Validation of Micro-Perforated Panels Models

J Stuart Bolton
Purdue University, bolton@purdue.edu

Kang Hou

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

http://docs.lib.purdue.edu/herrick/100

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Validation of Micro-perforated Panels Models

Kang Hou
J. Stuart Bolton
Ray W. Herrick Laboratories
Purdue University
Validation of Micro-perforated Panels Models

Outline

- Models for the Micro-perforated Panel
 - Maa Model
 - Modified Maa Model
 - FEM Model (based on rigid porous frame)

- Advance for Impedance Tube
 - Four Microphone Impedance Tube Measurement
 - Error Analysis & Calibration Procedure

- Results & Conclusion

- Future Work
 - Modified FEM Model
 - Elastic Porous Frame
Validation of Micro-perforated Panels Models

Introduction to the MPP & Maa Model

Classical MPP Models

 - Allard’s Modal Approach
 - Beranek/Ingard Model
 - …..

MPP Models Validation

- Analytical~Maa Model (1987)
- Numerical~Finite Element Method
- Experimental~Four Microphone Impedance Tube

Classical Maa Model (1998)

- Environmentally friendly
- Good low frequency performance
- Affordable in the recent!

- No Flexural Motion
- No hole interaction
- Resistive Underestimation
Validation of Micro-perforated Panels Models

Modified Maa Models

MPP Impedance

\[
Z = \frac{Z_1}{\phi \rho_0 c} = r + j \omega m
\]

- **Z_1**: specific acoustic impedance
- **\(\phi \)**: porosity
- **r**: resistance
- **m**: effective mass per unit area
- **x**: perforation constant

Contribution from hole

\[
r = \frac{32 \eta}{\phi \rho c} \frac{t}{d^2} \left(\sqrt{1 + \frac{x^2}{32}} \right) + \beta \alpha \frac{2xd}{8t}
\]

- **End corrections**

- \(\beta = 1.5 \) *Introduce constant parameter to modify the resistive end correction*

End correction

Shearing region

Based on Ingard's semi-empiristic formula for perforated panels

Account for the hole interaction

\[
\alpha = 1 - 3\sigma
\]
Validation of Micro-perforated Panels Models

Absorption Coefficient & Transfer Impedance

Absorption Coefficient

\[\alpha_n = \frac{4r}{(1+r)^2 + \left(\omega m - \cot\left(\frac{\omega L}{c}\right) \right)^2} \]

- Resistive part determines absorption peak location
- Reactive part determines absorption peaks height

Transfer Impedance

2-Microphone & 4-Microphone

- A straightforward way to investigate the material impedance
- Avoid the numeric error
Validation of Micro-perforated Panels Models

Finite Element Model

\[\alpha_e = 1 + \frac{2 \varepsilon_e}{t} \]

\[\varepsilon_e = 0.48 \sqrt{\phi^2 (1 - 1.14 \phi)} \]

\[\sigma = \frac{32 \eta}{\phi d^2} \]

\[\Lambda = \Lambda' = \frac{d}{2} \]

\[\phi : \text{ porosity} \]
\[\sigma : \text{ flow resistivity} \]
\[\Lambda : \text{ viscous char length} \]
\[\Lambda' : \text{ thermal char length} \]
\[\alpha_e : \text{ equivalent tortuosity} \]

Parameters Required

All the existing models can be obtained from an equivalent fluid model by selecting the appropriate parameters.

Impedance Tube

Software Simulation

Rigid Porous Material

Equivalent Tortuosity

Johnson-Allard Model

MPP
Validation of Micro-perforated Panels Models

Recent Development for the Impedance Tube

- Standard Two Microphone Impedance Tube Measurement
- Four Microphone Impedance Tube Measurement

better suited for extraction of material properties

\[
\begin{bmatrix}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{bmatrix} = \begin{bmatrix}
\cos k_p d & j \rho_p c_p \sin k_p d \\
j \sin k_p d / \rho_p c_p & \cos k_p d
\end{bmatrix}
\]

Transfer Impedance

\[
Z_t = P_0 / V_0 - P_d / V_d
\]
Validation of Micro-perforated Panels Models

Non-Switching Approach

- Error Sources
 - Microphone Mismatch
 - Bias Error
 - Tube Attenuation

Single microphone moves to location 1, 2, 3, 4

- For low transmission loss materials, phase mismatch is major concern
- Non-Switching approach can avoid phase mismatch phenomenon
- Accuracy depends on the stationary of electronic systems and FFT average

\[H_{21}^{'2} = (H_{11}^t \cdot H_{11}^{I1})^{1/2} \]

\[\tilde{H}_{21} = H_{21} / H_{21}^c \]
Validation of Micro-perforated Panels Models

Experiment Setup

Tested Material: Brass Sample

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Diameter d [mm]</th>
<th>Hole Depth t [mm]</th>
<th>Porosity φ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2032</td>
<td>0.8128</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0.4064</td>
<td>0.8128</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>0.6096</td>
<td>0.8128</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>0.4064</td>
<td>1.2192</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>0.6096</td>
<td>1.2192</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>0.6096</td>
<td>0.8128</td>
<td>27</td>
</tr>
</tbody>
</table>

Hardware: B&K Type 4206 (2.9cm diameter)

Software: COMET/ACOUSTICS-SAFE
Validation of Micro-perforated Panels Models

Results-Low Perforation Rate

- Maa Model underestimate resistive part of the impedance in low perforation rate case
- FEM model is acceptable
- The highlighted peak comes from the flexural panel vibration
Validation of Micro-perforated Panels Models

Results-High Perforation Rate

- Maa model overestimates the reactance due to neglect of hole interaction
- Improved Maa Model gives the best match with experimental results
Conclusion

- Analytical, numerical and experimental results for micro-perforated brass panels were compared.

- An improved Maa model was proposed to take into account hole interactions and modification of end corrections.

- An improved impedance tube measurement was set to give more accurate experimental results.
Future Work

- Further experiment should be taken to correct the equivalent tortuosity in the FEM model.

- It's possible to use FEM to take into account the flexural vibration of MPP.

- FEM model also has the potential to be used in the complicated structures.