated) [10, 20] (an undirected graph iscalled chordal if every cycle of length
strictly greater than three possesses a chord, that is, an edge joining two nonconsecutive vertices
of the cycle [10]). The chromatic number and maximal cliquesin a chordal graph G = (V, E) can
be computed in O(|V| T |E|) time [10, page 98].

For each shortest path fromi to j inthe VCG, an edge(i, j)isadded to the HCG if the resulting
graph is chordal (chordality of an undirected graph G = (V,E) can be tested in O(|V| + |E|) time
[10, chapter 4]). They try to add as many edges as possible to the HCG while maintaining the
chordality of the resulting graph. Finally, the size of the maximal clique in the modified HCG
becomes a lower bound on S*. We will refer to the lower bound (the size of the maximum clique

in the final modified HCG) computed by Pals' algorithm as LB1 in the rest of the paper.

Pals' approach [20] yielded quite significant improvements for several small examples (see Ta-
ble 3). Pal et al. also reported that they computed a lower bound of 25 for DDE. However, the
algorithm may not be efficient to implement in practice as the time complexity is O(n®) because
it requires O(n?) time for each chordality test and in the worst case this test has to be executed
O(n%) times (since there are O(n?) shortest paths). Furthermore, it is not clear in which order
the paths should be scanned so that the modified HCG has the largest possible chromatic number
(in [20], paths are scanned in increasing order by length and lexicographic label). Hence, a more

efficient algorithm is needed to compute a tighter lower bound.



2.1 Motivation of Our Lower Bound Approach

The traditional lower bound, max{dm s, vmasz}, Provides a good estimate of S* for many CRPs.
Usually, dnm,.. is the dominant component (for all examples but DDE in [28], the optimal solution
equals d,,,). However, if the combined effects of the horizontal and vertical constraints are not

considered, the error can be as large as 100% as shown in the following example.

Consider the CRP in Figure 1, d;,.2 iS4 and vy, iS 3, but S¥is 7. The lower bound cannot
be improved by using the algorithm in [17]. For example, (5,4,3) is a path of length 3, but no net
intersects with the path. The lower bound of 7 can be obtained by using LB1i: however, it can be
computed more efficiently. Consider the VCG, nets 5,6,7 must precede net 4, while net 4 must
precede nets 1,2,3. Three tracks are required for nets {1,2,3} and {5,6,7} because of the horizontal
constraints. Therefore, at least three tracks are needed above net 4, and three tracks are needed

below it. Hence, at least 341+4-3=7 tracks are required for the CRP.

In the next two sections, we present two efficient lower bound algorithms, LB2 and LB3. Al-
gorithm LB2 is based on labeling a directed acyclic graph G, which is essentially the VCG of the
CRP. Algorithm LB3 improves on LB2 by separately handling the nets that cannot be placed in a

track with other nets. We will show the performance of these lower bounds in Section 5.

3 A NEW LOWER BOUND, LB2

Our first lower bound algorithm LB2 is based on labeling a directed acyclic graph G, which is
essentially the VCG of the CRP. In this section, we first introduce basic DAG terminology, then

define some useful labels, and finally use these labels to compute a tighter lower bound for CRPs.

Let G be a directed acyclic graph. If thereisan arc fromi to j in G, then i iscalled a parent
of j,and j is called a child of i. If thereisa path fromi to jin G, theni iscalled an ancestor of
j,and j is called a descendant of i. The set of ancestors of i is denoted A;; the set of descendants
of i is denoted D;. A vertex i is called a head vertex if A; is empty, a tail vertex if D; is empty.
If the cost ¢; of each vertex i is one, then the cost of a path P (3";cp ¢;) is the number of vertices
on the path. An induced subgraph of G with vertex set V is denoted as G[V]. For convenience,
we will add two pseudo vertices 0 and X (with zero cost) to G, adding an arc from 0 toi if i isa
head vertex and an arc from i to X if i isatail vertex. Thus, G becomes a single-entry, single-exil

DAG.



3.1 Labelinga DAG

In this section, we introduce various labels and co-labels (see Table 2) to compute a tighter lower
bound for the channel routing problem. A label (height, density, lower-bound) is computed over
the descendant set; a co-label (co-height, co-density, co-lower-bound) is computed over the ancestor
set. Height h; is the critical path length in the subgraph G[i + D;]. Density d; is the density of
G[D;]. Lower-bound !b; is computed by combining height and density. A counterpart of k;, d;, and

lb; can be computed similarly over the ancestor set.

