A Discrete Implementation of a Hankel Transform Technique for Predicting Multipole Sound Propagation over Plane Absorbing Surfaces

J Stuart Bolton
Purdue University, bolton@purdue.edu

Z. Hu
Noise Cancellation Technologies, Inc.

Follow this and additional works at: http://docs.lib.purdue.edu/herrick
A DISCRETE IMPLEMENTATION OF A
HANKEL TRANSFORM TECHNIQUE FOR PREDICTING
MULTIPOLE SOUND PROPAGATION OVER
PLANE ABSORBING SURFACES

Z. Hu
Noise Cancellation Technologies, Inc.
1015 W. Nursery Rd.
Linthicum MD 21090

J.S. Bolton
Ray W. Herrick Laboratories
School of Mechanical Engineering
Purdue University, West Lafayette IN 47907

HERRICK LABS / PURDUE UNIVERSITY
• **OBJECTIVE:**

 — accurate prediction of sound propagation from a higher order source over outdoor surfaces.

• **REQUIREMENTS:**

 — measurement of the reflection coefficients

 — appropriate sound propagation theory
INTRODUCTION

PREDICTION OF SOUND PROPAGATION

• PREVIOUS TECHNIQUES:
 — asymptotic approximation, limitation: accurate in a certain domain \((k_r r_2 > > 1 \text{ or } k_r r_2 < < 1)\)
 — one-dimensional Hankel transform technique for a monopole source

• PRESENT APPROACH:
 — apply the two-dimensional inverse Hankel transform

• RESULT:
 — theory capable of predicting multipole sound propagation over a finite impedance plane

• APPLICATION:
 — prediction of sound propagation from aerodynamic noise sources over outdoor surfaces
THEORY

- WAVE EQUATION
 - scalar Helmholtz equation
 \[\nabla^2 p(r, \omega) + k^2 p(r, \omega) = 0 \]
 note: time dependence of \(e^{-i\omega t} \) is assumed here.
 - the sound pressure in cylindrical coordinates
 \[p(r, \phi, z) = \sum_{n=0}^{\infty} \left[Q_{1n}(r, z) \cos n\phi + Q_{2n}(r, z) \sin n\phi \right] \]
THEORY

- REPRESENTATION OF A SOUND FIELD BY USING TWO-DIMENSIONAL HANKEL TRANSFORM TECHNIQUE

 - the wavenumber spectrum in Cartesian coordinates:

 \[\tilde{P}(k_x, k_y, z) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P(x, y, z) e^{-i(k_x x + k_y y)} \, dx \, dy \]

 - the wavenumber spectrum in cylindrical coordinates:

 \[\tilde{P}(k_r, \psi, z) = \frac{1}{(2\pi)^2} \int_{0}^{\infty} \int_{0}^{2\pi} rP(r, \phi, z) e^{-ik_r r \cos(\phi - \psi)} \, d\phi \, dr \]

 where \(k_r \) is the radial wavenumber and \(\psi \) is the azimuth angle in the wavenumber domain.
— forward 2-D Hankel transform:

\[
\tilde{P}(k_r, \psi, z) = \sum_{n=0}^{\infty} \frac{(-i)^n}{2\pi} \left[\tilde{Q}_1 n(k_r, z) \cos n\psi + \tilde{Q}_2 n(k_r, z) \sin n\psi \right]
\]

where

\[
\tilde{Q}_l n(k_r, z) = \int_0^\infty r Q_l n(r, z) J_n(k_r r) dk_r
\]

\[
l = 1, 2; \ n = 0, 1, 2, ...
\]

is the Hankel transform of nth-order and \(J_n \) is the Bessel function of order \(n \).

