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Abstract

For channel routing problems, Deutsch's examples were used extensively as benchmarks for
testing new algorithms. However, it is also extremely important to test the performance of
channel routing algorithms on a wider variety of difficult examples. In this paper, we present

a random channel routing generator which can generate difficult channel routing instances of

arbitrary size.
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1 Introduction

Channel routing plays a central role in the physical design of VLSI chips. To meet the increasing
demands of functionality, the number of transistors on a chip today has increased considerably.
For example, a new MPEG?2 decoder chip consists of 700,000 transistorson an area of 87.23 mm?.
Most layout systems begin with placing modules on a chip, and then wiring together terminals that
should be electrically connected on different modules. An efficient approach for solving the wiring
problemisto heuristically partition the chip into aset of rectangular channels, and then route each
channel separately. This effectively divides a difficult problem into smaller subproblems that can
be conquered more easily. Because of its importance in layout automation, the channel routing

problem (CRP) has been studied extensively [4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19].

For channel routing problems, Deutsch's examples [4] were used extensively as benchmarks for
evaluating the performance of new algorithms, especialy the so-called Deutsch's Difficult Example
(DDE) [4, 12, 19]. In this paper, we develop a random channel routing generator which can
generate difficult channel routing instances of arbitrary size. This research is motivated by the

following facts:

e Because the benchmarks represent an extremely small subset of real problems, they may not

represent the complexity that exists in the majority of today's and the future's designs.
e The number of transistors on a chip has increased considerably. Testing on the traditional

benchmarks may not be sufficient for evaluating the performance of channel routing algo-
rithms.

e It is possible to design an algorithm that works wel for known benchmarks, but not other
examples. As our channel routing generator can randomly generate difficult instances of
arbitrary size, it will fully test these algorithms.

Many examples discussed in the literature are not available for testing.
In [2], we have used this random generator to generate some difficult instances to test our new lower
bound alogrithm for channel routing. These examples have revealed the importaiice of considering

the interaction of constraints when determining a tighter lower bound for channel routing.

In Section 2, we introduce the model as wel as the major constraints on a CRP. Then we

present the difficult CRP generator in Section 3 and discuss some random examples in Section 4.
1
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2 The Restricted Manhattan M odel

We consider the two-layer restricted Manhattan model [10, 12,171. Although the three-layer process

is available, the two-layer model is still attractive for the following reasons:

e Theyield is higher for the two-layer process.
a The three-layer process is much more expensive than the two-layer process.
¢ If the product is time critical on the market, the two-layer model provides a faster way of

bringing the product to the market.

A two-layer channel is a gridded rectangular area on a chip consisting of a metal layer running
horizontally and a polysilicon layer running vertically (or vice versa). A wirein the horizontal layer
is called a track and a wirein the vertical layer is called a column. There arefixed terminalson the
top and bottom sides, and floating terminals on the left and right sides of the channel. Each set of
points that need to be electrically connected is called a net. A net can connect terminalsfrom the
top and bottom of the channel and can exit the channel at the left and right sides. Wires of a net

on different layers are connected by vias. An example of a CRP isshown in Figure 1.

CRP example-HYC1
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Figure1: A CRP example HYC1, where the small boxes represent the vias.

The objective of a channel routing problem is to assign a set of nets to a rninimum number
of tracks such that no nets overlap on any layer. Let S* denote the optimal solution (minimum
number of tracks required). Let /; be the leftmost and r; be the rightmost column of net i. A net
i issaid to span the c-th column if I; < ¢ <r;. Theinterval [i;,r;] is called the span of net i and

is denoted as span;. In this paper, our objectiveis to generate CRPs that can be routed without
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doglegs, that is, the horizontal segment of a net cannot split. This wiring style has the advantage
that the number of viasis minimal [11, 12, 17].

2.1 Horizontal Constraints and Vertical Constraints
There are two major constraintson a CRP, the horizontal constraints and the vertical constraints.

The constraints that two nets cannot overlap on the horizontal layer are called the horizontal
constraints. There is a horizontal constraint between net i and net j if and only if their spans
overlap. Let d; be the number of nets that span the i-th column, d,,, := max{d; : i is a column}
is called the density of the CRP. Clearly, d,,,. is a lower bound on S* because nets spanning the

same column cannot be assigned to the same track.

