9-2014

Visualization of Automotive Power Seat Slide Motor Noise

J Stuart Bolton
Purdue University, bolton@purdue.edu

Yong T. Cho
Kongju National University

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

http://docs.lib.purdue.edu/herrick/103

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Visualization of Automotive Power Seat Slide Motor Noise

Yong T. Cho and J. Stuart Bolton*

Division of Mechanical and Automotive Engineering
KongJu National University, Korea

*Ray W. Herrick Laboratories
School of Mechanical Engineering
Purdue University
Automotive Power Seat Motors

Front view

Bottom view

Power seat with three motors
(Some other power seats have four motors)
INTRODUCTION

• Automotive power seat slide motor
 - Power seats have different but similarly shaped motors
 - Relatively compact in size, similar to small cylinder
 - Noise sources of motor are closely spaced: e.g., motor shell, bearings, and brushes
 - Span wide frequency range: e.g., 592 Hz ~ 8 kHz
 - Limited position for reference measurement

• Statistically Optimized Nearfield Acoustical Holography
 - High resolution and no truncation effects
 - Multi-reference acoustical holographic procedure
 - Cylindrical surfaces
Visualization of Power Seat Motor Noise

- SONAH formulation (1)

• The sound pressure, $p(r)$, can be expressed as linear combination of the measured sound pressure $p(r_n)$,

$$p(r) \approx \sum_{n=1}^{N} c_n(r) p(r_n)$$

• If a good representation of the sound field can be obtained by using a finite subset of wave functions, the coefficients c_n can be determined.

$$\Phi_{Km}(r) \approx \sum_{n=1}^{N} c_n(r) \Phi_{Km}(r_n), \quad m = 1 \ldots M$$
Visualization of Power Seat Motor Noise

- SONAH formulation (2)

\[p(r, \phi, z) = \frac{1}{(2\pi)^2} \sum_{m=-\infty}^{m=\infty} \int_{-\infty}^{\infty} P_m(r_h, k_z) \Phi_{km} dk_z \]

• Defining wave function,

\[\Phi_{km} \equiv 2\pi \frac{H_m^{(1)}(k_r r)}{H_m^{(1)}(k_r r_h)} e^{im\phi} e^{ik_z z} , \]

where:

\[k_r = \begin{cases} \sqrt{k^2 - k_z^2} & \text{for } |k| \geq |k_z| \\ i\sqrt{k_z^2 - k^2} & \text{for } |k| < |k_z| \end{cases} \]
- SONAH formulation (3)

\[A \equiv \left[\Phi_{Kq,m} (r_{h,j}) \right], \quad \alpha (r) \equiv \left[\Phi_{Kq,m} (r) \right], \quad \mathbf{c} (r) \equiv \left[c_j (r) \right]. \]

- Estimated pressure \(\rho (r) \) is,

\[\rho (r) \approx \sum_{n=1}^{N} c_n (r) \rho (r_n) = \mathbf{p}^\top \mathbf{c} (r) = \mathbf{p}^\top \left(A^+ A + \theta^2 \mathbf{I} \right)^{-1} A^+ \alpha (r) \]

where, \(\mathbf{p}^\top \) is measured pressure vector at \(r_n \)

- Estimated normal particle velocity \(u_z (r) \) is,

\[u_z (r) \approx \mathbf{p}^\top \left(A^+ A + \theta^2 \mathbf{I} \right)^{-1} A^+ \beta (r) \]

where, \(A^+ \beta (r) \) is a correlation vector that relates measured pressure and particle velocity.
Visualization of Power Seat Motor Noise

- Power seat motor measurement
 - Number of field microphones: \(N_z = 11 \)
 - Microphone spacing in \(z \) direction: \(z_{inc} = 2 \text{ cm} \)
 - Radius of hologram: \(r_h = 4 \text{ cm} \)
 - Radius of motor shell: \(r = 2 \text{ cm} \)
 - Total aperture size: 22 cm, \(N_\Phi = 24 \)
 - Motor rotating speed: 3552 rpm (13.5V)
Visualization of Power Seat Motor Noise

- Power seat motor measurement result

Singular values of reference measurement

- Difference between first and second singular values > 10 dB
- First singular values are used for reconstruction
- Since the motor is rotating at 3552 Hz, and armature has ten poles, 3552/60*10=592 Hz, is brush passage frequency and the motor has two pairs of magnets, so motor housing shell is excited at 592*2=1184 Hz.
Visualization of Power Seat Motor Noise