— inverse 2-D Hankel transform:

\[
P(r, \phi, z) = \sum_{n=0}^{\infty} \left[Q_1 n(r, z) \cos n\phi + Q_2 n(r, z) \sin n\phi \right]
\]

where

\[
Q_l n(r, z) = \int_0^\infty k_r \tilde{Q}_l n(k_r, z) J_n(k_r r) dk_r
\]

\[
l = 1, 2; \ n = 0, 1, 2, ...
\]

HERRICK LABS / PURDUE UNIVERSITY
The Incident and Reflected Sound Fields

\[\tilde{P}_r(k_r, \psi, 0) = R(k_r, \omega) \tilde{P}_i(k_r, \psi, 0) \]

- the wavenumber spectrum of the reflected pressure fields at \(z = 0 \)

\[R(k_r, \omega) = \frac{z_n - \omega \rho/k_z}{z_n + \omega \rho/k_z} \]

- in which the plane wave reflection coefficient, \(R(k_r, \omega) \), may be calculated using

\[\tilde{P}_r(k_r, \psi, z) = \tilde{P}_r(k_r, \psi, 0)e^{ik_z z} \]

- the wavenumber spectrum of the reflected field at any \(z \)-plane

\[\tilde{P}(k_r, \psi, z) = \tilde{P}_i(k_r, \psi, z) + \tilde{P}_r(k_r, \psi, z) \]

- the total pressure in the wavenumber domain
PREDICTION OF SOUND FIELD

Know: Sources and Reflecting Surface

Objective: Prediction the Sound Field over a Finite Impedance Surface

Methodology:

- find $\tilde{P}_i(k_r, \psi, z)$ either analytically or numerically

- decompose $\tilde{P}_i(k_r, \psi, z)$ into $\tilde{Q}_{ln}(k_r, z)$’s

- multiply $\tilde{Q}_{ln}(k_r, z)$’s with $e^{i2k_zz}R_p(k_r)$ to obtain $\tilde{Q}_{ln}(k_r, z)$’s

- add $\tilde{Q}_{ln}(k_r, z)$’s and $\tilde{Q}_{ln}(k_r, z)$’s to give $\tilde{Q}_{ln}(k_r, z)$’s

- inverse transform $\tilde{Q}_{ln}(k_r, z)$’s to give $Q_{ln}(r, z)$’s

- synthesize $Q_{ln}(r, z)$’s to give $P(r, \psi, z)$

HERRICK LABS / PURDUE UNIVERSITY
FAST HANKEL TRANSFORM

Summary:

— FHT is not as accurate as DHT but is faster with the same numerical parameters

— performance ($|E|^2 \times T_{cpu}$) of the FHT is generally superior to that of the DHT

— most efficient to compute higher order azimuthal harmonic components (shifted sources)

HERRICK LABS / PURDUE UNIVERSITY
THEORY

THE SOUND FIELD OF A MONOPOLE

— the direct sound pressure from the monopole in the space domain

\[P_i(r, \phi, z) = \frac{A_m}{R} e^{ikR} \]

— the wavenumber domain spectrum of the monopole is

\[\tilde{P}_i(k_r, \psi, z) = \frac{A_m}{2\pi k_z} e^{ik_z(z_s - z)} \]

where \(k_z = \sqrt{k^2 - k_r^2} \)
THE SOUND FIELD OF AN ARBITRARILY ORIENTED DIPOLE

the direct sound pressure from the inclined dipole in the space domain

\[P_i(r, \phi, z) = A_d \frac{(1 - ikR)}{R^3} e^{ikR} \left[(z_s - z) \cos \gamma + r \sin \gamma \cos (\phi - \phi_0) \right] \]

the wavenumber domain spectrum of the inclined dipole

\[\tilde{P}_i(k_r, \psi, z) = \frac{A_d}{(2\pi k_z)} \left[k_z \cos \gamma + k_r \sin \gamma \cos (\psi - \phi_0) \right] e^{ik_z(z_s - z)} \]
MODEL OF SURFACE

- **assumption:**
 the test carpet is a finite-depth layer of an extended reaction Delany and Bazley-type material

