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ABSTRACT 

This report is divided into two sections. In the first section, the focus is on adaptive 
transform-based image compression and motion compensation at low bit rates. A new 
adalptive algorithm for image representation and coding is introduced. This algorithm is 
based on the concept of segmented orthogonal matching pursuits (SOMP), and adaptively 
selects the best representation from an overcomplete dictionary of wavelet functions. In 
the second section, the pre-processing and post-processing of images and video streams 
are focused on. A new robust nonlinear filter based on the theory of generalized maximum 
likelihood and order statistics (GMLOS) is introduced. It is shown that this filter is an 1,- 
optimal order statistics filter and some of its properties are proved. A novel algorithm 
based on wavelet decomposition, variable size kernel GMLOS filters, and soft 
thresholding for removing the blocking effects in block-based transform coding 
techniques is introduced. Finally, a simple algorithm for cell packing in ATM networks is 
inti-oduced, and a novel algorithm for error concealment of images and video streams, 
based on Multi-directional Recursive Nonlinear Filtering (MRNF) with GMLOS filters is 
inti-oduced. 
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1. INTRODUCTION 

1.1 Introduction 

In modem interactive communication systems two-way connections are used to 

provide voice, data, image, and video to the users. There are four fundamental operations 

associated with these systems: pre-processing, coding/decoding (CODEC), network 

intcyj5acing (NIU), and post-processing. The main building blocks of a rnodem interactive 

cornmunication system as depicted in Fig. 1.1. 

input 

storagel 
output 

Fig. 1.1. The main building blocks of a modem interactive digital communication system. 
CODEC stands for coderldecoder, and NIU for Network Interface Unit. 

Most of the required bandwidth in these systems is occupied by visual information. 

Since the amount of available bandwidth is limited by the channel, the CODEC should be 

able to encode the visual information at very low bit rates. The coding algorithms for 

visual information in these systems belong to the class of lossy image and video 

cornpression techniques1, which usually introduce visible distortions to the original 

image. The amount of distortion is a function of the data rate used, and the particular 

characteristics of the source image. In addition, the compressed data is vulnerable to 

transmission impairments. In this case, the transmission errors may result in various types 

of degradations or partial loss of the data, depending on the network interface algorithm 

ant1 channel characteristics. Some of these coding and transmission impairments can be 

reduced by using a set of pre-processing and post-processing algorithms on the data. The 
- 

I .  In some applications such as medical imaging systems lossless compression may be required. 



following topics are studied in this thesis. 

1.2 Multiresolution Image and Video Compression with Adapted Bases 

A large class of image compression algorithms exploit the fact that applying a linear 

tra~~sformation to the input signal can result in a coding gain. The traditional approach in 

this class of compression techniques is to use a fixed transformation matrix. For example, 

the emerging image and video compression standards such as JPEG, H.261, and MPEG 

use. Discrete Cosine Transform (DCT), which is a fixed transform with sinusoidal bases 

[I]. Another fixed transform that has attained popularity in image coding applications is 

the Discrete Wavelet Transform (DWT) [2, 31. DWT offers good frequency selectivity at 

lower frequencies and good time selectivity at higher frequencies, and when coupled with 

a cluantization strategy that exploits this property, it has achieved siignificantly better 

performance over other transforms such as DCT [2, 31. 

While coding algorithms with fixed transforms can be useful for a specific class of 

signals, they may not be adequate for the characterization of a more general class of 

signals with unknown or time varying characteristics [3]. In this case, it is advantageous to 

use: a transform that is signal dependent. The idea of adapting the trar~sformation to the 

signal in image compression applications is related to the field of universal coding [4] and 

has gained popularity in recent years [3, 51. 

In transform based video compression techniques, usually a hybrid approach based on 

the concept of intra-frame and inter-fiame coding is used [6, 71. In the intra-frame mode 

of operation, spatial redundancy is exploited by treating the video frames as still images. 

In the inter-frame mode of operation, temporal redundancy is often exploited by means of 

block matching Motion Estimation and Motion Compensation (MEMC) techniques. In the 

inter-frame mode, the current frame is coded by motion vector and residual error 

inf~mnation that has been predicted from previous or possibly future frames. The intra- 

fra~me and inter-frame information is then combined to create the encoded video stream. 

In the first part of this thesis, a new adaptive signal expansion technique called 

Segmented Orthogonal Matching Pursuit (SOMP) is introduced. This algorithm is then 

use:d for multiresolution image compression, and it is shown that at lower bit rates it 



performs better than traditional fixed transform coding techniques [S]. Moreover, it is 

shown that the process of separate prediction and residual coding in hybrid MEMC video 

cornpression techniques can be solved in a unified framework by using a modified version 

of the SOMP algorithm. Furthermore, it is shown that at lower bit rates, this new algorithm 

performs better than the traditional hybrid MEMC techniques [9]. 

1.3 Pre-Processing and Post-Processing of Images and Video Streamis 

Pre-processing refers to spatial and temporal image processing algorithms, such as 

noise smoothing and decimation, that are applied to the source im,age prior to data 

cornpression. Similarly, post-processing refers to image processing algorithms that are 

applied to the decompressed data to enhance its quality and appearance or to restore the 

data lost during the transmission. Various image degradations, coding artifacts, and 

tra~lsmission impairments can be corrected by using these techniques [lo, 111. In the 

second part of this thesis, a new robust nonlinear filter based on the theory Generalized 

Ma.ximum Likelihood and Order Statistics (GMLOS) is introduced 112, 131. It is an 1,- 

optimal order statistic filter that is well suited for the pre-processing and post-processing 

of images and image sequences. Moreover, this filter is used in two novel algorithms for 

the de-blocking of blocking artifacts in block-based transform coding [14], and the error 

corlcealment of encoded image and video streams over ATM networks [15]. 

1.4 Measures of Performance 

In this thesis the quality of the filtered or decoded images and image sequences is often 

referred to. In image processing applications, there are several different criteria to measure 

the performance of visual information. These measures include the Mean Opinion Score 

(MOS), Picture Quality Scale (PQS), Mean Absolute Error (MAE), Mean Square Error 

(MSE), and Peak Signal-to-Noise Ratio (PSNR) 116, 171. The most widely used 

qui~ntitative measures of quality are MSE and PSNR. Although these measures are not 

always correlated with the perceived subjective quality of the Human Visual System 

(H'VS), their widespread use is justified by their simplicity. In this thesis MSE and MAE 

are used as quantitative measures of quality for filtered images, and PSNR for encoded 



images and image sequences. Visual subjective quality may also be used as a measure of 

performance. Aside from visual quality, other measures of performance such as 

cornputational complexity are also considered in this thesis. 

1.5 Contributions of this Thesis 

The contributions of this thesis can be summarized as follows. 

A new algorithm called Segmented Orthogonal Matching Pursuit (SOMP) is 

introduced for adaptive signal expansion. 

It is shown that SOMP performs better than the original matching pursuit algorithm 

in terms of sparsity of representation and convergence. 

A new multiresolution image compression algorithm based on the SOMP algorithm 

and an overcomplete dictionary of wavelet atoms are introduced. 

A new algorithm for MEMC is introduced that unifies the prlocess of separate 

prediction and residual coding into a unified framework by using ;a modified SOMP 

algorithm. Moreover, it is shown that at lower bit rates this algorithm performs 

better than the traditional hybrid block-matching MEMC algorithms. 

A new robust nonlinear filter for pre-processing and post-processing of images and 

image sequences is introduced. This filter has been designed bawd on the theory of 

Generalized Maximum Likelihood and Order Statistics (GMLOS). 

It is shown that this filter is an 1,-optimal order statistics filter and some of its 

properties are proved. 

A novel algorithm based on wavelet decomposition, variable size kernel GMLOS 

filters, and soft thresholding for removing the blocking effects in block-based 

transform coding techniques is introduced. 

A simple algorithm for ATM cell packing is introduced. 

A novel algorithm for error concealment of images and video streams, based on 

Multi-directional Recursive Nonlinear Filtering (MRNF) with GMLOS filters is 

introduced. 



1.6 Organization of this Thesis 

The material presented in the remainder of this thesis is organized a!; follows. Chapter 

2 presents a brief overview of the linear expansion of signals with wavelet bases. In 

chapter 3, signal expansion with adapted bases is studied. The Segmented Orthogonal 

Matching Pursuit (SOMP) algorithm is also presented in this chapter, and the design of 

optimal dictionaries for overcomplete expansions is addressed. Chapter 4 is devoted to 

multiresolution image compression with the SOMP algorithm and wavelet bases. Chapter 

5 provides an algorithm for motion estimation using a modified version of the SOMP 

algorithm. Chapter 6 presents the GMLOS filter and some of its properties. It also presents 

a novel algorithm for removing the blockiness in block-based transform coding. Chapter 7 

is devoted to the problem of error concealment over ATM networks. Finally, chapter 8 

provides the concluding remarks and discusses future research. 
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2. SIGNAL EXPANSION AND ANALYSIS WITH WAVELETS 

2.1 Introduction 

Signal expansion is one of the major components of many algorithms in digital signal 

ancl image processing. The idea is to represent a signal by a linear combination of 

elementary building blocks or atoms that exhibit certain desirable properties. In signal and 

image processing applications the goal of these decompositions is to achieve sparsity, high 

resolution, robustness, and speed. In particular, these properties are central to image 

cornpression applications at low bit rates. Sparsity leads to the represe:ntation of signals 

with a smaller number of significant coefficients, high resolution results in better 

sutdective quality by capturing the most prominent details of the signal, robustness 

guarantees that small perturbations will not seriously degrade th'e quality of the 

representation, and speed is required in real time applications over the interactive 

multimedia communication systems. 

Until recently, the Discrete Cosine Transform (DCT) has been the most popular signal 

expansion1 algorithm for signal and image compression, and the block-based DCT has 

beem adopted by many emerging image and video compression standards such as JPEG, 

H.2!61, and MPEG [I].  DCT is a good approximation to the Karhunen-Lokve Transform 

(KILT) which is an optimal transform for stationary first order Markov signals based on the 

1, error measure [18]. While KLT is a signal dependent transform and produces an adapted 

basis dictionary for signal representation, DCT uses a fixed dictionary of sinusoids as 

basis functions. This property has led to the design of fast and efficient algorithms for the 

cornputation of DCT coefficients, and hence its popularity. Although under stationarity 

ancl Markovian assumptions DCT is a fairly good model for signal or image blocks, it fails 

to exploit the global structure of data. Moreover, in block-based 1)CT compression 

I .  Discrete-time series expansions are oj?en called discrete-time transforms. 



algorithms the correlation across the block boundaries is not removed. At lower bit rates, 

this usually results in loss of compression, and annoying blocking efects in decoded 

images [2]. 

More recently, there has been a growing interest in the representation and compression 

of signals by using dictionaries of basis functions other than the traditional dictionary of 

sinusoids. These new sets of dictionaries include Gabor functions [119], chirplets [20], 

warplets [21], wavelets [22], multi-wavelets [23], and wavelet packets [24]. Among these 

transformations, the Discrete Wavelet Transform (DWT) has attained nnore popularity in 

image compression due to its good performance and the existence of efficient algorithms 

for computing its coefficients [2]. In contrast to DCT, the wavelet transform gives good 

frequency selectivity at lower frequencies and good time selectivity at higher frequencies. 

This trade-off in the Time-Frequency (TF) plane is well suited to the representation of 

many natural signals and images that exhibit short-duration high-frequency and long- 

duration low-frequency events. The TF-localization property of the wavelet transform is 

also very attractive in compression applications, and when exploited with the proper 

quantization strategy in a coding algorithm, can produce significantly better results than 

other transforms such as DCT [2]. 

This chapter is designed to provide a brief overview of the wavelet transform as 

relevant to signal and image processing applications. Although a nu~nber of excellent 

tutorial papers and books on wavelet theory can be found in the literature [2, 22, 25, 26, 

27, 281, this chapter presents a perspective that is particularly important for some of the 

applications considered in this thesis. It establishes the notational conventions for the 

algorithms that are adopted in subsequent chapters for the optimal adaptive expansion and 

cornpression of signals with wavelet and wavelet packet dictionaries. 

2.2 Linear Expansion of Signals with Wavelet Bases 

The linear expansion of signals with elementary building blocks or atoms is central to 

signal and image processing applications. Given any signal x from a Hilbert space 31; a set 

of atoms {q+},, r ,  is desired such that x can be written as 



If .the space H is the space of square integrable functions &(R) or square summable 

sequences l,(Z), it is infinite dimensional, and it is finite dimensional if 9i= RN, or H= CN, 

where R N  and CN represent the space of real and complex N-tuples, respectively. If all 

signals x E H can be expanded as in (2. I), the set {q,) is complete for the space !J( and 

there exist a dual set {@,) such that the coefficients a, can be computed as 

when they are real continuous-time functions, or as 

when they are discrete-time sequences. The above equations represent the inner products 

of the signal x with qy 's, and are often denoted by (q,, X) . If the set (9,) is complete, 

ant! the qy 'S are linearly independent ((q,, qj) = F,, j, where 6,, = 1 if i = j and 0 

otherwise), they constitute an orthonormal basis for 31: In this case the basis and its dual 

are the same, and (2.1) can be written as 

If the set {q,) is complete and the vectors q, are linearly independent but not 

orthonormal, then they constitute a biorthogonal basis for 9t In this case the basis and its 

dual satisfy (@,, qj) = F,, j ,  and (2.1) can be written as 

Finally, if the set {q,) is complete, but the q,'s are linearly dependent, they do not 

constitute a basis for 31; and the resulting redundant or overcomplete representation is 

called a frame [2, 221. 

For analytical and practical reasons, the expansion of signals with structured bases is 

of great interest in signal and image processing applications. In these type of expansions, 

the basis vectors are related by some elementary operations such as scaling, shifting in 

time, and shifting in frequency (modulation). The Fourier series expamsion, which uses 



harmonic sinusoids as basis functions, is a classical example of linear signal expansion in 

signal processing. Although this fast transform is well suited for many applications in 

signal and image processing, it has a major drawback; the Fourier base:; are not localized 

in time. Therefore, Fourier analysis works well if the signal is composed of a few 

stationary components. However, any abrupt change in time in a non-stationary signal is 

spread out over the whole frequency axis, as shown in Fig. 2.1. 