Table 2. Definitions of height h;, density d;, lower-bound [b;, and their co-label counterparts.

|abel notation definition ‘

height hy max{h; : j € child@)} +¢
co-height h! max{h’; : j € parent(i)} +c
density d; dmaz(G[Di])
co-density d! Amaz(G[As])
h;,
lower-bound Ib; max<{ d; + ¢,

max{lb; : j € child(é)} + c;
h,

co-lower-bound Ib; max§ di + c;,

max{{b : j € parent(i)} + ¢;

The following two lemmas are fundamental to the development of our new lower bound.
Lemmal describes the way we partition a problem into subproblemsto determine a tighter lower

bound. Lemma 2 states that for any subproblem G’ of G, its dy,q, and vpe, are lower bounds of

SHG).

Lemma 1 [Partition] If A; isthe set of ancestors of ¢ and D; is the set of descendants of i, then

$*(GlA; T it D)) = $*(GIA)]) T e T 57(GIDY).

Proof: It follows from the fact that ¢« must be assigned to a track below all ancestors of i and

above all descendants of i. ]



Lemma 2 For any subgraph G’ of G, S*(G’) > dpaz(G') and S*(G') > vpar(G'), Where dp, o (G')
computes the density in G/, vn.-(G’) computes the longest path length in G’.

Lemma 3 Let hx = 0, D; be the set of descendants of i. Define the height A; of vertex i as
h; := max{h; : | € child(i)} + ¢;. Défine the density of vertex ¢ as d; := d..(G[D;]). Then
S*(G[Di]) > d; and S*(G[i t+ D;]) > hs.

Proof: Notethat h; computesthelength of alongest pathfromito X, hence, h; = v, (G[i T D;]).
G[D;] and G[it D;]are subgraphs of G. The results follow directly by Lemma 2 n

Theorem 1 defines the lower-bound 1b; of vertex i and proves that i, is alower bound for G[ i+ D;].

Theorem 1 Let Ibx = 0 and define the lower-bound {6, of vertex ¢ as:
h;,
{b; = max d; + e,

max{lb; : j € child(i)} +¢;
Then S*(G[i t D;]) > Ib;

Proof: It can be proven by induction on depth.
(i) basis: S*(X) > lbx.
(i) hypothesis: suppose S*(G[j + D;]) > Ib;.
(iii) induction: Let ¢ be a parent of j. Three inequalities must be maintained:
e S(G[it D;])> h; by Lemma3.
e S*(G[Di]) > d; by Lemma3. By Lemma 1, S*(G[i T Di]) = ¢; + $*(G[Dj]). It follows that

S*(Glit D)) > ¢; td;.
o S*(G[D:]) > S*(G[i+ D;]) > ib; because G[jt D;] is a subgraph of G[D;]. By Lemma 1,

S*(G[i+ Di]) = ¢; + S*(GIDi]). It follows that S*(G[i + D;])> ¢; + 1.
The conclusion follows directly. [
The duals of Lemma 3 and Theorem 1 for co-labels are parallel to the previous proofs. Algo-

rithm LB2 computes a tighter lower bound than traditional lower bounds for a CRP. To compute

the density and co-density requires finding the transitive closure of G. The transitive closure of a



Algorithm LB2(vc, hc)

1. compute the transitive closure vcS and transitive reduction ve— of vc
construct VCG from ve~

compute the density d; and co-density d’ for each vertex

compute the height h; and co-height A} for each vertex

compute the lower-bound {b; and co-lower-bound 4! for each vertex
return max{lb; — ¢ T b/ : 0 <i < X}

o O~ wn

DAG can be computed in O(n®) time[1, 3, 6]. It can also be obtained by logn matrix multiplica-
tions. Each matrix multiplication can be computed in O(n?#®!) time by using Strassen’s algorithm
[1, 6]. The other labels (h;, A, Ib; and {b%) can be computed in a depth-first fashion in O(n ¥ |G|)
time [6], where n is the number of vertices and |G| is the number of arcsin G. Hence, the overall
time complexity is O(n®) (or O(n*® logn)), which is dominated by the time for computing the

transitive closure of G. Theorem 2 demonstrates that LB2 computes a lower bound for a CRP.

