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Abstract 

For channel routing problems, Deutsch's examples were used extensively as benchmarks for 

testing new algorithms. However, it is also extremely important to test the performance of 

channel routing algorithms on a wider variety of difficult examples. In this paper, we present 

a random channel routing generator which can generate difficult channel routing instances of 

arbitrary size. 

Keywords: VLSI, CAD, channel routing, lower bound, DAG, transitive reduction. 



1 Introduction 

Channel routing plays a central role in the physical design of VLSI chips. To meet the increasing 

demands of functionality, the number of transistors on a chip today has increased considerably. 

For example, a new MPEG2 decoder chip consists of 700,000 transistors on an area of 87.23 mm2. 

Most layout systems begin with placing modules on a chip, and then wiring together terminals that 

should be electrically connected on different modules. An efficient approach for solving the wiring 

problem is to heuristically partition the chip into a set of rectangular channels, artd then route each 

channel separately. This effectively divides a difficult problem into smaller subproblems that can 

be conquered more easily. Because of its importance in layout automation, the channel routing 

problem (CRP) has been studied extensively [4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 191. 

For channel routing problems, Deutsch's examples [4] were used extensively as benchmarks for 

evaluating the performance of new algorithms, especially the so-called Deutsch's Difficult Example 

(DDE) [4, 12, 191. In this paper, we develop a random channel routing generator which can 

generate difficult channel routing instances of arbitrary size. This research is motivated by the 

following facts: 

Because the benchmarks represent an extremely small subset of real problems, they may not 

represent the complexity that exists in the majority of today's and the future's designs. 

The number of transistors on a chip has increased considerably. Testing on the traditional 

benchmarks may not be sufficient for evaluating the performance of chamel routing algo- 

rithms. 

It is possible to  design an algorithm that works well for known benchmarks, but not other 

examples. As our channel routing generator can randomly generate diecult instances of 

arbitrary size, it will fully test these algorithms. 

Many examples discussed in the literature are not available for testing. 

In [2], we have used this random generator to generate some difficult instances to test our new lower 

bound alogrithm for channel routing. These examples have revealed the importaiice of considering 

the interaction of constraints when determining a tighter lower bound for channel routing. 

In Section 2, we introduce the model as well as the major constraints on a CRP. Then we 

present the difficult CRP generator in Section 3 and discuss some random examples in Section 4. 
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2 The Restricted Manhattan Model 

We consider the two-layer restricted Manhattan model [lo, 12,171. Although the ithree-layer process 

is available, the two-layer model is still attractive for the following reasons: 

a The yield is higher for the two-layer process. 

a The three-layer process is much more expensive than the two-layer process. 

a If the product is time critical on the market, the two-layer model provides a faster way of 

bringing the product to the market. 

A two-layer channel is a gridded rectangular area on a chip consisting of a metal layer running 

horizontally and a polysilicon layer running vertically (or vice versa). A wire in the horizontal layer 

is called a track and a wire in the vertical layer is called a column. There are fixed terminals on the 

top and bottom sides, and floating terminals on the left and right sides of the channel. Each set of 

points that need to  be electrically connected is called a net.  A net can connect terminals from the 

top and bottom of the channel and can exit the channel at the left and right sides. Wires of a net 

on different layers are connected by vias. An example of a CRP is shown in Figure 1. 

CRP examole-HYC1 

column 

Figure 1: A CRP example HYC1, where the small boxes represent thle vias. 

The objective of a channel routing problem is to  assign a set of nets to  a rninimum number 

of tracks such that no nets overlap on any layer. Let S* denote the optimal solution (minimum 

number of tracks required). Let li be the leftmost and r, be the rightmost colurr~n of net i. A net 

i is said to span the c-th column if I; 5 c _< r;. The interval [Ii, r;] is called the span of net i and 

is denoted as spani .  In this paper, our objective is to generate CRPs that can be routed without 



doglegs, that is, the horizontal segment of a net cannot split. This wiring style has the advantage 

that the number of vias is minimal [ll, 12, 171. 

2.1 Horizontal Constraints and Vertical Constraints 

There are two major constraints on a CRP, the horizontal constraints and the vertical constraints. 

The constraints that two nets cannot overlap on the horizontal layer are callled the horizontal 

constraints. There is a horizontal constraint between net i and net j if and only if their spans 

overlap. Let d; be the number of nets that span the i-th column, dm,, := max{d; : i is a column} 

is called the density of the CRP. Clearly, dm,, is a lower bound on S* because nets spanning the 

same column cannot be assigned to the same track. 