One may attempt to localize the Fourier bases by windowing the data at fixed intervals 

with a smooth and compactly supported window prior to transformation. This transform is 

known as the Gabor or Short-Time Fourier Transform (STFT) [2]. The basis functions 

used in the STFT expansion are well structured (they are related to each other by shift in 

time and modulation), and produce a linear frequency analysis that partilions the TF-plane 

into fixed size rectangles called logons [19]. Another alternative to Fourier analysis is the 

Wavelet Transform (WT). In this transform, the signal is expanded by using the shifs and 

scales of a prototype function called the mother wavelet. Although, STFT is useful for the 

ana~lysis of many types of signals, WT offers a number of advantages over STFT. While it 

is possible to construct a variety of compactly supported orthonormal bases for WT, there 

are no suitable orthonormal bases based on STFT. The second advantage comes from the 

fact that the scales used in the construction of wavelet bases are powers of an elementary 

scale factor that produces a logarithmic frequency analysis for WT. Thi~s property results 

in ii more efficient tiling of the TF-plane by WT analysis, because at higher frequencies 

(smaller scales) the logons become more localized in time, while at lower frequencies they 

are more localized in frequency. It is important to note that the locali2,ation in time and 

frequency can not be arbitrarily small and their product is bounded bly the Heisenberg 

inequality [28]. Some of these facts are illustrated in Fig. 2.1. 

2.2.1 Continuous Wavelet Transform 

In WT the notion of scale is introduced as an alternative to frequency that leads to a 

time-scale representation. For a continuous signal, the time and scale parameters of WT can 

be continuous, leading to the Continuous Wavelet Transform (CWT). Consider the family 

of functions obtained by the scaling and shifting of a mother wavelet ~ ( t )  E L2(R) as 



Fig. 2.1. Time-frequency tiling of a signal [2]. (a) Sine wave plus impulse. (b) Discrete-time 
Fl~urier series. (c) Short-time Fourier series. (d) Discrete-time wavelet series. The vertical axis 
represents either increasing frequency or decreasing scale, the horizontal axis represents time, 

artd darker and stripped regions represent larger coefficients. Clearly, the TF-llocalization of the 
WT analysis is superior to STFT or Fourier analysis for this example. 

where a, b E R  and a # 0. The mother wavelet should satisfy the admis,sibility condition 

where Y ( o )  is the Fourier transform of ~ ( t )  . Whenever Y ( t )  decay!; sufficiently fast, 

the admissibility condition reduces to 

It is important to note that since Y ( o )  is zero at the origin and decays at high frequencies, 

the wavelet spectrum has a band-pass behavior. 

If the above requirement is satisfied, then the CWT of a conttinuous function 

x ( t )  E L 2 ( R )  is defined as 



It has been shown that the function x(t) can be recovered (in the .L2 sense) from its 

CWT by the following reconstruction formula, known as resolution of the identity [22] 

It is possible to have variations in the above reconstruction formula [:l2]. An important 

case is when the analysis and synthesis wavelets are different. Let v l ( t )  and v2( t )  

deriote the analysis and synthesis wavelets, respectively. If the following inequality . 

satisfied 

ant1 CUT,! UT2 
is defined as 

then the following reconstruction formula holds [22] 

1 
m m 

da db 
~ ( ~ 1  = -J J-m x ) ~ 2 u , b ( t ) 7  

CUT,, wz -= a 

In 1:his framework, v1( t )  and v,(t) can have significantly different behaviors, a property 

that is desirable in many signal and image processing applications. For example, it can be 

use.d for the design of biorthogonal systems in which both analysis and synthesis bases are 

syrnmetric and compactly supported. 

2.2.2 Frames and the Discrete Wavelet Transform 

From (2.9), it is clear that CWT produces a redundant representation for a signal, 

because it maps a continuously indexed function of one variable into a continuously 

indexed function of two variables. One way to overcome this problem is to sample the (a, b) 

plane. Let a = a: where m E Z and a, # 1 , then for vu, ,(t) to covler the whole time 

axis at a scale a,  the discretized parameters are [22] 

m m a = a,, b = nboao, U E  R + , ~ E  R,  m , n ~ Z ,  a O > l , b o > O  (2.14) 

and the discretized family of wavelets can be written as 



Therefore, a frame maps L2(R) to 12(Z2) with non-critical sampling of the scale and shift 

parameters. A wavelet frame can be defined as follows [22]: a family of wavelet functions 

{ V m , n } m , n E  ~7 in a Hilbert space 31= L,(R) is called a wavelet frame, if for all x in 31; there 

exists 0 < A I B < - , such that 

where A and B are called the frame bounds. The transformation that uses a wavelet frame 

for the linear expansion of signals is called Wavelet Frame Transform (FVFT). 

When A = B, the frame is called a tight frame, and by virtue of equation (2.16) there 

exists a reconstruction formula (at least in the weak sense [22]) given by 

It is important to realize that a frame is not an orthonormal basis for 31: It is only a set of 

norr-independent vectors that spans the space 31: A numerically stable reconstruction 

for~mula for general frames can be found in [22]. 

In general, frames represent a middle ground between the CWT and the discrete 

wavelet transform. In fact, if {vm, .Irn, is a tight frame, with frame bound A = 1, and 

IIvm,,ll = 1 for all m, n E J ,  then {yrm,n}constitute an orthonormal basis for 31 [2]. A 

particular case of interest is when the scale and shift parameters are critically sampled on a 

dyadic grid2. In this case if a, = 2-' , and b, = 1 , then (2.15) becomes 

The linear expansion in (2.4), which employs the above orthonormal basis functions is 

called the Discrete Wavelet Transform (DWT). DWT represents an octave-band 

decomposition of the signals in the TF-plane and possesses the greatest sparsity of 

representation among CWT, WFT, and DWT expansions for continuously indexed 

functions in L,(R). The reconstruction formula for DWT is given by 

2. Orthonormal DWT employing non-dyadic scaling can also be constructed. 



2.3 Wavelets and Multiresolution Analysis 

Multiresolution Analysis of images by means of the multiresolution pyramid 

algorithm was first introduced in computer vision and image processing [29] .  In the 

pyramid algorithm an image is decomposed into a coarse approximation plus a prediction 

error that is the difference between the original signal and a prediction b,ased on the coarse 

approximation. A coarse version of the image at each level of decomposition is obtained 

by successive filtering and subsampling of the original signal with a low-pass filter. 

Although in this method the expansion is redundant3, the pyramid algorithm is intimately 

related to subband and wavelet decompositions [ 2 ] .  The theory of Multiresolution 

Analysis (MRA) based on the wavelet bases of L2(R) was developed in [30, 31, 321, and 

the Discrete-time Multiresolution Analysis (DMRA) based on the wavlelet bases of 12(Z) 

wa,s studied in [33] .  They are summarized in the following subsections. 

2.3.1 Multiresolution Analysis and Wavelet Bases of L,(R) 

The MRA based on wavelet bases for continuous-time signals in L2(R) is defined as a 

sequence of closed and nested subspaces V,  of L2(R) [31, 22, 261, with the following 

properties 

1 .  V , c  v j + , ,  V j E  2, 

2.  x ( t )  E V j  e x(2 t )  E V j +  1 ,  

3.  x ( t ) E  V 0 e x ( t +  1 ) E  V o ,  

4 .  U V j  is dense in L2(R), and n V j  = { 0 }  , 
j~ Z J E  Z 

5.  there exists a scaling function @ E V o ,  with a non-vanishing inte,gral, such that the 

collection { @ ( t  - k )  I k E Z }  is a Riesz basis of V,. 

Since @ c V o  c V ,  , and from ( 2 )  and (5 )  one may conclude that there exists a sequence 

{ h [ n ] }  E 1 2 ( Z ) ,  such that the scaling function satisfies a two-scale difference equation 

given by 

This equation is also called the rejinernent or dilation equation. Usually no explicit 
- 

3. The number of samples in the expansion is greater than the number of samples in the original image. 



expression for the scaling function (I is available, but fast algorithms exist that use the 

dilation equation to evaluate (I at dyadic intervals [2, 22, 251. Sinc:e the dilates and 

translates of the scaling function are often used, they will be denoted by 

(Ij, = 2'/2(I(2't - k) . From the above properties it is immediate that the collection of 

functions {(Ij, ,}, , is a Riesz basis of V,. 

Now, let W, denote a space complementing V,  in V,,,, since V, c Vj +. , , then 

where O denotes a direct sum. Equation (2.21) implies that the spac~z W, contains the 

detail information needed to go from an approximation at resolution j to an approximation 

at resolution j + l ,  as shown in Fig. 2.2. 

Fig. 2.2. Multiresolution analysis of L,(R). 

Given the above properties, a function y is called a wavelet if the collection of functions 

{ ~ ( t  - k)(k  E Z} is a Riesz basis of W,,. If the shifts and dilates of this; wavelet function 

are denoted as y ,  , = 2'12 (2't - k) , then the collection of wavelet functions {( I ,  , } j, , , 
is a1 Riesz basis of L,(R), and there exists a sequence {g[n]} E l,(Z) such that 

The above equation implies that the wavelet functions can be obtained from their 

corresponding scaling functions. 

In general, there exists a dual multiresolution analysis associated with each MRA. For 

the dual MRA the approximation and detail spaces are denoted by c j  and w,, 

respectively. The properties of the dual MRA are the same as the original M[RA and its scaling 
j/2 " j /2 - 

ancl wavelet functions are given by $j, = 2 O(2't - k) , and @,, , = 2 y(2't - k) , 



respectively. Then any function x in L,(R) can be decomposed into its projections in 

approximation and detail spaces as 

k = -m j = o  k = - m  

In the above equation, the projection of the function x onto Wj is referred to as "the details 

at level j", and generates the wavelet coefficients associated with yj, k .  It is important to 

note that the spaces W, are not necessarily unique, because there are different ways to 

complement V,  in V,,,. Therefore, it is possible to construct different classes of wavelet 

functions for multiresolution analysis of signals [2, 22,25,26]. 

The above analysis represents a biorthogonal MRA, and the wavel.ets obtained with 

this analysis are referred to as biorthogonal wavelets. It is possible to construct an 

orthonormal MRA by imposing some orthonormality constraint. A sufficient condition for 

an MRA to be orthogonal is W, I V, or equivalently (YJ, cp( . - k))  = 0 ,  for all k in Z. 

In this case, the wavelet spaces W, are defined as the orthogonal complement of V,  in V,,,. 

Moreover, the collection of functions {@(t - k) I k E Z )  , and { ~ ( t  - k) I k E Z), constitute 

ortl~onormal bases for spaces Vo and Wo, respectively. Finally, in an orthonormal MRA the 

scaling and wavelet functions are the same as their duals. 

2.3.2 Multiresolution Analysis and Wavelet Bases of l,(Z) 

An orthonormal MRA based on wavelet bases for discrete-time signals in I@) is 

defined as a sequence of embedded closed spaces V-, c . . . c V-, c V.., c V, , such that 

V, = l,(Z) [18]. In this case, we have 

Let. W, denote an orthogonal space complementing V,  in V,,,, then ITj+, = V, O Wj. 

Assume that there exists a sequence h[n] in V, such that {h[n - 2k]JkE j! is a basis for V.,. 

Then, it can be shown that [33] there exists a sequence g[n] in the approximation space V ,  

such that {g[n - 2k]),. , , is a basis for W.,. This sequence is given by 



From the above discussion, one may conclude that {h[n - 2k], g [n - 2k] ), , , is an 

orthonormal basis for V,. Therefore, this decomposition can be iterated on V ,  for J times, 

ancl V, can be written as 

Thiis decomposition into approximation and detail spaces can be efficiently implemented 

by iterated perfect reconstruction filter banks [2,22,25, 341. 

In general, DMRA for discrete-time signals is very similar to MR.4 for continuous- 

tim.e signals. However, there exist a few important distinctions. First, in DMRA only a 

finite number of decomposition levels are being considered. Therefore, there exists a 

coarsest resolution associated with V,, and aJinest resolution associated with V,. Finally, 

in DMRA various iterated filters are used to perform the decomposition, whereas in MRA 

for continuous-time signals, a simple function and its scales and shifts are used to perform 

the reconstruction. 

Although multiresolution techniques are of great theoretical va1u.e and have been 

successfully used in many signal and image processing applications, in some cases they 

may be suboptimal or even misleading. A counter-example to multiresolution analysis is 

shown in Fig. 2.3. 

:Fig. 2.3. Counter-example to multiresolution analysis. (a) The original image (Comet Photo 
AG). (b) A two-level multiresolution decomposition of (a) with D4 orthogor~al wavelets [22]. 

The coarse approximation shown in top-left comer of (b) is unrelated to the full-resolution image 



2.4 Wavelets, Multiresolution Analysis, and Filter Banks 

Recent work on the construction of structured wavelet bases for the linear expansion 

of signals has shown that this problem is in many ways analogous to the design of 

multirate filter banks in signal processing applications [2, 22, 25, 3411. In fact, given a 

dis'crete-time sequence of length N, the Discrete-Time Wavelet Transform (DTWT) of this 

sequence can be efficiently implemented with multirate filter banks in O(N) [2]. This 

relation is evident from equations (2.20) and (2.22), which basically represent filtering 

operations followed by sub-sampling. In these equations, the sequences h[n] and g[n] can 

be considered as impulse responses of the high-pass and low-pass filters in the synthesis 

poition of a iterated filter bank as shown in Fig. 2.4. 

synthesis 

Gs 

Fig. 2.4. Iterated two channel filter bank and decomposition tree. (bottom) The iterated filter 
bank, Hand G represent the high-pass and low-pass filters, respectivel:~. (top) The 

clecomposition tree corresponding to the analysis banks. The symbols A, ancl D, represent the 
coarse approximation and detail decompositions at level J, respectively. 

From Fig. (2.4) one can conclude that a frequency analysis can be obtained by 

iterating a two-channel filter bank on the previous low-pass channel. The implementation 

of multirate filter banks with iterated two-channel filter banks is often referred to as a 

constant-Q filter bank algorithm [2]. If the above filter banks have the perfect 

reconstruction property (i.e. if the transfer function of the entire system is unity), this 

system exactly resembles the DMRA of section 2.3.2. The corresponding approximation 



ant1 detail spaces for DMRA are labeled in the synthesis filter banks in Fig. (2.4). The 

cortditions for perfect reconstruction filter banks, Quadrature Mirror Filters (QMF), and 

their relation to wavelets is given in [2]. Another important link between the filter bank 

ancl wavelet theory is the fact that continuous wavelet bases can be obtained by iterated 

filter banks [2,22]. 

In signal and image processing applications, the greatest interest is in construction of 

structured bases. The wavelet bases more frequently used for image compression include 

orthogonal wavelets, biorthogonal wavelets, and wavelet packets. The compactly 

supported orthonormal wavelets can be efficiently implemented with F%'R filter banks [25, 

341. The oldest example of this type is the Haar wavelet. This wavelet has good time 

reslolution, but its frequency resolution is poor. In addition, it has poor regularity 

properties. To overcome these problems, Daubachies [22] proposed an algorithm for 

designing orthonormal and compactly supported wavelets that are more regular, and can 

be efficiently implemented with filter banks. These filters are called Daubachies (Dn) 

filters. The Haar wavelet (or equivalently D l  wavelet), D2 wavelet, and their 

corresponding scaling functions are shown in Fig. 2.5. 