Theorem 2 S*> LB2 = max{lb; — ¢; T 10} : 0 < i < X)

Proof: For each vertex i, S*(G[D;]) > lb;—¢; by Theorem 1. Similarly, S{G[A4;]) > Ib}—c;. Hence,

by Lemmal, S*(G[A; Ti + D;]) = S*(GlA)+ci+S*(GID;]) > (b —ci)+ci+(Ibi—c;) = lb;+1bi—c;.

It follows that S* > max{S*(G[4; Ti+t D;}): 0<i< X)>LB2 =
It is worth noting that our lower bound LB2 subsumes the traditional lower bounds, d,,,, and

Vmaz SINCE dp = dpmar anNd hg = vy, Dy definition.

Lemma4 LB2 > d,4z, LB2 > v,,40.

4 ATIGHTER LOWER BOUND, LB3

Although LB2 performs very well for many CRPs (as we will see in Section 5), improvements can
still be made if we consider the criticalnetsin a CRP. Two netsi and j are said to be incompatible
if vet(i,j) =21or veS(j,i) = 1or he(i,j) =1, that is, there is either a horizontal constraint or a
(transitive) vertical constraint between them. Obviously, incompatible nets cannot be assigned to

the same track. We can construct an undirected graph, the InCompatibility Graph (1CG), where

10



vertices represent the nets and edges represent the incompatibility relation between nets. Thus,
the cardinality of the maximal clique in the ICG is a lower bound on S*. We say that a net ¢ is
critical if it is incompatible with all other nets. For example, in Figure 1, all nets are critical (e.g.,
net 4 has vertical constraints with all other nets, net 5 has vertical constraints with nets 1,2,3,4
and horizontal constraints with nets 6,7).

A critical net must occupy an individual track (no other nets can share the track with it). Note
that the set of critical nets is contained in all cliques of the ICG. Hence, the critical nets can be

factored out as described in the following lemmas.

Lemma 5 If Sisaset of critical netsin V, then S*(V) = |S| T $*(V\S)

Proof: In an optimal routing of V, each net in S occupies an individual track (|S| tracks are
required by these critical nets), and the nets in V\S (the set difference of V and S) share the other
S*(V) —|S] tracks. ]

Algorithm LB3(ve, hc)

1. compute the transitive closure vct of vc

2. find the set Sd critical nets

3. if n—|S| < 1thenreturnn

4. construct v¢ and hc’ from vet and hc respectively by eliminating netsin S
5. return |S| T LB2(vc/, he')

Algorithm LB3 computes an improved lower bound for a CRP. It first computes the transitive
closure vet of vc which represents the vertical constraints. This step is essential as we want to
eliminate the critical nets (S) without changing the precedence constraints (reachability) for the
remaining nets (V\S). For example, in Figure 1, if we just remove net 4 in the VCG, the path
from 5 to 1 would be lost. To recover the vertical constraint from 5 to 1, atransitive arc from 5 to

1 should be added to the VCG. Lemma 6 justifies the correctness of adding transitive arcs.

Lemma 6 [Equivalence] Let the VCGs of two CRPs be G and G5 respectively. If G; and G4 are
transitively equivalent (i.e., have the same transitive closure) and both CRPs have the same HCGs,
then both CRPs are equivalent, that is, afeasible routing for one CRP is feasible for the other. In

other words, the solution of a CRP is not changed by adding the transitive arcs in the VCG.

11



Proof: As G, and G, are transitively equivalent, thereis a path fromi to j in G4 if and only if
there is a path from i to j in G,. Hence, a feasible routing of one CRP is feasible for the other

since both CRPs have equivalent constraints. n

The time complexity of algorithm LB3 is O(n3) (or O(n?3'logn)), which is dominated by the
timeto computethe transitive closure of vc. However, the problem size is reduced from n to n—|.9|
when LB2 iscalled to compute alower bound for netsin V\S. In Section 5, we observe asignificant

improvement in the lower bound by using LB3 for many large scale CRPs.

An optimal routing of a CRP example (RKPC3 in [20]) is shown in Figure 2. The (initial)
VCG and HCG of the CRP are shown in (a) and (b). It iseasy to see that v,,,, iS3in (a) and
dmar 154 1n (b). Nets 1, 2 and 3 are critical nets, hence, S= {1,2,3}. The VCG and HCG after
factoring out nets 1,2,3 are shown in (c) and (d). Note that for each pair of netsin V\S ({4, 5,6}),
the vertical constraints and horizontal constraints are the same before and after the critical nets
are removed. That is, for each pair of netsi,j in V\S, thereis apath fromi to j in (a) if and only
if there is a path from i to 5 in (c); there is an edge between i and j in (b) if and only if thereis
an edge between i and j in (d). It iseasy tosee that v, iS2in (c) and dm,.. is 2 in (d). Hence,
alower bound of the original CRP is 3t max{2,2} = 5.