The constraints that two nets cannot overlap on the vertical layer are caled the vertical con-
straints. If net i connects to the c-th column in the top row and net j connects to the c-th column
in the bottom row, i # j, then net ¢ must be assigned to a track higher than net j. In this case,
we say that there is a vertical constraint from i to j, denoted i < j. Vertical constraints define a
partial ordering between nets. Vertical constraints are often represented by a directed graph, the
vertical constraint graph (VCG), where vertices represent the nets and arcs represent the vertical
constraints. In this paper, vertical constraints are also represented by a bit matrix vc such that

ve(i, j) = 1if and only if there is a vertical constraint fromi to j.

Note that vertical constraints are transitive, i.e., if i < j and j < k then i < k. Hence, if there
is a path fromi to j in the VCG, then i must be assigned to a track higher than j. For a CRP
to be routed without doglegs, the VCG must be acyclic. The length of a path in the VCG is the
number of vertices on the path. Nets on the same path cannot be assigned to the same track. Let

vmag D€ the length of a longest path in the VCG. Clearly, v,.4, isalower bound on S*.

Note that an initial vertical constraint implies a horizontal constraint, that is, if there is a
vertical constraint from i to j, then there is a horizontal constraint between i and j. For al
examples but DDE in [4], dimar > Umez. HOwever, these lower bounds (dmaz and v,.z) May not
constitute a tight lower bound on S* because of the interaction of constraints[2]. Thisfact was not
reflected by the known benchmarks. To evaluate the performance o algorithmsin channel routing,

it isimportant to test them on examples with varying constraints.



2.2 Representation

Because the examples in [4] were shown as physical layouts, it is very difficult to recognize the
connections in the networks. Hence, different channel specifications may be used even though the
same problem is referenced. We prefer a moreformal description of the channel specification, which
has been used in {12, 16]. For example, Deutsch's difficult example obtained from [8, 12] is shown
in Table 1. There are two rows, the top row and the bottom row, with a net number in each column
indicating that the net is connected to that column. A 0 in a column indicates that there is no net
connected to the column in that row. We include two extra rows, the le ft and right rows, in which

the numbers represent the nets that exit to the left and right side of the channel, respectively.

Table 1: Deutsch's difficult problem.

problem | 1 col um 1

DDP top 2 4 6 8 10 11 13 3 g 16 5 17 11 5 14
14 712 17 19 1 20 21 23 24 0 16 10 3 1

25 0o 26 11 286 11 o 27 28 11 3 9 16 30 27

5 31 1 5 1 20 32 23 24 0 9 1 20 29 23

24 0 3 8 30 38 28 19 6 40 27 35 41 42 6

19 34 43 30 8 31 43 39 46 36 46 47 48 31 0

24 23 45 20 1 51 0 40 39 40 39 0 8 30 50

54 0 0 55 49 19 6 0 47 42 4T 42 0 53 58

6 19 49 50 30 8 60 62 59 54 55 54 56 63 55

65 0 66 68 66 68 0 60 68 0 46 44 46 44 0

69 0 55 58 5% 58 0 64 71 0 72 63 712 63 0

57 62 54 70 67 55 61 63 68
ottom 3 5 k4 9 5 12 14 15 7 12 14 I 4 13 8

6 15 18 14 8 6 11 22 21 0 18 16 18 16 0
8 -3 26 11 0 24 23 25 20 1 29 (1] 22 3 22
3 0 0 9 2 9 2 0 32 23 33 19 6 8 30
27 34 35 36 37 39 31 39 35 38 31 8 3a ar 41
19 6 44 45 0 33 31 33 31 0 27 35 36 48 49
31 39 46 47 50 52 20 53 24 0 a7 39 0 24 51
20 52 20 52 23 8 30 50 56 0 0 57 49 19 6
6 19 49 59 0 0 61 50 30 8 55 0 24 64 20
52 ] 67 68 63 55 24 52 20 69 24 0 46 62 63
68 0 24 65 20 52 0 70 60 62 54 63 0 24 71
20 52 67 0 0 0 0 0 Q
left 1

3 The Difficult CRP Generator

Lee and Leong (10], and Wang and Lee[17] have tested their algorithmson somerandomly generated
CRPs in addition to Deutsch's examples. However, d.,,.. Seems to be a dominant lower bound for
al of these random examples.

If we randomly assign a net to each column, it is very likely that the VCG would not be acyclic
with the spans of many nets overlapping (this probably isthe main reason why the CRP generators
in [10, 17] cannot generate "good" (difficult) CRP examples). In this section, we present a difficult

CRP generator which is able to randomly generate difficult CRP examples of arbitrary size (number



Algorithm MaeV/C (n,p)
1. Vi,j ve(d,3) =0

2. fori=1ton-1

3. forj=:+1ton

4, if random() <p then
5. ve(d,j) =1
6. end end

Figure 2. MakeV/C, an algorithm to randomly generate the vertical constraints, where n is the

number of nets and p is the probability for an arc to occur in the VCG.

o nets). Without loss of generality, we generate CRPs in which each net only has terminals from

either the top or bottom sides. By doing this, we reduce the influence of the horizontal constraints.