Fig. 2.5. Examples of compactly supported orthogonal wavelet. (a) The Haar scaling function. 
(b) The Haar wavelet function. (c) The D2 scaling function, (d) The D2 wavelet function. 



A major disadvantage of the compactly supported orthonormal wavelets is their 

asymmetry. In image processing applications it is more desirable to have symmetric 

wavelets bases. A lack of symmetry results in nonlinear phase FIR filter banks, and 

cor~sequently causes reconstruction artifacts at the boundaries of the objrzcts. 

To obtain both compact support and symmetry, one may use bior1:hogonal wavelets 

[2]. An example of a biorthogonal wavelet based on spline functions is shown in Fig. 2.6. 

Fig. 2.6. Example for bi-orthogonal wavelets. (a) The analysis scaling function, (b) The analysis 
wavelet function, (c) The synthesis scaling function, (d) The synthesis wavelet function. 

Shift-orthogonal wavelets constitute another class of symmetric and compactly 

su~~ported wavelets that are suitable for image compression [35].  In this class the wavelets 

are orthogonal to their translates within the same scale but not across scales. They allow 

the design of shorter wavelet synthesis filters while preserving the orthogonality within the 

independent wavelet channels. These features can be used for efficient. quantization and 

cocling of individual channels [36].  Furthermore, because of orthogonality with respect to 

shifts this class of wavelets can be implemented with standard tree-structured perfect 

reconstruction filter banks. 



2.5 Wavelet Packets 

Wavelet Packets (WP) were introduced in [24] as a family of orthonormal bases for 

discrete functions of RN, and include the wavelet basis and STFT basis as their members. 

In fact, wavelet packets represent a generalization of the multiresolution decomposition of 

signals into wavelet bases that encompass the entire family of subband tree 

dec:ompositions. In contrast to wavelet analysis, in WP analysis the details as well as the 

approximations are decomposed, as illustrated in Fig. 2.7. 

Fig. 2.7. Decomposition tree for a signal. The symbols A, and Dj represe.nt the coarse 
approximation and detail decompositions at level J,  respectively. (a) Wavelet tree 

decomposition. (b) Wavelet packet tree decomposition. 

While for a J-level wavelet decomposition there are J+l possible ways to decompose a 

signal, for a J-level wavelet packet decomposition there are 2 5  possible different ways to 

dec:ompose a signal. This gives a rich menu of basis functions that can be used to represent 

independent segments of a non-stationary signal. Choosing one ou~t of all possible 

dec:ompositions presents an interesting problem that will be discussed further in 

subsequent chapters. 

2.6 Concluding Remarks 

Wavelet theory offers a set of new tools for signal analysis and expansion. The time- 

frequency characteristics of wavelets, and their relation to multirate filter banks is well 

suited to many image processing applications. An interesting case in wavelet based 

expansion is when an adapted basis is used for analysis. In this case the transform depends 

on the signal and it is possible to find best bases that will allow sparse and high resolution 



expansion of signals. These types of bases are most desirable in image and video 

cornpression applications, because they result in expansions that retain the most energy in 

the fewest possible number of coefficients. In addition, no prior modlel for the data is 

assumed in adaptive expansions. The adaptive expansion of signals based on best basis 

selection is the subject of the next chapter. 



3. OPTIMAL ADAPTIVE SIGNAL EXPANSION WITH SEGMENTED 
ORTHOGONAL MATCHING PURSUITS 

3.1 Introduction 

In recent years, transform based techniques using a fixed set of Fourier or wavelet 

basis functions have been extensively used for image representation and lossy image 

cornpression [I ,  21. In these techniques, the signal is first expanded into a linear 

cornbination of a fixed number of basis functions called atoms. If the transform captures 

the underlaying sparse structure of the signal, then most of the energy of the signal is 

retained in a few terms of the expansion. This is often referred to as energy compaction of 

the transform in compression literature. This energy compaction property of the transform 

car1 then be exploited with various quantization and coding technique:; to achieve lossy 

cornpression at low bit rates [2]. 

In this work the main concern is with the representation and compression of natural 

images. Natural images are two dimensional signals with unknown or time-varying 

characteristics. For this type of signal, linear expansion with a fixed set of basis functions 

is not flexible enough to represent the data with the desired degree of sparseness. For 

exaimple, the Fourier transform is not a good fit for regions with sharp discontinuities such 

as edges, and the wavelet transform is not a good fit for regions with periodic high- 

frequency components such as localized textures or stripes [3]. In general, the Fourier 

basis provides a poor representation of signals well localized in time: (space), and the 

wavelet bases are not well adapted to represent signals whose Fourier transforms have a 

narrow high frequency support. As stated in [37], linear decompositions in a fixed basis set 

are analogous to a text written with a small vocabulary. Although this vocabulary may be 

sufficient to express general ideas, it requires the use of circumvolution, or replacing 

available words by full sentences. Therefore, it is possible to improve the energy 

co~npaction of a transform by enlarging the number of atoms beyond a basis. This 



enlarged and redundant set of atoms is called an overcomplete dictionary [37]. In 

overcomplete dictionaries, some of the atoms can be represented by linear combinations 

of others. Consequently, the expansion of signals in these overcomplete dictionaries is not 

unique. However, this non-uniqueness can be exploited by using efficient adaptive 

algorithms to achieve signal expansions that are more sparse than the traditional fixed 

transforms. 

In recent years, there has been growing interest in the representation of signals with 

overcomplete dictionaries of atoms [2] .  In this type of signal expansion the following 

issues should be addressed: 

Which atoms should be included in a dictionary. 

Given a dictionary, how to select the best atoms to represent the signal. 

Answers to the first question have resulted in the introduction of .various dictionaries with 

different characteristics, and answers to the second question have produced a number of 

adalptive and non-adaptive algorithms for signal expansion. 

In this chapter a new adaptive algorithm for signal expansion is introduced. This 

algorithm often results in expansions which are sparse and high resolution. An algorithm 

for the construction of optimal and near optimal hybrid dictionaries is also presented. The 

organization of this chapter is as follows. Section 3.2 provides an oveirview of the most 

widely used dictionaries and a brief description of their characteristics. Although this list 

is not exhaustive, the dictionaries relevant to this work have been included. Section 3.3 

presents an overview of existing adaptive and non-adaptive signal expansion algorithms. 

Section 3.4 is devoted to the description of the new adaptive algorithm. Finally, 

experimental results and concluding remarks are provided in section 3.5. 

3.2 Classification of Dictionaries 

A dictionary is a collection of parametrized atoms given by I, := {Qy:y E r}. In 

this notation, the Q, 's are discrete-time vectors (atoms) of length N, and the parameter y is 

an index. If the number of atoms in I, is greater than N, then the dictionary is 

overcomplete, and if this number is equal to N, the dictionary is complete. An overview of 

the most widely dictionaries used in signal and image processing are given the following 



subsections. 

3.2.1 Dirac Dictionary 

The Dirac dictionary is the collection of Dirac delta functions, which are zero except at 

one point. Given a discrete-time signal of length N, this dictionary c.an be indexed by 

y == (0, 1, ..., N - I ) ,  and the atoms are given by 

where I[, = yl is the usual Dirac delta function, which is equal to one if n = y, and zero 

otherwise. From (3.1) it is clear that B is a collection of standard basis functions, and 

therefore it constitutes an orthonormal basis for RN. The atoms in this dictionary are well 

localized in time, but their frequency localization is very poor. 

3.2.2 Heaviside Dictionary 

The Heaviside dictionary is a collection of step functions. Given a discrete-time signal 

of length N, the atoms in this dictionary are indexed by y = (0, 1, . . ., N - l ) ,  and are 

given by 

The time localization of the atoms of this dictionary is not as good as the Dirac dictionary, 

but the atoms have better frequency localization properties. Although in this case B is 

complete, it is easy to show that the atoms in this dictionary are not orthlogonal. 

3.2.3 Frequency or Fourier Dictionaries 

This type of dictionary is simply a collection of sinusoidal waveforms. The atoms in 

this; set can be indexed by an angular frequency o E [ O ,  2n), and a phase type indicator 

p E: (0, 1 1 ,  where the indices 0 and 1 correspond to sine and cosine functions, 

respectively. Therefore, the atoms in a Fourier dictionary can be indexed by y = (ak,  p) , 

ancl are given by 



ancl 

In the standard Fourier dictionary the cosines are sampled at o, = 2?ck/N, for 

k == 0, 1, ..., N/2, and sines are sampled at o, = 2?ck/N, for k = 1, .. ., N/2 - 1.  This 

dictionary consists of N waveforms that are mutually orthogonal, and therefore form a 

basis for l,(Z). It is also possible to obtain overcomplete Fourier dictionaries by 

oversampling the angular frequency. Other frequently used dictionaries in this class 

include the sine and cosine dictionaries. This class suffers from poor frequency 

localization properties. 

3.2.4 Time-Scale Dictionaries 

A time-scale dictionary is a collection of the dilations and translati'ons of a function, 

ca:lled the mother wavelet, together with the dilations and translations ol' a function called 

the scaling function. In this case the atoms are indexed by y = (a, b, p) ,  where 

a ~i (0, 00)  , b E [0, N] , and p E (0, 1 } . Here, the values 0 and 1 for p correspond to the 

scaling function and the mother wavelet, respectively. The atoms in this dictionary are 

given by 

ancl 

For the applications of this thesis, discrete-time atoms defined on a dyadic grid are of main 

interest. In this case the dyadic scales are given by a, = 2 ' / ~ ,  for J = 1, . .., log2(N)-1, 

ancl the translations are specified by integer multiples of the scale as b,, , = k . a,, for 
J k == 0, ..., 2 - 1. 

The oldest member of this family is the Haar dictionary, in which the mother wavelet 

is defined as y = I[,, - I( ,,,, , and the scaling function is given by @ = I[,, . The 



wavelet forms an orthonormal basis for h(Z), and has good time localjization properties, 

but poor frequency localization and regularity properties [22]. For this type of dictionary a 

wide variety of wavelets with various time localization, frequency localization, and 

regularity properties can be derived from the two-scale equation. The most important 

variations include the compactly supported and orthogonal Daubechies wavelets, and 

Daubechies near symmetric wavelets [22], biorthogonal wavelets [2], shift-orthogonal 

wavelets [35, 361, and spline wavelets [26], and multiwavelets 1231. For 2-D signals both 

separable and non-separable wavelets are possible [2, 221. Separable 2-D wavelets are 

obtained from the tensor product of 1-D wavelets, and because of this directional 

preference a wider range of separable wavelet dictionaries is possible. 

3.2.5 Time-Frequency Dictionaries 

A time-frequency dictionary is a collection of modulated functions indexed by angular 

frequency, time location, phase, and duration. In this case the atoms in the dictionary are 

indexed by y = (o,, T,, An, 0 ) ,  and the atoms are given by 

where 0 E { O ,  W 2 } ,  and for a fixed An, complete and overcomplete sets of dictionaries 

are obtained by different choices of sampling frequencies for o, and T, [38]. The oldest 

members of this class of dictionaries are the STFT or Gabor dictionaries [19]. These 

dictionaries are complete, and have better time and frequency localization properties than 

the Fourier dictionaries. However, their time and frequency localization properties are 

inferior to those of time-scale dictionaries. More recently a number of ~vercomplete time- 

frequency dictionaries have been proposed that have better localization properties than 

Gabor dictionaries. These are wavelet packet (WP) and cosine packet (CP) dictionaries [2, 

241. These dictionaries offer a rich menu of atoms for signal expansion. In fact, the 

ortlnonormal wavelet dictionaries are special cases of the wavelet pack.et dictionary, and 

the standard Fourier and Gabor dictionaries are special cases of the cosine packet 

dictionary. 



3.3 Optimal and Sub-optimal Signal Expansion 

Let x = {x[n] ;n = 0, 1, . . . , N - 1 }, be a discrete-time signal in a finite dimensional 

Hilbert space 31= RN, with the inner product of x, y E 31 defined as 

and its norm as llxll = ( x  x ) ~ .  Given a dictionary of basis functions D = {Qy:y E r} 
in .e with IIQyll = 1 and span(D) = % the goal is to obtain an exact representation of x 

with linear combinations of a small number of atoms in D such that 

or an approximate decomposition as 

where { ( P ~ } ~  represents the set of atoms in D, the ay  's are the coefficients of expansion 

(ay E C ,  where C denotes the set of complex numbers), and r is the residual. 

Alternatively, If all atoms in the dictionary are written out as columns of a matrix @, 

ancl all the coefficients as a column vector a, then the decomposition in (3.9) can be 

written as a linear equation given by 

In 1 his notation, the problem reduces to that of finding an exact or approximate solution for 

the above linear equation. 

In signal representation and compression applications, the goal is to expand a signal 

over D, with a small number of atoms retaining most of the energy of the signal. These 

expansions will be also referred as approximations. An optimal approximation with L 

atoms can be defined as follows. 

Definition 3.1 Let D = {Qy:y E r}, be a dictionary of atoms in tzn N-dimensional 

Hil'bert space 3t Let f denote the approximation of x E 31, by L atoms in D (L 5 N), 

such that 



Then, an L-optimal approximation is an expansion that minimizes E, = 112 - xll . 

When 1) is complete and the atoms in 1) are orthogonal, it constitutes an orthonormal 

basis for 34; and the error E, is minimized by simply selecting L atoms that have the 

largest inner products with x .  Therefore, an L-optimal approximation for x can be found in 

O(?J2) operations. For certain bases and spaces, it is also possible to estimate the rate of 

decay for E, , as L increases. For example, when atoms in 1) are wavelei bases, the rate of 

the decay of E, for functions that belong to certain Besov spaces can 11e estimated [39]. 

Furthermore, it is shown that this wavelet representation is asymptotically near optimal in 

the sense that the rate of decay for E, is equal to the largest decay attainable by a general 

class of nonlinear transform-based approximation schemes [39]. 

When B is overcomplete, the error E, can be minimized by simply selecting the L 

atoms that have the largest inner products with x.  In fact, the problerrl of finding an L- 

optimal approximation with general overcomplete dictionaries is NF-hard due to the 

following theorem [40]. 

Theorem 3.1 Let 1) be the set of all dictionaries for an N-dimensional Hilbert space 

that contains O(W) atoms, cohere k 2 1 .  Then Jinding the L-optimal approximation 

problem is NP-hard. 

The above theorem implies that the problem of finding an L-optimal approximation 

for general dictionaries is an NP-hard problem. However, for specific dictionaries such as 

the orthonormal wavelet dictionary mentioned above, this problem can be solved in 

polynomial time. 

Because of the difficulty of obtaining an L-optimal approximation, one can resort to 

near optimal or suboptimal expansions over a specific dictionary of atorr~s. In recent years, 

a variety of algorithms have been proposed to find near optimal exparlsions in different 

applications. Some of these algorithms are explained in the following subsections. 