Theorem 3 LB3 computes a lower bound for a CRP

Proof: As the solution is not changed by adding the transitive arcsin the VCG by Lemma 6, we
can simply consider vet. Note that vc'(hc’) is obtained from wet(hc) by eliminating the critical
nets (S). Hence, both the vertical and horizontal constraints between each pair of netsin V\S are
the same before and after the critical nets are removed. By Lemma 5, the total. number of tracks

required equals the number of netsin S plus the tracks required by the netsin V\S.

e Given an optimal routing for the nets in V, an optimal routing for the nets in V\S can be

constructed simply by removing the tracks occupied by the netsin S.
e Given an optimal routing for the netsin V\S, an optimal routing for the nets in V can be

constructed as follows:

12
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Figure 2: A CRP example (RKPC3) for demonstrating LB3
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foreach i € S
t,1 := the lowest track in which an ancestor of ¢ is assigned
t, := the highest track in which a descendant of i is assigned
create a new track and assign i to the track
insert the track between tracks {; and ¢,

end
LB2 computes a lower bound given vc and hc' (which represents the problem of routing V\S).

Hence, to route V requires at least |S| T LB2(vc/, hc) tracks. "

5 EXPERIMENTAL RESULTS

To test the effectiveness of our lower bound algorithm, we have implemented the algorithms in
C language on a Sun SPARC/5 workstation running SunOS 5.3. For channel routing problems,
Deutsch's examples [8] are used extensively as benchmarks for evaluating the performance of new
algorithms, especially the so-called Deutsch's difficult example. For all these examples but DDE,
the density isatight lower bound (arouting using d,, .. tracks can be obtained by using Y oshimura's
algorithm [28]); hence, they are not considered in this paper. The lower bounds for DDE and the
examplesin [20] are compared in Table 3. Note that both LB2 and LB3 compute a lower bound of
26 for DDE.

In addition to the benchmarks reported in the literature, we have also tested some randomly
generated examples using the channel routing generator in [5]. Our benchmark examples are listed
in Tables 6 and 7. There is a net number in each column. A 0 in a column indicates that thereis
no net connected to the column in that row. For instance, an optimal routing of HYC1 is shown
in Figure 3.

The performance of various lower bounds for our benchmarks are compared in Tables 4 and
5, where LB1 corresponds to the maximal clique size in the final HCG by using the algorithmin

[20]. The computed lower bounds are compared in Table 4; the running times are compared in

Table 5, where #(test) is the number of chordality tests LB1 has performed. :Some observations

can be drawn from the experimental results:

Our lower bounds are much tighter than the traditional lower bounds (d, 4. and v,;,. ), which

14
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Table 3: Comparison of lower bounds for some benchmark CRPs.
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Figure 3: An optimal routing of HYC1.
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indicates that it is very important to consider the interaction of constraints for multiple-
constraint problems.

e LB3 has achieved asignificantly tighter lower bound than LB2.

e Our algorithms LB2 and LB3 are much more efficient than LBI. For instance, it took about
25 minutesfor LBI to compute a lower bound of 62 for HYC8; while LB3 computed the same

lower bound in less than 0.03 seconds.
e For DDE, HYC4, and HYCT7, LB3 is a tighter lower bound than LBI. For other cases, LB3is

the same as or very close to LBI (off by one).

The timings were obtained by using gettimeofday in the standard C library. The initialization
overheads were ignored. All algorithms assume that the horizontal constraints (represented by hc)
and the vertical constraints (represented by vc) are given. In our implementation, HCG and VCG
are in linked list form, hc and vc are in bit matrix form. For LBI, the HCG and hc need to be
updated whenever an edgeis added. Asthe timerequired for computing the labels h;, !, Ib; and {b;
is proportional to the number of arcsin the VCG, we compute the transitive closure and transitive

reduction [3, 11] before the VCG is constructed.

6 CONCLUSION

In this paper, we have presented two efficient algorithms, LB2 and LB3, for computing a tighter
lower bound for the channel routing problem. Algorithm LB2 is based on partitioning and labeling
a directed acyclic graph. Algorithm LB3 improves LB2 by factoring out the critical nets. Our
algorithms have efficiently obtained atighter lower bound than previouswork for Deutsch's difficult

example and some other large scale CRPs.