- Power seat motor measurement result

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Sound power (dB) (Ref.: 10^{-12} W)</th>
<th>Rank</th>
<th>Major noise origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>592</td>
<td>52.0</td>
<td>7</td>
<td>Shell vibration and lower bearing</td>
</tr>
<tr>
<td>1184</td>
<td>86.6</td>
<td>1</td>
<td>Shell vibration</td>
</tr>
<tr>
<td>1736</td>
<td>47.1</td>
<td>8</td>
<td>Shell vibration</td>
</tr>
<tr>
<td>2360</td>
<td>55.3</td>
<td>6</td>
<td>Shell vibration</td>
</tr>
<tr>
<td>2944</td>
<td>67.8</td>
<td>2</td>
<td>Shell vibration and lower bearing</td>
</tr>
<tr>
<td>3536</td>
<td>64.8</td>
<td>4</td>
<td>Lower bearing</td>
</tr>
<tr>
<td>4032</td>
<td>67.5</td>
<td>3</td>
<td>Shell vibration and lower bearing</td>
</tr>
<tr>
<td>8288</td>
<td>61.5</td>
<td>5</td>
<td>Shell vibration and lower bearing</td>
</tr>
</tbody>
</table>

SONAH Sound power estimate and major noise origin of motor.

Shell vibration

Lower bearing
Visualization of Power Seat Motor Noise

- Cylindrical shell vibration

Cylindrical mode shapes

$n=1$ mode $n=2$ mode $n=3$ mode $n=4$ mode
Visualization of Power Seat Motor Noise

- Power seat motor measurement result: Eight major frequencies

592 Hz

Motor shell vibration and lower bearing
Sound power: 52.0 dB (Ref.: 10^{-12} W), 7th/8th frequencies
Visualization of Power Seat Motor Noise

- Power seat motor measurement result: Eight major frequencies

1184 Hz

Motor shell vibration ($n=2$ mode) and lower bearing
Sound power: 86.6 dB (Ref.: 10^{-12} W), 1st/8 frequencies
Visualization of Power Seat Motor Noise

- Power seat motor measurement result: Eight major frequencies

1736 Hz

Motor shell vibration (n=2 mode)

Sound power: 47.1 dB (Ref.: 10^{-12} W), 8th/8 frequencies
Visualization of Power Seat Motor Noise

- Power seat motor measurement result: Eight major frequencies

2360 Hz

Particle velocity

Sound intensity

Motor shell vibration ($n=3$ mode)

Sound power: 55.3 dB (Ref.: 10^{-12} W), 6th/8 frequencies
Visualization of Power Seat Motor Noise

- Power seat motor measurement result: Eight major frequencies

2944 Hz

Particle velocity

Sound intensity

Motor shell vibration \((n=3\text{ mode})\) and lower bearing

Sound power: 67.8 dB (Ref.: \(10^{-12}\) W), 2nd/8 frequencies
Visualization of Power Seat Motor Noise

- Power seat motor measurement result: Eight major frequencies

3536 Hz

Lower bearing
Sound power: 64.8 dB (Ref.: 10^{-12} W), 4th/8 frequencies
Visualization of Power Seat Motor Noise

- Power seat motor measurement result: Eight major frequencies

4032 Hz

Motor shell vibration (n=3 mode) and lower bearing

Sound power: 67.5 dB (Ref.: 10^{-12} W), 3rd/8 frequencies
Visualization of Power Seat Motor Noise

- Power seat motor measurement result: Eight major frequencies

8288 Hz

Motor shell vibration and lower bearing

Sound power: 61.5 dB (Ref.: 10^{-12} W), 5th/8 frequencies
Visualization of Power Seat Motor Noise

- Power seat motor measurement result: Shell modes

1196 Hz

Motor shell vibration ($n=2$ mode)
Visualization of Power Seat Motor Noise

- Power seat motor measurement result: Shell modes

3100 Hz

Particle velocity

4720 Hz

Particle velocity

Motor shell vibration ($n=3$ mode)

Motor shell vibration ($n=4$ mode)
Visualization of Power Seat Motor Noise

- Power seat motor measurement result: Summary

Motor shell vibration, $n=2$
Lower bearing

Motor shell vibration, $n=3$
Lower Bearing
Visualization of Power Seat Motor Noise

- Conclusions

• Possible to visualize closely located sources on compact cylindrical machine accurately by using high resolution, multi-reference acoustical holographic procedure over a wide range of frequencies

• Sound radiation from motor shell vibration and lower bearing were clearly visualized over wide range of frequencies

• Clearly shown that sound radiation around 1184 Hz is primarily from motor shell vibration of $n=2$ mode

• Sound radiation from automotive power seat slide motor was clearly visualized, and also other power seat motors with similar geometry can be clearly visualized