3.3.1 The Method Of Frames 

The Method of Frames (MOF) uses an optimization procedure that adaptively refines 



the signal approximation over a redundant dictionary of basis function~s [22,  381. Given 

@a = x ,  and an overcomplete dictionary B whose elements belong to a finite 

dimensional Hilbert space 9f= RN, MOF tries to find a representation of the signal whose 

coefficients have minimal l2 norm by solving the following optimization problem 

minllall, subject to @a = x (3.13) 

The solution to the above problem is often called a minimum-length solution, because the 

collection of all the solutions to (3.1 1) form an affine subspace of RN, znd MOF finds the 

eleiment of this subspace closest to the origin [41]. The minimum-length solution to this 

problem is found by the generalized inverse of @ as 

a,, = @'(@@')-'x 

The numerical value of a,,, is often obtained with conjugate gradient iterative algorithms, 

which are faster than the generalized solutions using singular value decomposition [41, 

421. For the wavelet packet dictionary, the frame is tight, and the solutioi~ to MOF is given 

in closed form by 

In this case @' is the analysis operator of the wavelet packet dictionary and can be com- 

puted with N(log,N) operations. The major disadvantage of MOF is tha.t it often does not 

exploit the sparse structure of signals [43]. Moreover, the resolution of' the MOF expan- 

sioin is limited and can not resolve those features of the signal that are sharply localized in 

time [43]. 

3.3.2 The Method Of Best Orthogonal Basis 

The method of Best Orthogonal Basis (BOB) is a fast algorithm that adaptively selects 

a single orthogonal basis that is the best basis in the wavelet packet dictionary, based on an 

entropy measure [44]. Let x[B], represent the vector of coefficients corresponding to the 

expansion of x over an orthogonal basis set B, e(*) be a scalar func1:ion with a scalar 

argument, and let E(x[B]) = X I  e(x[B],) define the entropy of x [ q .  Then BOB finds 



the best orthogonal basis in order of N(1ogN) operations, by solving the following 

optimization problem 

min{!E(x[!B]): (9 c D)} (3.16) 

When a signal can be sparsely expanded over an orthogonal basis in D, this method works 

well1 and produces near optimal expansions for a signal in terms of sp,arsity, but fails to 

deliver a sparse representation when the signal is a superposition of a moderate number of 

highly non-orthogonal components [43]. 

3.3,.3 The Single Tree Algorithm 

The Single Tree Algorithm (STA) searches a wavelet packet dictionary for the best 

bases to represent the signal, by using a cost function and a fast search algorithm [45]. The 

goa.1 of the STA is to find a representation that is more suitable for signal compression in a 

Rate-Distortion (R-D) sense. STA uses the Lagrangian cost function J := D + hR,  which 

tracles off rate for distortion at a quality factor given by the Lagrange multiplier h 2 0 .  In 

STA the parameter h represents the absolute slope of the R-D curve, and the optimal slope 

for a specific coding goal should be matched to the target rate R. Due to convexity of the 

R-L) curve, the optimal value of h can be obtained with a fast search algorithm, as follows. 

Assume that the R-D cost metrics are additive over the entire WP tree. This assumption 

can be written as R(tree) = x ~ ( l e a f  nodes),  and D(tree) = z ~ ( l e a f  nodes).  

Then grow a full tree for the entire signal up to a maximum fixed depth, and populate each 

WF' tree node with the minimum Lagrangian cost over all quantization choices Q, for that 

nocle. Then the minimum cost at each node can be found from 

J(node) = min [D(node) + hR(node)] (3.17) 
Q 

thein starting from the leaf nodes, the full WP is recursively pruned sub.ject to an optimal 

dynamic programing split-and-merge decision. In this algorithm the children nodes are 

pruned if J (parent  node) I [J(child 1) + J(child2)l. For a discretedime signal of size 

N, !.he computational complexity of this algorithm is N(1ogN). 



For 2-D images, it can be shown that the number of atoms A(d), jn a single tree of 

depth d, is given by the recursion A(d) = [A(d - 1)14 + 1, with A(l) = 2. For example in 

a depth five 2-D WP decomposition, the STA algorithm should search a wavelet packet 

dictionary of 5.60 x atoms. 

The STA algorithm produces an R-D optimal expansion for stationary signals. 

However if the signal is non-stationary or exhibit time-varying ch~aracteristics, this 

algorithm can not locally adapt to different segments of the signal. 

3.3.4 The Double Tree Algorithm 

The Double Tree Algorithm (DTA) is simply an extension of the STA from frequency 

decomposition to the joint time-frequency decomposition of signals, as shown in Fig. 3.1 [46]. 

frequency decomposition - 

Fig. 3.1. Single and double tree of depth two for a 1-D signal. The single tree algorithm (left) uses 
a. fixed dictionary of wavelet functions and performs a static frequency decoimposition on the 

signal. The double tree algorithm (right) performs a spatial decomposition. in addition to 
frequency decomposition. Solid lines present the frequency tree and dotted lines present the 

spatial tree. 

In IDTA a single tree is first grown on the entire signal and stores the associated cost at 

each node by using the single tree algorithm. It then calculates the single tree for the first 

andl second halves of the signal and stores the costs at each node alnd continues the 

decomposition by bisecting the signal in a similar manner until the desired depth is 

reached. The double tree is then pruned in a manner similar to STA. 



For a discrete-time signal of size N, the computational complexity of this algorithm is 

~ ( 1 0 ~ ~ ) ' .  For 2-D images, it can be shown that the number of atoms D(d), in a double 

tree of depth d, is given by the recursion D(d) = [D(d - 1)14 + ~ ( d )  -A(d - 1) + 1, 

with D(l)  = 2, where A(d) is the number of bases searched by a single tree of depth d. For 

exzlmple, in a depth five 2-D double tree WP decomposition, the algorithm should search a 

wavelet packet dictionary of 6.50 x 1096 atoms. In this algorithm, coarse segmentation of 

the signal in this algorithm may result in boundary artifacts in the reconstructed signal. 

Thi~s problem can be solved in a number of ways as explained in [47,48]. 

3.3.5 The Method Of Basis Pursuit 

The method of Basis Pursuit (BP) uses a convex optimization procedure that 

adalptively refines the signal approximation over a redundant dictionary of basis functions 

[43]. Given @a = x ,  and an overcomplete dictionary D, whose elements belong to a 

finite dimensional Hilbert space H= RN, the method of BP tries to find the representation 

of the signal whose coefficients have minimal I ,  norm. That is, one: has to solve an 

optimization problem of the form 

minllallI subject to @a = x (3.18) 

From one point of view, the method of BP is very similar to the method of frames, because 

it simply replaces the 1, norm in the method of frames with the 1, norm. However, this 

minor change has a major impact on the outcome of this optimization problem [43]. While 

the method of frames solves a quadratic optimization problem, BP shou~ld solve a convex 

ancl non-quadratic optimization problem. Although the method of BP involves nonlinear 

optimization, it is possible to reformulate the equation (3.17) into a linear optimization 

problem with the method of slack variables [49]. Moreover, for a signal at a noise level of 

o :. 0, it is possible to obtain an approximate solution as in (3.10) by solving the following 

optimization problem 

where h, = o,./21og(card(D)), and card(D) denotes the number of distinct basis 



functions in the dictionary. Based on the theory of linear programing, it is possible for the 

linearized BP to converge to a global optimum. However if the signal is non-stationary, 

this algorithm will choose a set of atoms that is best on average for the whole signal, but 

can. not effectively exploit the local sparse structure of the signal. 

All of the above optimization techniques start with a general model for the signal and 

perform a global optimization to select a subset of atoms from the dictionary which best 

represent the signal according to an optimization criterion. In other words, they adopt a 

bottom up approach by expanding the signal over all the atoms in the dictionary and 

proceed by pruning the representation into an approximation which is optimal for the 

entire signal. However if the signal is non-stationary or exhibit time-varying (space- 

varying) characteristics, most of these algorithms1 can not locally adapt to different 

segments of the signal and produce expansions which are suboptimal for the entire signal 

in terms of sparsity. 

In signal compression applications, it may be more advantageous to use a top-down 

greledy algorithm that starts with a single atom that best approximate the signal according 

to a given measure of optimality and proceeds by refining the approximation by selecting 

more atoms from the dictionary until the desired bit budget or PSNR is achieved. A top- 

down algorithm that is suitable for such a greedy approximation is the method of matching 

pursuit. 

3.3,,6 The Method of Matching Pursuit 

The method of Matching Pursuit (MP) [37] uses a greedy algorithm that adaptively 

refines the signal approximation with an iterative procedure. This algorithm is basically a 

special case of the Projection 'Pursuit (PP) algorithm in statistical parameter estimation 

theory [50, 511. Let 2, = {q,:y E T}be a dictionary of unit vectors in H = RN, 

and x E H b e  the input signal. The MP begins by searching 2, for some qYo, and 

prqjecting x onto this atom as 

1. The DTA algorithm is the only bottom-up algorithm that can adapt to local structure of the signal. 



where the superscript (-) denotes the number of iterations. Clearly, the residual r"'x is 

orthogonal to qYo . This implies that 

llx112 = qt)I2 + llr'1'x112 (3.21) 

In order to minimize the norm of the residual in (3.2 I), the atom qy0 E 2) has to be chosen 

such that 1 (x ,  q41)I is maximized. Therefore q , ,  should be selected such that 

where the parameter 0 < a 5 1 ,  is an optimality factor. For finite dimensional spaces 

(3.22) reduces to l(x, qYJl 2 a ( ( x ,  qY)l, for yo t y,  and a is typically close or equal to 

one. The algorithm then chooses the next basis in D to match r"'x, and proceeds 

iteratively on the residues until some measure of error or convergence criterion such as 

l2  norm is met. For example, the algorithm could be terminated at iteration p if 

Ilr("xll < ~llxll for some E > 0. 

The MP algorithm can be summarized as follows. Let r(O'x = x , assuming r'*'x have 

been already computed, then qyk can be chosen from D, such that 

then proceeding by projecting r'k)x onto qYk as 

since r('* "x is orthogonal to qYk 

Then, after p iterations of the algorithm 

The: residual r(")x in (3.26) is the approximation error, and its energy is given by 



The convergence of the error to zero in infinite dimensions can be proven as a 

consequence of the proof for the convergence of projection pursuit regression [52], and is 

given in [37]. The convergence of error can be extremely slow in intinite dimensional 

spaces. However, the convergence in finite dimensional spaces is exponential. For finite 

dimensional spaces, the rate of decay of 1lr"'xll depends on the correlation between the 

resi~dues and elements of D. This correlation can be quantified by using the correlation 

ratio as defined below. 

Definition 3.2 Let D = {qY:y E r} be a dictionary in ajinite dimensional Hilbert space 

31: 'Then for any x E H, and qY E D, the correlation ratio of x with respect to D is given 

by 

The correlation ratio can be used to prove that in finite dimensional spaces the rate of 

convergence for MP is exponential, as stated in the following theorem [387,40]. 

Theorem 3.2 Let D = {oy:y E r} be a dictionary in ajinite dimensional Hilbert space 
2 

31: 7'hen for any x s H, the energy of the residual Ilr(')xII in the MP algorithm has an 

exponential decay. 

Proof: Let q,,, be the atom selected by the MP algorithm at iteration p, and let a = 1. 

Then the correlation ratio for r("x is given by 

and by (3.25), the energy of the residual error in iteration p+l is given by 

Sin'ce there exists at least one basis for Hin D, and the unit sphere of His compact in finite 

din~ensions, it can be concluded that there exists a A,,, > 0 ,  such that p(r("x)  2 h,,, 

[37]. Therefore, from the above equation it can be concluded that the energy of the 
1 2 

residual decays exponentially with a minimum rate of --log(1 - h,,,) . 2 



3.4 The Segmented Orthogonal Matching Pursuit 

Although in (3.26), the residue r"'x is orthogonal to cpy,, , , it may not be orthogonal 

to Ihe other bases in the dictionary. Therefore, even in finite dimensional spaces, the rate 

of convergence of the MP algorithm can be extremely slow. This fact is illustrated in the 

following example. 

Example 3.1 Let = RZ, and D = {cp,,cp2}, where cp, = [1 ,0 l r ,  and 

cp2 = [ c o s ( ~ ) ,  sin(8)lt, and let x = [0.5, &/2].  Then it can be verified that for small 

values of 8, the MP algorithm converges very slowly. The convergence curve for the above 

exa.mple when 8 = 20°, is shown in Fig 3.2. 

No. of iteration 

Fig. 3.2. Convergence rate of the matching pursuit algorithm for exaimple 3.1. 

The time varying characteristics of non-stationary signals can also slow down the 

corlvergence and sparsity of the matching pursuit expansions. In this case, because of the 

time varying behavior of signal, a single atom from the dictionary c8an not be a good 

matched to the local characteristics of the signal. Therefore, it is possible that the 

algorithm selects wrongly in the first few iterations, and then start correcting for these 

mistakes by iterating on the residue. 

To overcome these problems a simple two-step algorithm is introduced in the 

fo1:lowing subsection. This algorithm greatly improves the performance of the original 

matching pursuit in terms of sparsity of expansion and speed of c:onvergence. This 

algorithm is called the Segmented Orthogonal Matching Pursuit (SOMP'). 



3.4.1 The Segmented Orthogonalized Matching Pursuit Algorithm 

In general, the atom cpykselected at each iteration of the MP algorithm is not 

ortliogonal to the previously selected atoms cp for 0 l p < k .  When the algorithm 
YP ' 

subtracts the projection of r'"x, it introduces new components in the directions of the 

previously selected atoms. This problem can be avoided by orthogonalizing the direction 

of projections at each step of the algorithm. The time varying characteristics of the signal 

can1 be exploited by a proper time (space) segmentation algorithm. If piroper criterion for 

segmentation is selected, the algorithm will converge faster and consequently produces an 

sparse representation for the data. The SOMP algorithm for one-dimensional discrete 

signals of length N can be summarized as follows2. 

Let D = {Q,: y E r) be a dictionary in a finite dimensional Hilbert space 9l= RN, and 

let x = {x[n] ;n = 0, 1, . . . , N - 1 }, represent a discrete sequence of length N, where N is 

an (even integer. Assume in the first iteration of the MP algorithm the, atom cpyl is selected 

from D The Segmentation and orthogonalization steps of the SORlIP algorithm are 

performed as follows. 

Step 1 : (segmentation) 

Letx,, = {x[n] ;n=O,  ..., N/2- l ) , andxr l  = {x[n ] ;n=N/2 ,  ..., N-1)bethe 

left-child, and right-child of x, at iteration one, respectively. Let J(x, cp,,) = (x, cp,,)/~~x~~, 

be the measure of correlation between the selected atom cpYl and the given signal x. Then 

segment x into its left-child and right-child if the following criteria are met 

ancl 

The objective function in (3.29) is basically the correlation ratio that was introduced in 

Definition 3.2. It is a strictly positive number [37] that can be used to estimate the 

closeness of the match between the selected atom and signal in every iteration of the MP 

2. Extension to 2 - 0  signals for image processing applications is straighifonvard 



alg'orithm. The equation (3.29) states that if the atom is more correlated with any of the 

children, then segment the data, otherwise proceed with the next iteration. The condition 

in equation (3.30) ensures that the error at the boundary of the segmentation is finite. If 

nee:ded, the segmentation procedure can be carried out on children of x in a similar 

manner. The segmentation step allows the MP algorithm to use different type of atoms at 

each iteration to represent different segments of the signal, and conseqi~ently can greatly 

improve the speed of convergence and quality of the expansion. 