The capacity constraints and precedence constraints are two important constraints for many
optimization problems. For the channel routing problem, the vertical constraint is a precedence
constraint, while the horizontal constraint can be considered a capacity constraint. To determine
a tight lower bound for problems with these two constraints requires careful consideration of the
interaction of constraints. The presented technique provides an efficient way of integrating the
precedence constraints and capacity constraints, and is applicable to other problems impacted by
these two constraints (for example, the data dependency graphs in superscalar pipeline scheduling

problems [4, 23] and microcode compaction problems [7, 9]).
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Table 4: Comparison of computed lower bounds for our benchmark CRPs.

problem | 4, .. | vnar | LB1 | LB2 | LB3 | Optimal
HYC1 7 7 8 8 8 8
HYC2 8 7 9 9 9 9
HYC3 1 8 15 | 15 | 15 15
HYC4 20 2 | 31|31 |33 ?
HYCS 35 32 | 45 | 39 | 44 45
66
HYC®% 90 42 | 66 | 56 | 65 ?
HYC8 | 29 | 43 | 62 | 4% | @2 62

Table 5: Comparison of running times (seconds) for our benchmark CRPs.

problem LB1 #(test) LB2 LB3

HYC1 0.008658 11 | 0.001155 | 0.000814
HYC2 0.008105 10 | 0.000952 | 0.000698
HYC3 0.037368 41 | 0.002006 | 0.000874
HYC4 318.003003 | 77745 | 0.021058 | 0.103750
HYC5 14.590356 2819 | 0.026399 | 0.014310
HYC6 268.003396 | 26109 | 0.053892 | 0.019800
HYC7 756.686119 91872 | 0.046057 | 0.413557
HYC8 | 1499.201131 | 182601 | 0.054984 | 0.027951
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Table 6: Random CRP examples- set I.

| problem ] [ column ]
HYC1 top 8 1 0 4 0 2 1 4 3 9 5 0 0 0 0
7 0 6 5
bottom 9 2 10 6 0 4 3 5 4 10 8 0 0 0 0
9 0 7
HYC2 top 6 8 0 3 0 3 9 0 3 0 1 2 7 4 0
5 0 2 0 1
bottom 9 9 10 5 0 6 10 0 7 0 4 3 9 8 0
8 0 4 0 3
HYC3 top 10 7 6 1 1 2 2 3 7 4 1 3 6 8 5
5 9 11 12 8 13 13 0 0
bottom | 11 9 7 3 5 4 6 8 11 7 2 6 10 10 8
6 12 12 13 9 14 15 14 15
HYC4 f top 1 4 4 2 3 2 4 1 6 3 20 4 12 15 14
15 9 10 9 9 9 14 11 15 12 10 23 13 17 13
16 18 18 21 24 8 5 12 20 19 19 22 16 21 11
7 23 18 23 8 24 25 26 26 27 28 29 3 31 31
32 33 33 34 35 35 36 37 3T 37T 38 38 38 39 39
39 39 40 40 41 41 41 42 43 44 44 46 47 0
bottom 3 9 14 4 4 5 18 2 8 10 22 17 15 19 32
20 32 12 29 27 25 28 16 18 17 14 32 17 19 14
17 22 27 22 25 11 6 23 24 32 21 29 18 24 13
10 30 26 27 12 30 28 31 32 31 31 31 31 33 34
39 35 40 35 36 38 37 39 42 43 41 44 48 44 45
46 48 41 46 43 47 49 46 50 47 49 49 50 45
HYCs top 3 28 30 36 6 0 45 0 0 0 0 0 0 0 0
12 5 0 8 45 1 0 4 10 18 9 43 24 40 16
0 0 48 45 49 20 0 0 43 0 0 38 0 22 34
0 0 0 0 2 14 0 0 0 0 0 23 0 0 5
0 37 44 0 0 9 0 0 0 33 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 32 7 0
0 11 25 19 15 0 41 24 17 0 0 3 40 30 7
0 0 10 41 0 0 1 0 4 39 35 0 0 26 0
0 0 41 0 21 0 0 0 29 46 46 0 31 0 14
27 0 0 13 40 0 42 0 24 0 0 0 0 39
bottom 0 32 31 38 7 0 48 0 0 0 0 0 0 0 0
14 8 0 9 47 2 0 8 12 19 12 44 35 42 19
0 0 50 49 50 21 0 0 49 0 0 39 0 23 37
0 0 0 0 6 17 0 0 0 0 0 24 0 0 6
0 38 46 0 0 11 0 0 0 34 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 33 9 0
0 13 29 20 18 0 43 28 19 0 0 5 44 32 10
0 0 11 45 0 0 4 0 7 41 36 0 0 27 0
0 0 42 0 22 0 0 0 30 47 48 0 33 0 15
29 0 0 14 45 0 46 0 25 0 0 0 0 40
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Table 7. Random CRP examples - set II.