The constraints that two nets cannot overlap on the vertical layer are called the vertical con- 

straints. If net i connects to the c-th column in the top row and net j connects to the c-th column 

in the bottom row, i # j, then net i must be assigned to a track higher than net j. In this case, 

we say that there is a vertical constraint from i to j, denoted i 4 j. Vertical cclnstraints define a 

partial ordering between nets. Vertical constraints are often represented by a directed graph, the 

vertical constraint graph (VCG), where vertices represent the nets and arcs represent the vertical 

constraints. In this paper, vertical constraints are also represented by a bit matrix vc such that 

vc(i, j )  = 1 if and only if there is a vertical constraint from i to j. 

Note that vertical constraints are transitive, i.e., if i 4 j and j 4 k then i 4 k. Hence, if there 

is a path from i to j in the VCG, then i must be assigned to a track higher than j .  For a CRP 

to be routed without doglegs, the VCG must be acyclic. The length of a path in the VCG is the 

number of vertices on the path. Nets on the same path cannot be assigned to the same track. Let 

v,,, be the length of a longest path in the VCG. Clearly, v,,, is a lower bound on S*. 

Note that an initial vertical constraint implies a horizontal constraint, that is, if there is a 

vertical constraint from i to j, then there is a horizontal constraint between i and j .  For all 

examples but DDE in [4], dm,, 2 v,,,. However, these lower bounds (dm,, and v,,,) may not 

constitute a tight lower bound on S* because of the interaction of constraints [2]. This fact was not 

reflected by the known benchmarks. To evaluate the performance of algorithms in channel routing, 

it is important to  test them on examples with varying constraints. 



2.2 Representation 

Because the examples in [4] were shown as physical layouts, it is very difficult to recognize the 

connections in the networks. Hence, different channel specifications may be used even though the 

same problem is referenced. We prefer a more formal description of the channel slpecification, which 

has been used in [12, 161. For example, Deutsch's difficult example obtained from [8, 121 is shown 

in Table 1. There are two rows, the top row and the bottom row, with a net number in each column 

indicating that the net is connected to that column. A 0 in a column indicates tlnat there is no net 

connected to the column in that row. We include two extra rows, the Ee f t  and right rows, in which 

the numbers represent the nets that exit to the left and right side of the channel, respectively. 

Table 1: Deutsch's difficult problem. 

I problem I I column 2 
DDP 

57 62  54 70 67  55 6 1  63 68  
bottom 3 5 7 9 5 12 1 4  15 7 12 14 7 4 

6 15 18 14 8 6 1 1  22 21 0 18 16 18 16 

3 The Difficult CRP Generator 

Lee and Leong [lo], and Wang and Lee [17] have tested their algorithmson some raindomly generated 

CRPs in addition to Deutsch's examples. However, dm,, seems to be a dominant lower bound for 

all of these random examples. 

If we randomly assign a net to each column, it is very likely that the VCG would not be acyclic 

with the spans of many nets overlapping (this probably is the main reason why the CRP generators 

in [ lo ,  171 cannot generate "good" (difficult) CRP examples). In this section, we present a difficult 

CRP generator which is able to randomly generate difficult CRP examples of arbitrary size (number 



Algorithm MakeVC (n, p) 

1. Vi, j vc( i ,  j) := 0 

2. for i = 1 t o n -  1 

3. f o r j = i + l  t o n  

4. if random() < p then 

5 .  vc(i ,  j )  := 1 

I 6.  end end I 
Figure 2: MakeVC, an algorithm to randomly generate the vertical constraints, where n is the 

number of nets and p is the probability for an arc to occur in the VCG. 

of nets). Without loss of generality, we generate CRPs in which each net only h~as terminals from 

either the top or bottom sides. By doing this, we reduce the influence of the horizontal constraints. 

To be a valid channel specification that can be routed without doglegs, the VCG must be 

acyclic. An algorithm, ~ a k e ~ ~ ( n ,  p) , that randomly generates the vertical constraints (represented 

by vc) for a CRP is shown in Figure 2, where random is a random number generator which generates 

a real number in (0, I) ,  n is the number of nets, and 0 < p < 1 is the probability ithat an arc occurs 

in the VCG. Obviously, the VCG represented by vc is acyclic since each arc is directed from i to j 

only if i < j .  

Given a vc generated by MakeVC and cmax (the maximal number of columns ,ellowed), MakeCol 

(shown in Figure 3) assigns columns for each net. We say that a column c is free if there is no 

nets assigned to that column, i.e., top(c) = 0 and bottom(c) = 0. Note that cmax may need to be 

increased when there are no free columns. 