Step 2: (Orthogonalization) 

The MP algorithm can be orthogonalized to ensure that at each step of iteration the 

residue is orthogonal to all the previous terms in the expansion. The procedure for 

orthogonalization of the MP is similar for x or any of its children. However to keep the 

notation simple we only discuss the orthogonalization when x is being expanded. Let 

19, = cp,,, , and assume that at iteration p, the MP algorithm selects cp . This atom can be 
Y P  

orthogonalized with respect to all the previously selected atoms by 

ancl the residual can be found by computing the orthogonal projection of x onto the 

ortl~onormal complement of the space that has been created by the PI-eviously selected 

atoms, as 

using (3.30) and (3.3 1 )  we can write 

The orthogonalization step ensures that the residue r("x is orthogonal to all the 

previously selected atoms from the dictionary, and the signal x can be expanded as 

The above orthogonalization procedure results in a Orthogonalized Matching Pursuit 



(OMP). The orthogonalization process is an obvious step to improve the convergence of 

the matching pursuit. The need for orthogonal projections in an adaptive greedy algorithm 

war; first noticed by Donoho in the context of projection pursuit regression in statistics and 

has also been studied independently in [40]. 

The SOMP algorithm uses steps 1 and 2 until a stopping criterion is met. For 1-D 

signals, after p iterations of the algorithm, the signal x can be represented by a binary tree 

of depth p, with x as its root, and the parameters of the expansion can be efficiently 

indexed at the nodes of the tree for further processing. For 2-D signals, the algorithm 

generates a quadtree in a similar manner. 

3.4.2 Convergence of the SOMP Algorithm 

Because of the orthogonality of the residues with previously selected atoms from the 

dictionary, in finite dimensional spaces the SOMP and OMP algorithms converge in a 

finite number of iterations. 

Thleorem 3.3 Let Hbe an N-dimensional vector space. Then for any x E H,  orthogonal 

matching pursuit (OMP) algorithm converges in less than or equal to N iteration. 

Proof: The Proof is in the appendix. 

The convergence of the SOMP algorithm can be proven as a direct consequence of 

Theorem 3.3. However, It has to be shown that the error introduced at the boundary of the 

segmentation is finite. But this is true by virtue of the condition in equation (3.30). 

Therefore, the convergence property of the SOMP algorithm can be slummarized in the 

following theorem. 

Theorem 3.4 Let Hbe  an N-dimensional vector space. Then for any x E H,  segmented 

ort,hogonal matching pursuit (SOMP) algorithm converges in less thun or equal to N 

iteration. 

In general, for time-varying signals, the SOMP algorithm produces expansions that are 

more sparse than the OMP algorithm. This fact is illustrated in the following example. 

Ex,ample 3.2 Consider the signal shown in Fig. 3.3(a). This signal consists of a slow sin 

wave followed by a medium sine wave. The dictionary is a WP dictionary formed with D4 

atoms. The length of the signal is 512, and it is desired to expand the signal with 6 atoms. 



The residue plot for OMP and SOMP algorithms is shown in Figs. 3.3(b) and 3.3(c), 

reslpectively. While an OMP expansion with 6 atoms results in a PSNlR of 8.51 dB, the 

SOMP expansion with the same number of atoms has a PSNR of 9.39 dlB. 

Fig. 3.3. The OMP and SOMP residue plots for example 3.2. (a) The test signal. (b) Residue plot 
for OMP, PSNR = 8.51 dB. (c) Residue plot for SOMP, PSNR = 9.39 dB. 

The computational complexity of the SOMP algorithm is discussetl in the following 

subsection. 

3.4.3 Computational Complexity of the SOMP Algorithm 

We assume the space His finite dimensional and D is a dictionary with finite number 

of atoms. This algorithm is first initialized by computing a set of inner products given by 

(x .  9,) for all y E T. These inner products can be stored in a table for further processing. 

The process of selecting the first best atom from the table requires 0(1) operations, on 

ave:rage. After the selection of the best atom from the dictionary, the inner product of the 

children and residuals must be found. The inner product for the residuals; can be found in a 

recursive manner with the following updating formula 



Since at iteration p, the first two terms on the right hand side of (3.35) are already 

computed, the inner product ((pyp7 (py) is the only additional computation needed to obtain 

( r" + "x, (py) . Assume the inner product of any two atoms in the dictionary requires qiV) 

operations and there are q M )  inner products that has to be computed at each iteration. 

Therefore, for p iteration of the algorithm the total complexity is CKMNp). Now the 

nurnber of operations for orthogonalization process has to be computed. The 

orthogonalization can also be performed in a recursive manner in O(p2) operations for p 

atoms that have been selected by the algorithm [41]. Therefore, for ,p  iteration of the 

algorithm, the total number of computations for 1-D signals is given by (O('~+~*MN). 

3.4.4 Design of Optimal and Sub-optimal Dictionaries 

The selection of a suitable dictionary is crucial to the quality of representation in any 

signal expansion algorithm. Clearly, a dictionary with a fixed set of atorns is not adequate 

for expansion of general class of signals. For example, the Fourier basis is not suitable for 

expansion of signals with discontinuities and Haar basis is not suitable: for expansion of 

smooth signals. On the other hand, a very large dictionary with a variety of atoms is not 

also desirable. Because an optimal expansion over general dictionaries is an NP-hard 

problem according to the Theorem 3.1. 

An alternative is to establish an analogy between the problem of Vector Quantization 

(VQ) and matching pursuit. In fact, a single iteration of the matching pursuit is very 

sirr~ilar to the shape-gain VQ algorithm [18], and the MP algorithm can be seen as a 

cascade shape-gain VQ. Therefore, the generalized Lloyd algorithm can be used for 

design of optimal dictionaries for matching pursuit. However, given the complexity of the 

algorithm, and the need for training, suggests the need for a suboptimal solution. 

In many applications, various heuristics rules can often be used to design a suboptimal 

dictionary of atoms. This heuristic rules can be deduced from the properties of various 

dictionaries, as discussed earlier in this chapter. According to this study, wavelet packets 

cor~stitute a more general class of wavelets and offer a rich menu of atoms for image 



representation and image compression applications [3]. They are easy to implement and 

can. be efficiently indexed on a tree structure. This type of dictionary is also well suited for 

the SOMP algorithm. Because if a good match to the characteristics of the signal is not 

found, then the algorithm iteratively segments the signal until an efficient representation is 

obtained. Wavelet packet dictionaries are used in the following section, and will be used in 

the subsequent chapter for image compression. 

3.5 Experimental Results And Conclusions 

Simulations were carried out to demonstrate the effectiveness of the proposed 

algorithm. The first test signal consists of 256 samples from three different AR first order 

Markov processes with zero mean [78]. The first quarter has a variance of 50, and p = 0.1, 

the second and third quarter have a variance of 100, and r = 0.9, and the fourth quarter has 

a variance of 1, and p = 0.1, as shown in Fig. 3.5(a). The test signal 2 corisists 5 12 samples 

from line 256 of the test image Peppers, and is shown in Fig. 3.6(a). Finally, the test signal 

3 consists of 512 samples from line 256 of the test image Lena, and is shown in Fig. 

3.7(a). The corresponding segmented signals with the SOMP algorithm are shown in Figs. 

3.5(b), 3.6(b), and 3.7(b), respectively. The rates of convergence for the OMP and SOMP 

algorithms, and D4 wavelet packets are shown in Figs. 3.5(c), 3.6(c), and 3,7(c), 

respectively. In all cases the SONIP algorithm converges faster than the OMP algorithm. 

The rates of convergence for the test signals and OMP algorithm with Haar and D4 

wavelet packets are shown in Fig. 3.8. All the vertical axes in this section represent the 

normalized mean squared error. 

The experimental results in this section confirmed that the SOMP expansions are more 

sparse than the OMP algorithm. It also indicates that the rate of convergence can be 

reduced by selecting a suitable dictionary for signal expansion. 



Fig. 3.4. Convergence rates of OPM and SOMP algorithms for the test signal 1. (a) The test 
signal 1 ,  mixed AR(1) processes. (b) Segmented signal with the SOMP algorithm. (c) 

Convergence curves for the OMP and SOMP algorithms. 



Fig. 3.5.  Convergence rates of OPM and SOMP algorithms for the test signal 2 .  (a) The test 
signal 2 ,  Line 256 of test image Peppers. (b) Segmented signal with the SOMP algorithm. (c) 

Convergence curves for the OMP and SOMP algorithms. 



Fig. 3.6. Convergence rates of OPM and SOMP algorithms for the test signal 3. (a) The test 
signal 3, from line 256 of Lena. (b) Segmented signal with the SOMP algorithm. (c) 

Convergence curves for the OMP and SOMP algorithms. 



Fig. 3.7. Convergence of the OMP algorithm with Haar and D4 WP dictionary. (a) Test signal 1 
(b) Test signal 2. (3) Test signal 3. 
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4.. ADAPTIVE MULTIRESOLUTI[ON IMAGE CODING WITH QSOMP 

4.1 Introduction 

The storage and transmission of digital images in their original or raw form is usually 

very expensive or impractical. In order to make the widespread use of visual information 

in rnultimedia applications practical, data compression algorithms that o,perate at very low 

bit rates are needed. Moreover, progressive transmission is required in many multimedia 

applications where a user may only have access to a low bandwidth communication 

channel. For example, if progressive transmission is used in a telebrovvsing application, 

the user can stop the transmission of an intermediate version of an image, if it is of no 

interest to him. This can effectively reduce the required search time and bandwidth. In 

general, a good image compression technique for interactive multimed~a systems should 

be able to operate at very low bit rates (below 0.25 bitslpixel), produce an embedded bit 

stream, and be easy to implement. 

The main objective in any lossy compression technique is to optimize the trade off 

between the amount of compression, measured in bits per pixel (bpp), and the 

reconstructed image quality, measured by the Peak Signal-to-Noise Ratio (PSNR) or 

subjective evaluation. The above mentioned requirements motivate the use of 

multiresolution image coding techniques in future communication sysl.ems. The current 

tecl?niques used in very low bit rate lossy image compression include fractal coding, 

segmentation based coding, and subband/wavelet based coding. 

Fractal coding techniques were developed based on the theory of iterated contractive 

transformations and collage theorem to exploit the existing self similarities of natural 

images [53]. 

Segmentation based or so called second generation image coding techniques try to 

exploit structural properties of the image in order to achieve compression at very low bit 

rates [54]. In these techniques the image is segmented using edge maps or hierarchical 



data structures. Hierarchical data structures have gained popularity because they are 

relatively easy to implement and are multiresolution in nature [ 5 5 ] .  

Subband coding techniques have been developed based on the theory of filter banks in 

signal processing [2] and compactly supported wavelets in applied mathematics [22]. 

These multiresolution image coding techniques are rich in theory and easy to implement. 

The initial wavelet coding algorithms were designed to exploit the waLvelet's transform 

ability to compact energy into low frequency coefficients. These early subband coding 

algorithms demonstrated modest improvement in coding efficiency over standard 

transform based algorithms [2, 31. In recent years, a new class of wavelet based algorithms 

that exploit the wavelet's space-frequency compaction properties have achieved 

sigrlificantly improved performance over the previous techniques. These algorithms have 

been developed based on the fact that the wavelet decompositions can efficiently 

frequency compact the energy into a small set of low frequency coefficients, and also 

spatially compact the energy into a small set of high-frequency coefficients around the 

edges. The most popular wavelet based technique in this class is the Ernbedded Zerotree 

Wavelet (EZW) coder [56], that was further improved in [57]. Further ~~mprovement was 

achieved in [58] by using a Space-Frequency Quantizer (SFQ) for encoding of the wavelet 

coefficients. SFQ uses a jointly optimized spatial zerotree quantizer andl scalar frequency 

quantizer in a rate-distortion sense. A novel algorithm that unifies the EZW data structure 

and fractal coding was proposed in [59]. Finally, adaptive image compression techniques 

based on wavelet packets have shown promising results at lower bit rates. 

Because of the sparsity, high resolution, and robustness properties of signal 

representation with the methods of Matching Pursuit, it is possible to use these 

representations to achieve compression at lower bit rates. In this chapter two new adaptive 

multiresolution algorithms are proposed for image compression at low 'bit rates. The first 

algorithm is based on the encoding of QuadTree hierarchical data structures with 

Matching Pursuit (QTMP) [60]. The second algorithm uses the Quantized Segmented 

Matching Pursuit (QSOMP) to represent an image by a quadtree data structure. It will be 

shown that the QSOMP coding technique performs better than the existing wavelet based 

algorithms at rates below 0.5 bitslpixel and its performance is coniparable to other 



techniques at higher bit rates. The organization of this chapter is as follows. Section 4.2 

presents the QTMP coding algorithm. Section 4.3 introduces the QS'OMP algorithm. 

Finiilly, experimental results and concluding remarks are provided in section 4.4. 

4.2 Image Compression with Hierarchical Data Structures and Matching Pursuit 

The QTMP or QuadTree Projection Pursuit (QTPP) algorithm, is a1 novel algorithm 

that adaptively encodes the image segments that have been obtained from. a variance-based 

quadtree segmentation. In [6O] it was shown that this algorithm performs considerably 

better than JPEG in terms of subjective evaluation and PSNR, and its performance is 

comparable to the EZW algorithm at rates below 0.25 bitslpixel. In [61] it was shown that 

the QTMP can be efficiently implemented with a three layer neural network. Finally, the 

application of the QTMP algorithm in color image compression was studied in [62]. 

4.2.1 Image Segmentation with Hierarchical Data Structures 

Natural gray-level images can usually be divided into regions of different sizes with 

variable amounts of detail and information. There are a variety of hierarchical data 

structures for representing spatial data at multiple resolutions [55]. These models have 

been developed based on the principle of recursive decomposition and have found many 

applications in computer graphics, computer vision, pattern recognition, solid modeling, 

image processing, and geographic information systems. Hierarchical data structures are 

attractive for the following reasons 

They are relatively simple to implement. 

They adoptively decompose the image into subregions. 

The decomposition actually results in image segmentation. 

The tree structure can be efficiently encoded with a negligible amount of overhead. 

The most popular hierarchical data structures for image compression applications are 

QuadTree (QT) and Binary Space Partitioning (BSP) binary tree [5, 63, 641. 