- **the characteristic impedance** z_{o1}

 \[z_{o1} = \rho c [1 + 0.0571(\rho f/\sigma)^{-0.754} + i0.087(\rho f/\sigma)^{-0.732}] \]

 where σ *is the flow resistivity of the material in MKS Rayls/m*

- **the complex wavenumber** k_1

 \[k_1 = k [1 + 0.0978(\rho f/\sigma)^{-0.70} + i0.189(\rho f/\sigma)^{-0.595}] \]

- **the surface normal impedance**

 \[z_n = \frac{iz_{o1}}{\cos\theta_1} \cot(k_1 l \cos\theta_1) \]

 where l *is the layer depth and* $\cos\theta_1 = \sqrt{1 - (k/k_1)^2 \sin^2 \theta}$
EXAMPLE: VERTICAL DIPOLE

\[20 \log_{10} \left[\frac{P_{d1}}{P_{d1}} + P_{dr} \right] \text{ [dB]} \]

\[f = 4000 \text{ Hz} \quad z_s = 0.1 \text{ m} \quad z = 0.025 \text{ m} \]

HERRICK LABS / PURDUE UNIVERSITY
EXAMPLE: INCLINED DIPOLE

\[f = 4000 \text{ Hz} \quad \gamma_d = 30^\circ \quad \phi_d = 90^\circ \quad z_s = 0.1 \text{ m} \quad z = 0.025 \text{ m} \]

HERRICK LABS / PURDUE UNIVERSITY
PROPAGATION MEASUREMENTS

Geometry

1.2 m window size
0.002m
0.1m
0.01m spatial sample interval
0.025m
0.012m
Two measuring lines

Instrumentation

Power Amplifier

Schroeder-phased
Signal
D/A

MASSCOMP
Computer

A/D
Data Acquisition,
Signal Enhancement
and FFT

Unbaffled Loudspeaker

1/4" Microphone
B&K 4125
Preamplifier B&K 2642

Amplifier
B&K 2810

WaveTek Dual Hi/Lo
Filter 852

HERRICK LABS / PURDUE UNIVERSITY
PROPAGATION MEASUREMENTS

$f = 1953 \text{ Hz, } z = 0.025 \text{ m}$

![Graph showing sound pressure level vs. r for $f = 1953 \text{ Hz, } z = 0.025 \text{ m}$]

$f = 1953 \text{ Hz, } z = 0.012 \text{ m}$

![Graph showing sound pressure level vs. r for $f = 1953 \text{ Hz, } z = 0.012 \text{ m}$]
PROPAGATION MEASUREMENTS

Optimal Monopole Source Strength

\[20 \log_{10}(A_m/A_d) \text{ [dB]} \]

\[2(\angle(A_m/A_d)) \text{ [degrees]} \]

HERRICK LABS / PURDUE UNIVERSITY
PROPAGATION MEASUREMENTS

\[f = 3613 \text{ Hz}, \ z = 0.025 \text{ m} \]

\[f = 3613 \text{ Hz}, \ z = 0.012 \text{ m} \]

HERRICK LABS / PURDUE UNIVERSITY
PROPAGATION MEASUREMENTS

\[z = 0.012 \text{ m} \]

Measurement

Theory

HERRICK LABS / PURDUE UNIVERSITY
PROPAGATION MEASUREMENTS

\[z = 0.025 \, \text{m} \]

Measurement

Theory

HERRICK LABS / PURDUE UNIVERSITY
CONCLUSIONS

- The two-dimensional Discrete Hankel Transform approach presented here offers an effective means for predicting the sound radiation from multipole sources over plane absorbing surfaces.

- The approach may be extended to arbitrarily directional sources if those sources can be modeled as a superposition of multipoles.

- The performance of the two-dimensional Discrete Hankel Transform prediction procedure can be enhanced by the use of a Fast Hankel Transform algorithm.

- The procedure outlined here must be supplemented by a farfield prediction to allow predictions at arbitrarily large distances from the source.

HERRICK LABS / PURDUE UNIVERSITY