Initially all nets are colored white; a net is colored gray the first time that it is connected to 

a terminal; a net is colored black when it is connected to more than one terminal. Note that an 

initial vertical constraint implies a horizontal constraint. To reduce the dominance of the horizontal 

constraints on the CRP, we want to minimize the span of each net when we ass~lgn columns to it. 

P i c k ~ o l ( a ,  b) randomly picks a free column in the interval [a, b]. If there is no free column available 

in the interval, 0 is returned. If there is an arc (i, j )  in the VCG, a column is picked depending on 

the color of i: 



If color(i) is white or gray, we try to  pick a column in [l, cmax]. If PickCol returns 0, cmax 

is increased by one, and c is set to cmax. 

If color(i) is black, there are two cases: if span; and spanj overlap, we find the interval [L, R] 

as  the intersection of span; and spanj; otherwise, we find the interval [L: R] as the interval 

between span; and spanj. Then we try to pick a free column from [L, R] or [ I ,  L] or [R, cmax] 

in that order. 

If PickCol successfully returns a free column c, the program goes to Step 24 which assigns i to 

top(c) and assigns j to bottom(c). Then the color of j and span; and spanj must be modified 

properly. 

Algorithm CRP-generator, shown in Figure 4, randomly generates difficult CRP examples of 

arbitrary size. It first calls MakeVC to generate the vertical constraints, comp~ltes the transitive 

reduction [I ,  3,  51 vc- of vc (again to reduce horizontal constraints), and then calls MakeCol to 

assign columns for each net. Finally, it assigns columns to the nets which have no vertical constraints 

or have only a single vertical constraint with another net in order that each net is connected to 

a t  least two terminals. By adjusting the parameters n, p and cmax, various difficult CRPs can be 

generated. 

4 Experimental Results 

We have used CRP-generator to create several benchmark examples, which are listed in Tables 3 

and 4. The traditional lower bounds dm,, and urn,,, and optimal two-layer dogleg-free solutions 

(if known) for these examples are listed in Table 2. For instance, an optimal routing of HYCl is 

shown in Figure 1. For HYC2, HYC3, HYC5, HYC6, and HYC7, dm,, > urn,,; for HYC4 and 

HYC8, v,,, > dm,,. For each of these examples, the optimal solution differs significantly from the 

traditional lower bounds, which indicates that is is very important to consider the interaction of 

the horizontal constraints and vertical constraints for channel routing problems. 

5 Conclusion 

We have presented a random CRP generator which can generate difficult CRP instances of arbitrary 

size. This algorithm generates CRP instances that are guaranteed to be routed without doglegs and 

should prove to be a useful tool for testing the performance of new algorithms for. channel routing. 



Algorithm MakeCol (vc ,  cmax)  

1. for i = 1 to n - 1 

2. for j = i + 1 to n 

3. if vc(i, j) = 1 then 

4. switch color(i) 

5. case white: 

6. c := PickCol(1,cmax) 

7. if c = 0 then cmax := cmax + 1 and c := cmax 

8. color(i) := gray 

9. case gray: 

10. c := PickCol(1,cmax) 

11. if c = 0 then cmax := cmax + 1 and c := cmax 

12. color(i) := black 

13. case black: 

14. if spani and spanj overlap then [L, R] := spani n spanj 

15. else [L, R] := the interval between spani and spanj 

16. c := PickCol(L, R) 

17. if c > 0 then goto Step 24 

18. c := PickCol(1, L) 

19. if c > 0 then goto Step 24 

20. c := PickCol(R, cmax) 

21. if c > 0 then goto Step 24 

22. cmax := cmax + 1 and c := cmax 

23. end 

24. top(c) := i ,  bottom(c) := j 

25. if color(j) = white then color(j) := gray 

26. else color(j) := black 

27. modify spani and spanj 

28. end end 

Figure 3: MakeCol, an algorithm to assign columns for each net. 



Algorithm CRP-generator ( n ,  p, cmax) 

1. call MakeVC(n, p) 

2. compute the transitive reduction vc- of vc 

3. call NakeCol(vc- , cmax) 

4. i := 1 

5. while i 5 n 

6. if color(i) = black then i := i + 1 

7. if color(i) = gray then 

8. pick a free column c that is closest to  spani 

9. if c =  0 then 

10. cmax := cmax + 1 and c := cmax 

11. color(i) := black 

12. if color(i) = white then 

13. c := PickCol(1,cmax) 

14. if c = 0 then 

15. cmax := cmax + 1 and c := cmax 

16. color(i) := gray 

17. if random() > 0.5 then top(c) := i 

18. else bottom(c) := i 

19. modify spani 

20. end 

Figure 4: A random difficult CRP generator, where n is the number of nets, p is the probability 

for an arc to  occur in the VCG, and cmax is the maximal number of columns allowed. 