Quadtree decomposition is a simple technique of representing irnages at multiple 

resolutions. In this technique, the image is recursively divided into four equal square 

regions depending on the activities in the blocks [55]. Quadtree segmentation of a 2nx2n 



image results in a tree whose root represents the original image at resolution level zero, 

and the four equally sized squares represent its children at resolution level one. Each pixel 

at r(:solution level j, has its own intensity x', and the parent node intensity is equal to the 

mean value of the intensities of its children nodes. At resolution level j (except for j = 

(n+l)), the node intensity is given by 

f o r j  = 1, ..., n and k, 1 = 0, ..., 2"-j-1. At each node, a decision must be made as to whether to 

decompose the corresponding block into four squares of equal sizes or to stop the 

decomposition. In order to arrive at a decision, several measures of activity have been 

proposed in the literature. The most widely used measure of activit:y is the absolute 

diference [55] .  At each node, the value of the absolute difference is compared to a 

thrc:shold value l a s  

1 
< I  n I x k , 1 - ~ 2 k + ~ , 2 l + ~ l  - 

q , m = O  
(4.2) 

If the absolute difference is smaller than Z the recursive decomposition at that node is 

stopped. Otherwise, the node is further decomposed into four squares of equal sizes. 

The Binary Space Partitioning (BSP) tree is a binary tree whose root represents the 

original image 1651. This recursive partitioning technique takes as input an unpartitioned 

region Z((initia1ly the entire image), and a line 1 (selected according to some criteria) that 

intersects and produces as output two new regions formed by partitioning Kby I into 

two half-regions, and K+. The two half regions can then be similarly partitioned in a 

recursive manner until a termination criterion is met. This results in a hierarchy of regions 

in which the leaves of the tree correspond to unpartitioned convex regions called cells. A 

good segmentation is obtained when the pixel values within each cell are homogeneous. 

This desired feature (i.e. homogeneous cells) can serve as a terminating criterion. The 

non-leaf nodes of the BSP tree are associated with the partitioning lines, and the leaves 

represent the cells of the image. Every node in the tree represents a convex region of the 

image. Finally, the parameters of the partitioning line (p, 9) should be s'tored in the nodes 

of the BSP tree. There are two techniques for obtaining the parameters of the partitioning 



lines in a BSP tree. The first one is based on a boundary-based Hough transform 

technique, and the second one uses an optimization technique based on minimization of 

the I ,  norm [65, 661. In the latter case, the parameters of the partitioning line are obtained 

by minimizing the error &, given by 

where (p, 0) correspond to all possible values for the partitioning line I ,  Rl(p, 0) denotes 

the set of regions associated with I ,  x,, , represents the pixels in the image, and z,, , 
represents the model for the cell. 

Although the process of generating a BSP tree is more complex than a quadtree, the 

BSP tree is more efficient than the quadtree in representing images. These facts are 

illustrated in Fig. 4.1. 

Fig. 4.1. Quadtree and BSP tree segmentation of a synthetic image. (a) image of a polygon. (b) 
Quadtree segmentation map of (a). (c) BSP tree segmentation map of (a). (cl) The quadtree of 

(a). (e) The BSP tree of (s). 

Unlike the quadtree representation, which only allows square segmented regions, the 

segmented regions or cells of a BSP tree can be arbitrary shaped polygons. This may result 



in a more efficient and compact representation of digital images. In quadtree, the 

partitioning lines are simply vertical and horizontal lines at dyadic intervals and no extra 

co~nputation or bits are needed to encode these lines, but the representation is considerably 

more complex than a BSP tree. For the BSP-tree, most of the bits and computational 

power is used for generating and encoding the partitioning line parameters (p,8), at each 

node. In [5], the coding efficiency of the BSP and QT trees for natural images were 

compared. It was shown that the BSP coding gain is marginally higher than the QT tree, 

but it is computationally more expensive. 

4.2.2 The QTMP Image Compression Algorithm 

After generating the Quadtree representation of the image, each subregion or block in 

the tree can be coded using the matching pursuit image approximation technique. In every 

iteration, a function that best approximates the current image in the given block is selected 

froin the dictionary. In the first step of the iteration, the current image is the original 

image, and in step p, the current image is the residual (error) image which is obtained by 

subtracting linear combinations of all (p-1) previous approximations from the original 

image. Although various measures of error such as mean square error (or 1, norm), 

absolute error (or 1, norm), and uniform error (or 1, norm) can be used to assess the 

quality of the approximation, 1, is used because of its mathematical tractability. 

In order to obtain an efficient representation for each block, the dictionary should 

include both continuous and discontinuous functions, each with different degrees of 

smoothness and regularity. Two possible disadvantages of considering ia large dictionary 

are a slight increase in coding overhead, and an increase in computation. In [62], it is 

shown that even with a dictionary of sigmoidal functions, the QTMP algorithm performs 

considerably better than JPEG at rates below 0.4 bitslpixel. 

The QTMP image compression algorithm is shown in Fig. 4.2. In this algorithm xk, 

denotes the intensity of the image at location (k, 1), 2,, , its estimated vi%l~e, and ry: the 
( P )  ( P )  ( P )  residual image at iteration p. (3"' = {rp, , a  , P , &"')} represents the set of parameters 

at ileration p, d(.,.) the desired error metric, st = (k, I ) ,  and optimal values are indicated 

by the superscript "*". 



I .  Create the Quadtree segmentation map of the image; 

Start { 

2. Select a dictionary D = { (P,, jY ; 

3. For every block 3 = x in segmentation map, given desired PSNIZd; 

4. While (PSNR I PSN Rd ) { 

5. Let ?+I)= x; 

6. At iteration p, select the optimal parameter vector 0; ; 

,.(P) - * * ( P I  . - X - X  , 

7. Compute the PSNRp and the Bit Rate, Rp at iteration p); 

P* 

8. The expansion is P*"" = )i; 8; (a? * s  + P:) ; 
i = l  

9. Quantize, and code. 

end.) 

Fig. 4.2. The QTMP compression algorithm. 

In the above algorithm the error metric is usually the mean square error, and the 

linear expansion in step 6 is written in a different format to resemble the. output of a three 

layer neural network. The neural network corresponding to the above coding scheme is 

shown in Fig. 4.3. 

4.2.3 Quantization and Coding of the Parameters 

In order to achieve low bit rate compression, the optimum parameters for each block 

must be quantized before encoding. The optimum quantizer, in the mean square error 

sense, is a non-uniform quantizer that matches the probability density function of its 

input signal. 



F:ig. 4.3. Neural network implementation of the QTMP algorithm. Parameter P is mimicked in 
the node function cp,. 

Based on the distribution of the weights and biases and their dynamic ranges ranges, 

separate Lloyd-Max quantizers were designed for each set of block parameters [16]. 

Finally, the resulting quantized parameters were entropy coded. Various coding schemes 

such as Huffman coding, Shannon-Fano coding, and arithmetic c,oding [16] were 

considered, and arithmetic coding was chosen because it has the following advantages 

It can approach the entropy limit in coding efficiency. 

It requires only one pass through the data. 

It is generally faster than Huffman coding. 

In arithmetic coding, the encoder and decoder can work on-line. 

It requires no a priori analysis of the data set for bit allocation. 

Experimental results for the QTMP algorithms are provided in section 4.4. 

4.3 The QSOMP Image Compression Algorithm 

There are two basic problems with the QTMP algorithm. The first problem results 

from the fact that the processes of segmentation and expansion in this algorithm are 

independent. The second problem is associated with the sub-optimal quantization and 

coding of the MP parameters. In the QSOMP algorithm, the segmentaliion is performed 

based on the quality of representation, and the quantization of the parameters is performed 

in an optimal Rate-Distortion (R-D) sense. These facts are explained in more details in the 



fo1:lowing subsections. 

4.3.1 Integration of Segmentation with the Quality of Representation 

In the QTMP algorithm, the image is first segmented into homogeneous regions. Then 

the matching pursuit is used to construct a code for each segment. Therefore, the processes 

of segmentation and expansion are totally independent. In other words, the QTMP 

algorithm fails to utilize the concept of the adapted bases [3] for signal expansion in a 

global sense. However, it produces a compact representation for the horr~ogeneous regions 

of a quadtree segmentation map, by performing a local adaptive search over a small 

dictionary. For example, consider the encoding of a synthetic image with a dictionary of 

four atoms, as shown in Fig. 5.4. The QTMP algorithm first segments the image into four 

qua.rters, then uses the MP algorithm on each segment, and for this example converges in 

one step. This results in a quadtree of depth one, with one atom at each leaf. However, if 

the algorithm would have searched the dictionary for the best match beflore segmentation, 

the same image could have been represented with one or at most two atom. 

2-D atoms in a 4 element diction 

Fig. 4.4. Separation of segmentation and quality of representation in QTMP algorithm. (a) The 
synthetic image can be represented with a single atom. (b) The QTMP algorithm segments the 

image and needs four atoms. 



In contrast to the QTMP algorithm, the SOMP algorithm searches the dictionary for a 

best match before it makes a decision regarding the segmentation of the image. It is 

straightforward to show that the performance of the SOMP algorithm is lower bounded by 

the QTMP algorithm. 

4.3.2 The Quantized SOMP Algorithm 

In the QTMP algorithm, quantization of the MP parameters is performed after all 

parameters have been collected. This procedure is not optimal for a number of reasons. In 

this algorithm quantization is independent of the greedy algorithm. At every step of the 

greedy algorithm, the new coefficients of the expansion are obtained by using the results 

of the previous step. In addition, this algorithm normally  produce:^ high precision 

coefficients that might limit its use by general purpose hardware. In adldition, the PSNR 

connputation at step 7 of the algorithm (see Fig. 4.2), is performed on unquantized 

coefficients and can not be used as a reliable stopping criterion for the QTMP algorithm. 

To avoid these problems, the coefficients of the expansion can be quantized at every step 

of the iteration in an R-D sense. This strategy was used in the SOFM algorithm of chapter 

three, as explained below. 

Let Q(*) be a scalar quantizer with a variable step size, and R(*) be the desired rate in 

bits. At iteration P of the SOMP algorithm, after selection of the best atom p t ,  the 

coefficients of the orthogonal projections should be found and quantized appropriately. 

The: orthogonalization step is performed by orthogonal projections in a recursive manner, 

as before, and the residue can be computed as 

Now, to incorporate an R-D optimal procedure for the selection of the best atom in the 

dictionary, the variation in rate and distortion should be quantified. The change in 

distortion can be defined as 

Although, the terms in the right hand side of equation (4.4) may not be orthogonal because 



of i:he quantization, (4.5) and (4.4) can be used to approximate AD(cpy) as 

The variation in rate can be quantified by 

Therefore, an R-D optimal quantized SOMP can be obtained by selecting the best atom 

TY, ' as 

The quantized version of the SOMP produces a bit stream that is optimal in an R-D sense. 

Clearly, this holds only if a variable step size quantizer is used. A good algorithm to find 

the best quantizer is studied in [45] (see also chapter 3). When the above quantization 

stra.tegy and selection criterion is used in SOMP, the resulting algorithm is called the 

Quantized SOMP (QSOMP) algorithm. 

4.3,,3 Near Optimal Dictionaries for Image Compression 

As mentioned in the previous chapter, the optimal design of dictionaries for the 

matching pursuit algorithm is analogous to the codebook design piroblem in vector 

quantization. Therefore, one should to use suboptimal dictionaries with a heuristic 

selection criteria. For image representation and compression applications, a rich collection 

of a.toms with various degrees of smoothness or regularity are needed. In this chapter, a set 

of orthonormal one-dimensional (1-D) atoms were used, based on the study in [67], to 

create a dictionary of separable 2-D wavelet packets [2]. 

Using 1-D atoms in the dictionary has two major advantages. First, the directional 

preference leads to the concept of steerable wavelets [67]. This characterization can be 

exploited to create a richer menu of atoms for 2-D expansions, as illustrated in Fig. 4.5. 

The: second advantage is the considerable reduction in the computatiorial complexity of 

searching for the best atom in the dictionary. The computation of inner products for 2-D 

atoins can be performed more efficiently with two 1-D atoms. EIecause of these 

advantages, this dictionary of steerable wavelet packets, is called a near optimal 

dictionary. 



Fig. 4.5. Examples of steerable 2-D atoms obtained from product of 1-D atoms. 

4.3,.4 The QSOMP Image Compression Algorithm 

The QSOMP image compression algorithm is shown in Fig. 4.6. The main features of 

this algorithm are 

It adaptively finds the best atomic representation of the image ovler a dictionary of 

functions. 

It creates a multiresolution hierarchy of atoms with lower frequency information at 

the beginning of the stream (near the node of the tree), and the detail information 

appended to the bit stream at every iteration of the algorithm. 

The code is embedded. The encoder (decoder) can cease at any time and provide the 

best achievable representation of an image over the given atoms in the dictionary. 

It is possible to control the algorithm by constraining the PSNR, target bit rate, and 

number of atoms. 

It performs better than the existing wavelet based image compress.ion algorithms at 

lower bit rates, and its performance is comparable at higher rates. 



Start { 

I .  Select a dictionary of steerable I -D wavelet packets 9 = { qyIy ; 
2. Let floJ= x; (i.e. let the initial residual be the original image) 

3. Let R ,  equal to bit budget, PSNR, desired quality, NC, desired no. of coeficients; 

4. While ( PSNR I PSNR, or R 2 R, or NC I N C d )  { 

5. Pe$orm QSOMP on x J 

6. At iteration P select the best atom; 

7. Pack the atom and index at the quadtree node; 

8. lfsegmenting { 

9. Create the embedded code by adaptive arithmetic coding; 

10. Mark end of tree if segmented (insert EOT symbol); 

I 
I I .  Compute PSNR,, R,, and NC at iteration p; 

I; 

I; 

Fig. 4.6. The QSOMP adaptive multiresolution compression algorithm. 

In the QSOMP algorithm a quadtree data structure is used. QT has a. simple structure, 

and can be efficiently encoded [55, 681, since the quantized coefficients are available at 

each step of the iteration. If the algorithm decides to segment the image, it will store the 

required information regarding the atoms and atom indices at that nodle using link lists. 

The: atoms in the dictionary are wavelet packets that can be efficiently indexed on a 

quadtree as well. The optimal quantizer for this algorithm is a variable step size quantizer, 

however using a variable step size quantizer requires extra overhead. When the data is 

segmented and the tree expanded to the next resolution, the available dlata on the parent 

nod.es is entropy coded with an adaptive arithmetic encoder and inserted into the bit stream 

followed by an End of Tree (EOT) symbol. In contrast to most of wavelet based image 

conlpression algorithms, which first expand the signal and then select the best atoms by 

exploiting the space-frequency characteristics of the wavelets, this algorithm adaptively 



selects the best atom and progressively improves its estimate by adding more detail to the 

image. Experimental results are presented in section 4.4. The PSNR values and rate 

distortion curves of the test image Lena at rates below one bitslpixel foi- QTMP, QSOMP, 

JPBG [I], EZW [56], Improved EZW (IEZW) [57], SFQ [58], Single Tree Algorithm [3], 

and Double Tree Algorithm [3] are presented at the end of section 4.4. 