To be a valid channel specification that can be routed without doglegs, the VCG must be
acyclic. An algorithm, MakeVC(n, p), that randomly generates the vertical constraints (represented
by vc) for a CRPisshown in Figure 2, where random is a random number generator which generates
a real number in (0,1), nisthe number of nets, and 0 < p < 1isthe probability that an arc occurs
in the VCG. Obviously, the VCG represented by vc is acyclic since each arc is directed from i to j
only if i <j.

Given a vc generated by Mawe/C and cmax (the maximal number of columns allowed), MakeCol
(shown in Figure 3) assigns columns for each net. We say that a column c is free if there is no
nets assigned to that column, i.e., top(c¢) = 0 and bottom(c) = 0. Note that cmax may need to be

increased when there are no free columns.

Initially all nets are colored white; a net is colored gray the first time that it is connected to
aterminal; a net is colored black when it is connected to more than one terminal. Note that an
initial vertical constraint implies a horizontal constraint. To reduce the dominance of the horizontal
constraints on the CRP, we want to minimize the span of each net when we assign columns to it.
PickCol(a, b) randomly picksafree column in theinterval [a,b]. If there isno free column available
in theinterval, 0 is returned. If thereisan arc (i,j) in the VCG, a column is picked depending on

the color of i:



o If color(?) is white or gray, we try to pick a column in [1,cmax]. If PickCol returns 0, cmax
isincreased by one, and cisset to cmax.

e If color(7) is black, there are two cases: if span; and span; overlap, wefind theinterval [L, R]
as the intersection of span; and span;; otherwise, we find the interval [L, R] as the interval
between span; and span;. Then wetry to pick afree columnfrom[L,R]or [1,L] or [R,cmax]

in that order.

If PickCol successfully returns a free column c, the program goes to Step 24 which assigns: to
top(c) and assigns j to bottom(c). Then the color of j and span; and sparn; must be modified
properly.

Algorithm CRP-generator, shown in Figure 4, randomly generates difficult CRP examples of
arbitrary size. It first calls MakeVC to generate the vertical constraints, computes the transitive
reduction [1, 3, 5] ve~ of vc (again to reduce horizontal constraints), and then calls MakeCol to
assign columnsfor each net. Finally, it assigns columnsto the nets which have no vertical constraints
or have only a single vertical constraint with another net in order that each net is connected to
at least two terminals. By adjusting the parameters n, p and cmax, various difficult CRPs can be

generated.

4 Experimental Results

We have used CRP-generator to create several benchmark examples, which are listed in Tables 3
and 4. The traditional lower bounds d,,,> and vn,.., and optimal two-layer dogleg-free solutions
(if known) for these examples are listed in Table 2. For instance, an optimal routing of HYC1 is
shown in Figure 1. For HYC2, HYC3, HYCH, HYC6, and HYC7, dpazr = Umas; for HYC4 and
HYCS8, vmar = dmae- FOr each of these examples, the optimal solution differs significantly from the
traditional lower bounds, which indicates that isis very important to consider the interaction of

the horizontal constraints and vertical constraints for channel routing problems.

5 Conclusion

We have presented a random CRP generator which can generate difficult CRP instances of arbitrary
size. Thisalgorithm generates CRP instancesthat are guaranteed to be routed without doglegs and

should prove to be a useful tool for testing the performance of new algorithms for channel routing.



Algorithm MakeCol (vc,cmax)

1. fori=1ton-1
2.for j=it1ton

3. if ve(7,j) = 1 then
4. switch color(7)
5. case white:
6. ¢ := PickCol(1,emaz)
7. if c=0then cmax :=cmax +1 and ¢:= cmax
8. color(i) :=gray
9. case gray:
10. ¢ := PickCol(1l,cmax)
11. if c=0then cmax :=cmax +1 and c:= cmax
12. color(i) := black
13. case black:
14, if span; and span; overlap then [L,R] := span; N span;
15. else [L,R] :=the interval between span; and span;
16. ¢ ;= PickCol(L, R)
17. if ¢> 0 then goto Step 24
18. ¢ := PickCol(1, L)
19. if c> 0 then goto Step 24
20. ¢ := PickCol(R, cmax)
21. if ¢> 0 then goto Step 24
22. cmax :=cmax t 1 and ¢ := cmax
23. end
24. top(c) :=1, bottom(c) 1=
25. if color(y) = white then color(j) := gray
26. else color(j) :=black
27. modify span; and spanj
28. end end

Figure 3. MakeCol, an algorithm to assign columns for each net.