problem column
HYCs top 5 6 5 12 4 19 17 18 25 27 31 31 32 28 36
3 4 2 10 32 38 28 3#4 34 24 2 13 42 40 21
24 24 32 46 1 58 41 16 50 59 14 47 45 43 57
20 5% 45 62 63 38 5 46 8 39 64 1 8 30 3
39 11 6 44 47 30 58 48 29 63 60 28 3B 60 15
19 55 25 48 33 52 33 6 7 43 0 9 42 23 30
35 0 69 27 37 2 3 26 51 37 34 54 67 49 59
68 0 50 0 53 61 66 70 0 62
bottom 8 10 7 13 6 21 18 19 29 3 38 37 38 33 41
5 5 4 11 36 41 32 39 38 28 23 14 44 42 22
26 25 40 50 4 61 42 17 51 60 15 54 47 44 59
24 58 46 65 65 43 57 49 10 43 66 3 12 33 9
40 13 12 45 50 32 60 54 30 64 62 31 43 63 16
20 56 27 50 36 5 34 7 13 48 0 13 48 24 31
37 0O 70 30 40 9 36 30 53 41 37 55 68 54 61
69 0 52 0 55 69 67 0 0 64
HYC7 top 26 21 24 7T 18 27 22 30 34 34 17 28 9 13 28
33 20 15 31 32 10 4 26 6 23 13 3 10 31 29
9 25 18 28 12 15 27 37 7 20 33 10 21 20 38
11 8 20 16 16 19 23 14 17 34 10 46 34 16 47
26 24 38 11 37 33 37 17 42 4 7 6 12 29 14
39 1 41 42 44 45 24 42 41 43 36 36 35 43 44
39 45 12 5 5 5 43 39 2 40 45 46 46 47 48
48 49 49 50 50 51 52 52 52 53 54 54 55 56 56
56 56 57 57 58 58 59 59 60 60 60 60 61 61 61
63 63 64 64 66 67 0 0 0
bottom | 30 27 29 14 40 40 28 31 48 42 31 39 12 27 36
41 22 20 34 35 17 12 39 15 28 16 5 16 583 31
10 31 22 32 15 18 39 53 19 30 39 23 23 25 50
15 9 33 20 18 21 24 23 32 44 15 50 38 29 58
32 26 49 19 43 38 42 27 51 16 8 26 26 37 15
50 13 44 45 63 49 25 47 46 44 42 41 37 46 47
53 55 27 12 17 11 45 44 16 43 54 48 51 60 49
60 58 61 52 60 69 56 58 63 57 59 T0 69 59 62
66 67 60 61 59 67 64 65 64 65 66 T0 62 63 67
64 66 68 69 69 68 1 2 3
HYCS8 top 26 4 15 9 30 10 9 7T 20 26 12 7 9 19 16
24 15 14 24 30 11 13 6 27 2 10 3 18 25 3
1 17 5 27T 22 29 2 31 32 28 35 8 21 23 5
32 33 29 31 28 34 36 37 38 39 40 41 42 42 43
43 44 45 45 46 46 47 48 48 49 50 50 50 51 51
52 52 52 53 53 54 54 55 55 55 56 57 57 57 58
59 60 61 62 62 63 64 65 66 67 68 69 0 70
bottom | 30 5 18 11 35 12 13 8 21 29 14 10 12 22 17
26 16 15 25 31 15 14 7 30 4 13 7 19 27 4
3 19 10 28 23 31 6 33 37 35 37 9 22 24 9
34 34 32 37 29 36 38 38 39 40 41 42 43 44 45
47 45 46 48 49 50 48 50 52 53 51 53 34 55 56
54 55 57 55 56 59 60 58 59 60 57 58 59 60 61
61 61 62 63 66 64 65 68 67 68 69 70 1 0
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