4.4 Experimental Results and Conclusions 

Simulations were carried out to demonstrate the effectiveness of the proposed 

algorithms. The test images Peppers and Lena (512x512~8) are shown i~n Figs. 4.7(a), and 

4.8(a), respectively. 

For the QTMP algorithm, the quadtree segmentation maps were generated by first 

dividing the test images into blocks of 32x32. These blocks were further subdivided into 

blocks of 16x16 and 8x8 based on different measures of activity. Both visual entropy and 

image variation measures [68] that produced nearly identical segmentation regions were 

examined. The segmentation map based on image variation measure for the test images 

are shown in Figs. 4.7(b), and 4.8(b). Once the image was segmented, the resulting blocks 

were coded using the following procedure. Every function in the dictionary was used to 

obtain the best approximation for each block by optimizing the parameters of the function 

in the mean square error sense. The optimal basis function was selected by performing a 

greledy search over all the functions in the dictionary. This provided the first level 

approximation for each block. The next levels of approximation were obtained by 

repeating the above process on the residual errors. The process was tenninated when the 

overall error dropped below the desired threshold, or the desired bit rate was achieved. The 

dicl.ionary considered in the experiments included the Daubechies orthlonormal wavelets 

of order 4 or less. Although theoretically a greedy search on a large 'dictionary should 

produce a better approximation of the image, the experimental results showed that a few 

basis functions (3 to 5, with various degrees of smoothness) are sufficient to produce 

almlost identical results. The parameters of the optimal bases for each block were 

quantized using Lloyd-Max quantizers. The histograms of the parametlers of each block 

were used to design the quantizers. For the experiments, Gaussian and Laplacian Lloyd- 



Max quantizers with 5 or 6 bits were used, which provided signal-to-quantization ratios in 

the range of 33-35 dB for all the parameter sets. Finally, the quantized parameters for each 

block were separately encoded with an adaptive arithmetic encoder [56] to form the 

co~npressed image. The decoded Peppers test image at the bit rate of 0.125 bit/pixel with 

PS:NR of 30.38 dB is shown in Fig. 4.7(c). For comparison, the JPEG al.gorithm was used 

to encode Peppers at a bit rate of 0.125 bidpixel and PSNR of 23.75 dB. The severe 

blocking artifact present at the JPEG decoded image can be seen in Fig. 4.7(d). The 

decoded Lena test image at the bit rate of 0.125 bit/pixel with PSNR of 30.25 dB is shown 

in Fig. 4.8(c). For comparison, the JPEG algorithm was used to encode Lena at a bit rate 

of 0.125 bit/pixel and PSNR of 26.75 dB. The severe blocking artifact present at the JPEG 

dec:oded image can be seen in Fig. 4.8(d). The SQOMP algorithm was tested on the same 

test images. The results for Peppers and Lena at rates of 0.5 bitslpixel, 0.25 bitslpixel, 0.15 

bitr;lpixel and 0.0625 bitslpixel, are shown in Fig. 4.9 and 4.10 respective:ly. The subjective 

quality of the reconstructed images are excellent. The dictionary consisted of steerable 

Dai~bechies wavelet packets. Fixed step size scalar quantizers weire used in these 

experiments. The computational complexity of searching for a single atom in the QSOMP 

algorithm, for a block of NxN in the image, with L I-D atoms of size N is given by 

L21V + ~ L N ~ .  Typical values for N are 16, 32, and 64. Therefore, the complexity of the 

algorithm highly depends on the size of the dictionary. However, the experimental results 

showed that the performance of our algorithm remains stable even for very small size 

dictionaries. Moreover, In [62] it was shown that even with a single element dictionary, 

QTMP algorithm outperforms JPEG at rates below 0.25 pitslpixel. For the QSOMP 

algorithm, the PSNR values along with the number selected atoms for the test image Lena 

are listed in Table 4.1. 

For the test image Lena, the PSNR of a few recent wavelet based image compression 

algorithms is shown in Table 4.2 and Fig. 4.1 1. The results show that the QSOMP 

algorithm performs better than the existing wavelet compression techniques at lower bit 

rate:s, and its performance is comparable at higher rates. Finally, the computational 

conlplexity of the algorithm can be further reduced by adopting a sub-optimal search 

crit'erion, and can be justified with the increasing power of digital computers. 



Fig. 4.7. Comparison of QTMP & JPEG compression algorithms for the test image Peppers. (a) 
Clriginal Peppers. (b) QT segmentation map of (a). (c) QTMP encoded at 0.1 25 bpp, PSNR = 

30.38 dB (d) JPEG, encoded at 0.125 bpp, PSNR = 23.75 dB. 



Fig. 4.8. Comparison of QTMP & JPEG compression algorithms for the test image Lena. (a) 
Original Lena. (b) QT segmentation map of (a). (c) QTMP encoded at 0.125 bpp, PSNR = 30.25 

dB (d) JPEG, encoded at 0.125 bpp, PSNR = 26.75 dB. 



Fig. 4.9. QSOMP compression results for the test image Peppers. (a) QSOMP encoded at 0.5 bpp, 
PSNR = 36.43 dB. (b) QSOMP encoded at 0.25 bpp, PSNR = 33.95 dB. (c) QSOMP encoded at 

0.125 bpp, PSNR = 31.87 dB. (d) JPEG, encoded at 0.0625 bpp, PSNR = 28.13 dB. 



Fig. 4.10. QSOMP compression results for the test image Peppers. (a) QSOMP encoded at 0.5 
bpp, PSNR = 37.35 dB. (b) QSOMP encoded at 0.25 bpp, PSNR = 34.55 dB. (c) QSOMP encoded 

at 0.125 bpp, PSNR = 31.46 dB. (d) JPEG, encoded at 0.0625 bpp, PSNIi. = 27.92 dB. 



Table 4.1 
PSNR and number of atoms encoded by QSOMP compression algorithm for the test image Lena. 

Table 4.2 
PSNR's of five different wavelet compression techniques for the test image Lena. 
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Fig. 4.1 1. Rate-distortion curves for the test image Lena and JPEG, EZW, QTMP, and QSOMP 
algorithm. 
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5. MOTION ESTIMATION AND COMPENSATION WITH QSOMP 

5.1 Introduction 

Due to the increased use of digital video in multimedia systems, in recent years, 

video compression has emerged as an area of intense research in recent years [2, 6, 71. 

Vicleo is a three dimensional signal consisting of a sequence of images. The individual 

images in a video signal are often called frames. Usually, video camera systems capture 

about thirty frames per second for a smooth motion to be perceived by the human visual 

system. Therefore the consecutive frames in a video clip are highly correlated except for 

instances in which a change of scene occurs. The presence of correlation structures 

related to motion in the successive video frames can be exploited to achieve high 

connpression. In this case, a single frame, which is a two dimensional signal, can be 

coded as a reference frame by an image compression algorithm, and future frames can be 

preldicted from the reference frame by a simple transformation such as translation [6, 71. 

The video compression schemes that use this hybrid approach belong to the class of 

Motion Estimation and Motion Compensation (MEMC) video compression algorithms. 

Although it is possible to extend two-dimensional image compression algorithms to 

video compression in three dimensional spaces [2], the hybrid MEMC techniques are 

widely used for compression of video signals because of their simplicity and good 

performance. For example, in emerging video compression standards such as H.261, 

MPEG, and the grand alliance HDTV broadcasting, a hybrid MEMC algorithm based on 

the concept of intraframe and interframe coding with Block-Based Discrete Cosine 

Transform is being used [I]. In the intraframe mode of operation, spatial redundancy is 

exploited by structuring a single frame into many small square blocks. These blocks are 

then DCT transformed, quantized, and coded. In the interframe mode of operation, the 

temporal redundancy between adjacent frames is exploited by using the lvlEMC algorithm 

to generate a prediction of the current video frame from previous (arid in the case of 



MPEG possibly from future) frames. The difference between this prediction and the actual 

frame is then DCT transformed, quantized, and coded. The block d.iagram of hybrid 

motion-compensated transform-based coding algorithm is shown in Fig. 5.1. 

Quantizer ) Ehtropy 

1 
I f 

motion 

Inverse I Quantizer I 
Inverse I Transform 1 

motion 
compensation 

I 4 

Motion Vectors t 
Fig. 5.1. Block diagram of hybrid motion-compensated predictive transfornn-based coding. 

Finally, the intraframe and interframe information, as well as th~e motion vector, 

synchronization, and other side information is structured into a sequence of compressed 

bit streams for storage or transmission. Although a number of different techniques for 

implementing the MEMC algorithm have been proposed in the liter(ature, the Block- 

Matching (BM) algorithm is the most widely used motion estimation technique in video 

conlpression applications [6,7]. 

The main disadvantage of a hybrid BM-MEMC video compression algorithm is the 

fac1 that the processes of prediction and transform coding of tlhe residuals are 

independent. As a result, the residuals can not be efficiently represented with the 

tranlsform coefficients. More specifically, at lower bit rates where only a few number of 

tranlsform coefficients are retained, the performance of the hybrid BM-MEMC video 

conlpression algorithms is not satisfactory. In this chapter, it is shown that the processes 

of prediction and residual coding can be unified by using a Quantized Segmented 

Ma1:ching Pursuit (QSOMP) MEMC algorithm. Experimental results show that this 

unilied framework performs considerably better than the traditional hybrid BM-MEMC 

algorithm. The organization of this chapter is as follows. Section 5.2 provides a brief 



overview of the BM algorithm. Section 5.3 introduces the QSOMP-MEMC algorithm. 

Finally, section 5.4 presents experimental results and concluding  remark:^. 

5.2 Block-Matching Motion Estimation 

Block-Matching (BM) is the most widely used motion estimation tlechnique in video 

cornpression algorithms. Its widespread use is due to its simplicity artd relatively good 

performance [7].  With the assumption of a smooth translational motion, the BM algorithm 

searches for local correlation maximums between neighboring blocks in successive 

frames, as depicted in Fig. 5.2. 

Frame n 

Fig. 5.2. Block-matching in the block-based motion estimation and compensation technique. 

Let z(k,I,n) represent the pixel values in a video sequence, where the variables k, I, and 

n represent the horizontal, vertical, and time dimensions, respectivel:~. Given a block 

B(i, j, n) = [z(i, j, n), . . ., z(i + N - 1, j + N - I)], of NxN pixels from the current frame 

n, with the top left corner at (i,  j )  , the best match for B should be searchled for in frame n- 

1. The search is usually limited to an (N+2m x N+2m) region called the se.arch window. Let 

x,, , = B(kN, IN, n) denote the block that is to be coded in frame n, then the set of blocks 

in tlne search window is given by 

In the first step of BM algorithm, a match for the current block shou1.d be found in the 

above set. BM algorithms usually differ in search strategies and matchin.g criteria. Search 

strategies include the exhaustive search, three-step search, and cross search. The matching 



of blocks can be quantified by using different criteria such as Maximum Cross Correlation 

(MCC), maximum Matching Pel Count (MPL), minimum Mean Absolute Difference 

(MAD), and minimum Mean Square Error (MSE). The most widely used matching 

cri1:erion is MSE. In this case, an estimate for the motion vector components, or the 

displacement vectors (i,, j,) , is obtained by 

(i,, j,) = arg min //xk, - $(kN - i, 1N - j, n - l)/l 
' 3  J 

ant1 the corresponding residual signal is given by 

ck, = xk, I - $(kN - i,, IN - j,, n - 1 ) (3.3) 

Finally, in the second step of the algorithm the prediction error in (3.2) is transform 

cocled and quantized. In the following section it is explained how these: two steps can be 

unified by using a modified matching pursuit algorithm. 

The above procedure results in a single pixel accuracy motion estima.tion. It is possible 

to considerably improve the performance of this type of motion estimation by using a sub- 

pixel accuracy motion estimation algorithm [6, 71. The sub-pixel accuracy motion 

estimation can be carried out in two steps. In the first step the previous frame is 

interpolated by a factor of two in both directions. The second step is similar to single-step 

motion estimation. That is, in the second step a current block is matched to a block in the 

previous interpolated frame inside a search window. 

5.3 Block-Matching Motion Estimation with Matching Pursuit 

The residuals obtained in (3.3) by using the MB-MEMC algorithm usually consist of 

high frequency components and can not be efficiently represented with a small number of 

DCT coefficients. Therefore, at rates below 64 Kbps, where only a few number of DCT 

coefficients are allowed, the resulting decoded video suffers from severe blockiness 

artifacts [ I ,  691. In [69] matching pursuit with a dictionary of Gabor functions was used to 

encode the residuals. It was shown that at the cost of computational complexity, the 

ma1:ching pursuit encoding of the residues produces better results, both in terms of PSNR 

and subjective image quality. 



In this algorithm, a different approach is taken by unifying the BM algorithm and the 

residual coding into a QSOMP framework. It is argued that the set of blocks in the search 

wiildow of the previous frame can be considered as a good dictionary of atoms for the 

expansion of the current block with the greedy QSOMP algorithm. This argument holds if 

smooth translational motion is assumed, which is the case in the MB-MEMC algorithm. 

The QSOMP-MEMC algorithm is shown in Fig. 5.3. 

Start { 
Given a current block xk, = B(kN, IN, n) in frame n: 
1. Interpolate the previousframe by a factor of 2 (use bilinear interpolation) 
2. For i, j E [-m, ..., m] { 

B(kN-i, ZN- j ,n -1)  
Let (Pi,, = 11 B(kN - i, ZN - j, n - 1)Il' 
1; 

3. Dejne the block dictionary DB = {(pk, 1 ;  i, j E [-m, . . ., m]); 
4. Dejne an auxiliary dictionary DA = {m Daubechies 0 2  atoms}; 
5. Iteration 1: use QOMP and DB; 
6. Stop i f  energy of residue < E ; 

7. Iteration 2 top :  { 
Use QSOMP and D A ; 

Stop if energy of residue < E ; 

/; 

Fig. 5.3. The QSOMP-MEMC algorithm. 

In step one, the interpolation of the previous frame is perform.ed for sub-pixel 

accuracy. The increase in the computational complexity is justified by the small size of the 

dicl.ionary. Furthermore, the computational complexity may be reduced by using a two 

step sub-pixel accuracy algorithm [6, 71. In this method, a single pixel accuracy 

approximation is perfrmed over the nine nearest neighbors of the current block in the 

previous frame, and then the approximation is refined by performing a sub-pixel accuracy 

approximation on the neighborhood of the best match obtained by the single pixel 

accuracy. 

The reason for using an auxiliary dictionary in step 4 is the fact that after the first 



iteration, the residues usually consist of high frequency components, and the atoms in the 

block dictionary are not adequate for representing the residues. 