Algorithm CRP-generator (n,p,cmax)
1. call MakeVC(n,p)
. compute the transitive reduction ve~ of vc
. call MakeCol(vc™, Ccmax)
Lio=1

. whilei <n

if color(i) = gray then

2

3

4

5

6. if color(i) = black then i :=i+1
7

8 pick afree column c that is closest to span;
9

if c=0then
10. emaz = cmaz T 1 and ¢ := cmax
11. color(i) = black

12. if color(ié) = white then

13. ¢ := PickCol(1,emaz)

14. if c=0then

15. cmax = cmax +1 and ¢ := cmax
16. color(t) := gray

17. if random() > 0.5then top(c) :=1
18. else bottom(c) :=1

19. modify span;

20. end

Figure 4: A random difficult CRP generator, where n is the number of nets, p is the probability

for an arc to occur in the VCG, and cmax is the maximal number of columns allowed.



Table 2: Lower bounds and optimal solutionsfor some benchmark CRPs.

problem | #nets | #cols | dmar | Ymar | Optimal
DDE 72 174 19 23 28
HYC1 10 19 7 7 8
HYC2 10 20 8 7 9
HYC3 15 24 11 8 15
HYC4 50 89 20 22 ?
HYC5 50 149 35 32 45
HYC6 70 115 50 42 66
HYC7 70 144 39 19 ?
HYCS8 70 104 21 43 62

Asthe CRP-generator can generate problemsadf arbitrary size, problems becomeintractable quickly
as n increases. Hence, exhaustive search methods [9, 10, 17] may not be feasible. For some
examples generated by this CRP-generator, the optimal solution differs significantly from the
traditional lower bounds. It reveas the importance of considering the interaction of constraints

when developing efficient algorithms for channel routing.
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Table 3: Random CRP examples - set I.

| problem column
HYC1 top 8 1 0 4 0 2 1 4 3 9 5 0 0 0 0
7 0 6 5
bottom 9 2 1 0 6 O 4 3 5 4 1 0 8 0 0 0 O
9 0 7 7
HYC2 top 6 8 0 3 0 3 9 0 3 0 1 2 7 4 0
5 0 2 0 1
bottom 9 9 1. 0 5 0 6 1 O O 7 O 4 3 9 8 o0
8 0 4 0 3
HYC3 top I 0 7 6 1 1 2 2 3 7 4 1 3 6 8 5
5 9 11 12 8 13 13 0 0
bottom | 11 9 7 3 5 4 6 8 1 1 7 2 61010 8
6 12 12 13 9 14 15 14 15

HYC4 top 1 4 4 2 3 2 4 1 6 32041215114
15 9 10 9 9 9 14 11 15 12 10 23 13 17 13
16 18 18 21 24 8 5 12 20 19 19 22 16 21 11
7 23 18 23 8 24 25 26 26 27 28 29 30 31 31
32 33 33 34 3 35 36 37 37 37 38 38 38 39 39

39 39 40 40 41 41 41 42 43 44 44 46 47 0
bottom 3 9 14 4 4 5 18 2 8 10 22 17 15 19 32
20 32 12 29 27 25 28 16 18 17 14 32 17 19 14
17 22 27 22 25 11 6 23 24 32 21 29 18 24 13
10 30 26 27 12 30 28 31 32 31 31 31 31 33 34
39 35 40 35 36 38 37 39 42 43 41 44 48 44 45

446 48 41 46 43 47 49 46 50 47 49 49 50 45
HYC5 top 3283036 6 0 4 5 0 O 0 0 0 0 O 0
12 5 0 8 45 1 0 4 10 18 9 43 34 40 16
0 0 48 45 49 20 0 0 43 0 0 38 0 22 34
o o o o 2 1 4 0 O O O O 2 3 0 0 5
03744 0 0 9 0 0 033 0 0 0 0 0
1 5 0 0 O O O O o o o o o 38 2 7 o0
0 11 25 19 15 0 41 24 17 0 0 3 40 30 7
0 010141 0 0 1 0 43935 0 026 0
0 0 41 0 21 0 0 0 29 46 46 0 31 0 14