Table 2: Lower bounds and optimal solutions for some benchmark CRPs. 

problem 

HYC4 
HYC5 

As the CRP-generator  can generate problems of arbitrary size, problems become intractable quickly 

as n increases. Hence, exhaustive search methods [9, 10, 171 may not be feasible. For some 

examples generated by this CRP-generator,  the optimal solution differs sign.ificantly from the 

traditional lower bounds. It reveals the importance of considering the interactmion of constraints 

when developing efficient algorithms for channel routing. 
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Table 3: Random CRP examples - set I. 

problem 

H Y C l  

H Y C 2  

H Y C 3  

H Y C 4  

H Y C 5  

top 

bottom 

top 

bottom 

top 

bottom 

top 

bottom 

top 

bottom 

column 

8 1 0 4 0 2 1 4 3 9 5 0 0 0 0  
7 0 6 5  
9 2 1 0 6 0 4 3 5 4 1 0 8 0 0 0 0  
9 0 7 7  

6 8 0 3 0 3 9 0 3 0 1 2 7 4 0  
5 0 2 0 1  
9 9 1 0 5 0 6 1 0 0 7 0 4 3 9 8 0  
8 0 4 0 3  

l o 7 6 1 1 2 2 3 7 4 1 3 6 8 5  
5 9 11 12 8 1 3  1 3  0 0 

11 9 7 3 5 4 6 8 1 1  7 2  6 1 0 1 0  8 
6 12 12 1 3  9 14  1 5  14  1 5  

1 4 4 2 3 2 4 1  6 3 2 0 4 1 2 1 5 1 4  
15  9 10 9 9 9 14  11 15  12 10  23 1 3  17  1 3  
16 18 18 21 24 8 5 12 20 19  19  22 16 21 11 

7 23 1 8  23 8 24 25 26 26 27 28 29 30 31  31  
32 33 33 34 35 35 36 37 37 37 38 38 38 39 39 
39 39 40 40 41 41 41 42 43 44 44 46 47 0 

3 9 14  4 4 5 18 2 8 10 22 17  15  19  32 
20 32 12 29 27 25 28 16 18 17  14  32 17  19 14  
1 7  22 27 22 25 11 6 23 24 32 21 29 18 24 1 3  
10  30 26 27 12 30 28 31  32 31  31 31  31  33 34 
39 35  40 35 36 38 37 39 42 43 41 44 48 44 45 
46 48 41 46 43 47 49 46 50 47 49 49 50 45 

3 2 8 3 0 3 6  6 0 4 5 0 0 0 0 0 0 0  0 
12 5 0 8 45 1 0 4 10  18 9 43 34 40 16 

0 0 48 45 49 20 0 0 43 0 0 38 0 22 34 
0 0 0 0 2 1 4 0 0 0 0 0 2 3 0 0 5  
0 3 7 4 4  0 0 9 0 0 0 3 3  0 0 0 0 0 

1 5 0 0 0 0 0 0 0 0 0 0 0 3 2 7 0  
0 11 25 19 1 5  0 41  24 1 7  0 0 3 410 30 7 
0 0 1 0 4 1  0 0 1 0  4 3 9 3 5  0 0 2 6  0 
0 0 41 0 21 0 0 0 29 46 46 0 31 0 14  

27 0 0 1 3  40 0 42 0 24 0 0 0 0 39 
0 3 2 3 1 3 8  7 0 4 8  0 0 0 0 0 0 0 0 

1 4  8 0 9 47 2 0 8 12 19  12 44 35  42 19  
0 0 50 49 50 21 0 0 49 0 0 39 0 23 37 
0 0 0  0 6 1 7 0 0 0 0 0 2 4 0  0 6  
0 3 8 4 6  0 0 1 1  0 0  0 3 4 0 0 0  0 0  

1 6 0 0 0 0 0 0 0 0 0 0 0 3 ~ 3 9 0  
0 1 3  29 20 18 0 43 28 19 0 0 5 44 32 10 
0 0 1 1 4 5  0 0 4 0 7 4 1 3 6  0 0 2 7  0 
0 0 42 0 22 0 0 0 30 47 48 0 3.3 0 15  

29 0 0 1 4 4 5  0 4 6  0 2 5  0 0 0 0 4 0  



Table 4: Random CRP examples - set 11. 

problem 

HYC6 

HYC7 

HYC8 

bottom 

top 

bottom 

top 

bottom 

column 

5 6 5 12 4 19 17 18 25 27 31 31 32 28 36 
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