27 0 0 13 40 0 42 0 24 0 0 0 0 39
bottom 0323138 7 048 0 0 0 0 0 0 0 0
14 8 0 9 47 2 0 8 12 19 12 44 35 42 19
0 0 50 49 50 21 0 0 49 0 0 39 0 23 37
0 0 0 o 6 12 7 0 O O O O 2 4 O 0 6
038146 0 011 0 0 0O 3 4 0 0 O 0 0
1 6 0 0 O O O O o o o o o 3 ~ 3 9
0 13 29 20 18 0 43 28 19 0 0 5 44 32 10
0 01145 0 0 4 0 74136 0 027 0
0 0 42 0 22 0 0 0 30 47 48 0 33 0 15

29 0 01445 046 025 0 0 0 040
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Table 4: Random CRP examples - set 1I.

problem column
HYCé top 5 6 5 12 4 19 17 18 25 27 31 31 32 28 36
3 4 2 10 32 38 28 34 34 24 22 13 42 40 21
24 24 32 46 1 58 41 16 50 59 14 47 45 43 57
20 56 45 62 63 38 55 46 8 39 64 1 8 30 3
39 11 6 44 47 30 58 48 29 63 60 28 35 60 15
19 55 25 48 33 52 33 6 7T 43 0 9 42 23 30
35 0 69 27 37 2 35 26 51 37T 34 54 67 49 59
68 0 50 0 53 61 66 70 0 62
bottom 8 10 7T 13 6 21 18 19 29 35 38 37 38 33 41
5 5 4 11 36 41 32 39 38 28 23 14 44 42 22
26 25 40 50 4 61 42 17 51 60 15 54 47 44 59
24 58 46 65 65 43 57 49 10 43 66 3 12 33 9
40 13 12 45 50 32 60 54 30 64 62 31 43 63 16
20 56 27 50 36 55 34 7 13 48 0 13 48 24 31
37 0 70 30 40 9 36 30 53 41 37 55 68 54 61
69 0 52 0 55 69 67 (] 0 64
HYC7 top 26 21 24 7T 18 27 22 30 34 34 17 28 9 13 28
33 20 15 31 32 10 4 26 6 23 13 3 10 31 29
9 25 18 28 12 15 27 37 7 20 33 10 21 20 38
11 8 20 16 16 19 23 14 17 34 10 46 34 16 47
26 24 38 11 37 33 37 17 42 4 7 6 12 29 14
39 1 41 42 44 45 24 42 41 43 36 36 35 43 44
39 45 12 5 5 5 43 39 2 40 45 46 46 47 48
48 49 49 50 S50 51 52 52 52 53 54 54 55 56 56
56 56 57 57 58 58 59 59 60 60 60 60 61 61 61
63 63 64 64 66 67 0 0 0
bottom [ 30 27 29 14 40 40 28 31 48 42 31 39 12 27 36
41 22 20 34 35 17 12 39 15 28 16 5 16 53 31
10 31 22 32 15 18 39 53 19 30 39 23 23 25 50
15 9 33 20 18 21 24 23 32 44 15 50 38 29 58
32 26 49 19 43 38 42 27 51 16 8 26 26 37 15
50 13 44 45 63 49 25 47 46 44 42 41 37 46 47
53 55 27 12 17 11 45 44 16 43 54 48 51 60 49
60 58 61 52 60 69 56 58 63 57 59 70 69 59 62
66 67 60 61 59 67 64 65 64 65 66 T0 62 63 67
64 66 68 69 69 68 1 2 3
HYCS8 top 26 4 15 9 30 10 9 7 20 26 12 7 9 19 16
24 15 14 24 30 11 13 6 27 2 10 3 18 25 3
1 17 5 27 22 29 2 31 32 28 35 8 21 23 5
32 33 29 31 28 34 36 37 38 39 40 41 42 42 43
43 44 45 45 46 46 47 48 48 49 50 50 50 51 51
52 52 52 53 53 54 54 355 55 55 56 57 57 57 58
59 60 61 62 62 63 64 65 66 67 68 69 0 70
bottom | 30 5 18 11 35 12 13 8§ 21 29 14 10 12 22 17
26 16 15 25 31 15 14 7 30 4 13 7T 19 27 4
3 19 10 28 23 31 6 33 37 35 37 9 22 24 9
34 34 32 37 29 36 38 38 39 40 41 42 43 44 45
47 45 46 48 49 50 48 50 52 53 51 53 54 55 56
54 55 57 55 56 59 60 58 59 60 57 58 59 60 61
61 61 62 63 66 64 65 68 67 68 69 70 1 0
12
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