The experimental results showed that the motion vectors obtained with the QSOMP- 

MEMC algorithm are usually different than those obtained from the MB-MEMC 

algorithm, and the residual energy of the QSOMP-MEMC algorithm, after the first 

iteration, is upper bounded by the residual error in the MEMC algorithm given in equation 

(3.3). 

In general, the value of the inner product (cpil, j,, xk ,), at the first iteration of the 

QSOMP-MEMC algorithm should be transmitted to the decoder. However, this value can 

be predicted from its corresponding block in the previous frame [6] as 

where a is a scaling factor representing the illumination change in successive frames, and 

0 is the angle between the current and the matching block. Since the illumination is 

relatively constant between successive frames, and the angle 0 is normally small, the 

above equation reduces to 

The decoder in the QSOMP-MEMC algorithm should perform more computations 

than the BM-MEMC decoder, because it needs to compute the required inner product 

operations in order to reconstruct the encoded frame. The experimental results are 

provided in section 5.4. 

5.4 Experimental Results and Conclusions 

Simulations were carried out on the Salesman and Claire video sequences. The test 

sequences were all QCIF (144 x 176) and 100 frames long. A single frame of each 

sequence is shown in Fig. 5.4. For the BM-MEMC algorithm, 6 and 12 DCT coefficients 

weire used, with an exhaustive search with the MSE as the matching criterion, and the 

motion estimation was performed with sub-pixel accuracy using bilinear interpolation. 

The performance of the coding was measured by computing the first order entropy of quantized 



Fig. 5.4. Frames from QCIF test video sequences. (a) Salesman. (b) Claire. 

coefficients. The bit rates were computed as the average number of bits required to encode 

a single block of data, and the block size was 8x8. The results for the MB-MEMC 

algorithm with 6 and 12 DCT coefficients are shown in Fig. 5.5. 

For the QSOMP-MEMC algorithm an optimal scalar quantizer was used in a rate 

distortion sense (see chapter4), and the approximations were performed with two step sub- 

pixel accuracy. The bit rates and performance were measured in the same manner. The 

reslults for the QSOMP-MEMC algorithm with 6 and 12 Daubechies orthonormal atoms 

are shown in Fig. 5.5. 

In both cases, the associated motion field information was not included in the bit rate 

cornputations, because these rates are equal for both methods. In both cases, the prediction 

of 1:he current frame was based on the uncoded previous frame. In order to compare the 

results for low bit rate video coding applications, only the performance for 5 bits per block 

to 30 bits per block was considered. The results illustrated in Fig. 5.5 indicate that at these 

low bit rates the QSOMP-MEMC algorithm performs considerably better than the 

traditional BM-MEMC algorithm. However, the decoder for the QSOMP-MEMC 

alg'orithm is more complex, because it has to compute the required inner products to 

rec'onstruct the encoded image. The experimental results, also showed that at higher bit 

rates, there is no advantage in using the QSOMP-MEMC algorithm. 



Fig. 5.5. Rate-Distortion curves for QSOMP-MEMC and MB-MEMC algoritrhm. (a) Salesman 
with 6 coefficients. (b) Salesman with 12 coefficients. (c) Claire with 6 coefficients. (d) Claire 

with 12 coefficients. 

However, due to the small size of the dictionary, the computation of the motion field in 

QSlOMP-MEMC is not very costly. Given a search window of size MxM', and a block size 

of NxN, and assuming that there are L one-dimensional atoms of length N in the 

dictionary, the required number of multiply-accumulation operations to search for an atom 
2 2 in tlhe dictionary can be obtained by L M N + LMN(M + 2N) . For L = 6, M = 9, and N = 

8, 32400 operations have to be performed per atom. 



6. PRE-PROCESSING AND POST-PROCESSING OF IMAGES AND 
IMAGE SEQUENCES 

6.1 Introduction 

Visual information is often subject to different kinds of degradations. These 

degradations may be in the form of additive or multiplicative sensor :noise, blur due to 

carnera misfocus, blockiness or motion jerkiness due to compression at lower bit rates with 

block based motion compensated techniques, or errors due to faulty communication 

channels. Therefore, pre-processing and post-processing units for digital image filtering 

are an essential part of any integrated imaging or video system that uses (an intensity image 

as an input. These kinds of processing are normally multiple criteria optimization 

prclblems that may involve restoration, enhancement, or just a suitable representation of 

the data. While for still images only spatial processing is required, for image sequences 

both spatial and temporal processing are needed. 

In modem multimedia communication systems, digital filters are often used for the 

prclcessing of data, voice, image, and video streams. In fact, they are an essential part of 

pre or post-processing modules in these systems. In general, a digital filter for the 

prolcessing of visual information should be capable of satisfying onle or more of the 

folllowing requirements: 

Restoring the original image from its noisy version (smoothing). 

Enhancing certain features (edges) of the degraded image (sharpening). 

Preserving the information bearing details of the image (detail preservation). 

Feasibility of implementation in real time (computational efficiency). 

Most of the traditional methods of image restoration and enhancement are linear and 

assume an additive Gaussian noise model for the data [70, 71, 721. These statistical 

prc~cedures are optimal under exact models of noise distribution, but are (generally unstable 

under small deviations from these models. Moreover, they can not full:y exploit the non- 



linearity of image formation models and the human visual system [73]. Mean filter is the 

most well known linear filter. It achieves noise reduction by averaging over the 

neighborhood of pixels. However, if the noise distribution is long-tailecl or impulsive, the 

result is not satisfactory. Another disadvantage of the mean filter is that it tends to blur the 

edges, and often eliminates fine details of the image. Therefore, the mean filter may not be 

useful as a front end operator in image or video processing sys1:ems [72]. These 

disadvantages have led some researchers to study the use of nonlinear filters as an 

alternative [73]. Nonlinear filtering techniques for signal and image processing emerged as 

early as 1958 [74] and have had a dynamic development in the last few decades. 

Order Statistics (0s )  filters are one of the most important families of nonlinear image 

filters [73,75]. These filters have shown excellent robustness properties in the presence of 

impulsive noise while preserving the important information bearing features of the image. 

The majority of recent work in nonlinear order statistic filters has focused on smoothing 

and preserving the details of digital images. Only a few authors have designed filters with 

edge sharpening properties [76,77]. 

In this chapter, the single and multi-stage implementations of a new robust nonlinear 

filter based on the theory of Generalized Maximum Likelihood estimation and Order 

Statistics (GMLOS) are presented [12]. This new class of filters is not only capable of 

smoothing the noise and preserving the details, but also has the ability to sharpen edges. 

The GMLOS filter can be used in a variety of algorithms for the processing of visual 

infixmation [12, 13, 151. This chapter presents the theory, implementation, and application 

of {.he GMLOS filter to noise smoothing. The following chapter presents a novel algorithm 

that uses the GMLOS filter for the concealment of errors due to packet loss in encoded 

image and video streams [15]. 

The organization of this chapter is as follows. A summary of the previous work on 

nonlinear filters is presented in Section 6.2. Section 6.3 is devoted to the theory, 

iml~lementation, and some applications of the GMLOS filter. A brief co~nparative study of 

different edge-enhancing nonlinear filters with the GMLOS filter is also provided in this 

section. Finally, the experimental results and the concluding remarks are presented in 

Section 6.4. 



6.2, Nonlinear Filters 

Homomorphic filters are one of the oldest classes of digital non1ine:ar filters [73, 781. 

They satisfy the generalized principle of superposition and have found applications in 

seismic signal processing, digital speech processing, and ultrasonic imaging. Nonlinear 

mean filters can be considered to be special cases of homomorphic systems [79]. They can 

be defined as a general nonlinear function of the weighted average of the: neighboring gray 

values of a pixel. They are better than median filters in smoothing the additive Gaussian or 

uniform noise. They are also better than mean filters in suppressing irr~pulsive noise and 

preserving edges. However, they are only capable of removing either positive or negative 

spikes but not both at the same time. 

Polynomial filters belong to the class of nonlinear filters that are based on the Volterra 

series representation [80]. Although the classes of nonlinear systems that can be 

represented by Volterra series are limited, a subclass of polynomial filters, known as 

quadratic filters, has been used for image enhancement, edge detection, and nonlinear 

interpolation of image sequences [73]. 

Morphological filters belong to the class of nonlinear filters that have originated from 

shape analysis and set theory in mathematics [81, 821. The opening and closing filters 

[75], which are formed by various combinations of erosion and dilation operators in set 

theory, have shown to be excellent in preserving details and edges. However, they can not 

effectively suppress a high percentage of impulsive noise. 

Many classes of nonlinear filters have been developed based on the theory of robust 

stai.istics [83, 841. These filters fall mainly into one of the three categories of M-jilters, R- 

jiltc?rs, and L-jilters. The M-estimators1 were proposed by Huber [84] as a generalization 

of maximum likelihood estimators. The M-estimators of location have been used as 

nonlinear image processing filters in STM [85] and adaptive mean filter [86]. R-estimators 

have been proposed by Hodges and Lehmann [87]. They have been developed based on 

the concept of rank estimate in statistical theory. Therefore, the outpu~t of an R-jilter is 

determined by the relative ranks of the data instead of the actual values. Examples of R- 

].The termsjilters and estimators have been used interchangeably in this chaptel: 



Jilters include the Wilcoxon [88], LDW [73], and FMH filters [89]. The L-estimators [73, 

841 are defined as fixed linear combinations of order statistics. Some examples of this type 

of filters are the a-Trimmed Mean (a-TM) [73], MTM [85], and K-Nearest Neighbor 

(DJN) filters [90]. 

L-Jilters and R-Jilters are related to filters based on order statistics [91]. Order statistics 

filters are one of the most important families of nonlinear image filters, and have been 

shuwn to posses excellent robustness properties in the presence of impu~lsive noise while 

preserving the important information bearing features of the image [75]. The median filter 

is the most popular order statistics filter. It was first introduced by Tukey [92] as a 

smoothing device for discrete signals. It is a nonlinear technique in which a given pixel in 

the image is replaced by the sample median of its neighbors. It does not posses the 

drawbacks of mean filters and can effectively eliminate the impulsive noise while 

preserving the edge information. However, it also preserves any monotor~ic degradation of 

the edge and therefore is not capable of enhancing blurred or ramp edges. In addition, it 

often eliminates or disrupts fine details such as thin lines or small objects in the image. A 

comprehensive analysis of median filter characteristics can be found in [93,94,95]. 

More recently, there has been a growing interest in generalizing inedian filters by 

using a combination of different order-statistics. Bovik, Huang, and M[unson [96] have 

used a weighted linear combination of order-statistics of the input sequence. The weights 

are chosen to minimize the output mean-square error. This filter combines the properties 

of both averaging and median filters. Bernstein [97] has introduced the concept of the 

signal adaptive median filter. It uses a variable size window anti is capable of 

simiultaneously removing a combination of signal dependent additive and random 

impulsive noise. Arce and Foster [98] have provided an extensive analysis of multi-stage 

meclian filters. These filters are constructed by combining the output of basic subfilters 

that are designed to preserve edges or lines in the image. They have shown that multi-stage 

meclian filters have the same impulse rejection properties as ordinary rnedian filters but 

performs better in preserving details. 

Some researches have tried to develop a unified theoretical framework for the analysis 

and design of nonlinear filters. Longbotham and Bovik [99] have used the relationships 



between order-statistic and linear FIR filters to develop a firm theoretical foundation for 

order-statistic filters. Coyle, Lin, and Gabbouj [loo] showed that stack filters, which are 

defined by a weak superposition property and an ordering property, contain all 

con~positions of the 2-D ranked order operations. Finally, Maragos and Schafer [ lo l l  have 

explored the relationships between the morphological, order-statistic, and stack filters. 

Most of the recent work in nonlinear filtering of digital images has focused on 

smoothing the noise while preserving details. Only a few authors have designed filters 

witlh edge sharpening properties [77]. Edges are one of the most important features of an 

ima~ge in many image analysis and computer vision applications and have a great impact 

on lnuman visual perception [71.]. The Comparison and Selection (CS) filter [102], Lower- 

Upper-Middle (LUM) filter [38], and Weighted Majority of m values with Minimum 

Rarige (WNIMRm) filter [I041 have been shown to be effective in smoothing the noise 

while sharpening the edges. 

6.3 The GMLOS Filter 

It is assumed that members of the degraded input data set W={zi: i=l, ..., n}, obey an 

add.itive model 

where the original data x,  and the noise process v, are statistically independent. In this 

development, an approximate parametric model has been used for the data [84]. 

Parametric data analysis is one of the major approaches to the analysis of information in 

statistical theory. In this approach, one has to make an assumption about the model 

underlying the data set W Such a model is usually the probability distribution p(z;O), 

where 8 is a parameter vector of dimension m, taking values in the Cartesian product space 

O := O, x O, x... x Om. As an example, considering a uni-variate Gaussian model for the 

data, the parameter vector can be defined as 8' = [p 61 where y and 6 represent the mean 

ant1 standard deviation of the Gaussian distribution, respectively. The goal of parametric 

analysis is to find an efficient and consistent estimate of 8. The estimation of p 

corresponds to the problem of location estimation, and the estimation of 6 corresponds to 



scale estimation. In this work, the main concern is the estimation of the location parameter 

in which the model has the form p(z;8) = p,(z-8), where 8 is a real scalar (location 

parameter). The objective is to estimate 8 from the contaminated data set W. 

The Maximum Likelihood Estimator (MLE) is the most widely used estimator for 

parametric data analysis [84, 871. For example, the MLE of a Gaussian model is the 

sarriple mean and the MLE of a Laplacian model is the sample median. The major 

problem in classical parametric data analysis via MLE is the fact that the exact probability 

distribution of the data must be known a priori. In practice this is rare1;y the case, due to 

the following 

The existence of gross errors or outliers. 

The presence of truncation and rounding errors. 

The probability distribution model being only an approximation of'the real model. 

Thr: most severe deviation from the underlying model of the data is cause:d by the presence 

of outliers in the observed data [84]. The precise definition of an outlier set is given below. 

Delinition 6.1 Let W be a data set with i.i.d members z ,  obeying the density p(zlx;Q), 

where Q is an unknown location parameter. Let $ML be the MLE of Q, computed solely from 

M? and consider the set Wo with members zi . Then the set W0 is said to be an outlier set 

with respect to W ifthe following inequality holds 

I{min Q ~ ( Z I X ; ~ M L ) : Z E  W} - {min kp(z '(x ' ;6u~);z '  E WO}) > y (6.2) 

where y is equal to $ M L / ~ ,  and p is the sample mean of the set W 

It is well known that even a small deviation from the assumed model may cause the 

classical estimators, such as MLE, to produce unreliable results [84]. During the last few 

decades, formal theories, known as robust statistics have been developed to cope with 

these deviations from the underlying model. In fact, robust estimation is a branch of 

estimation theory that deals with approximate parametric models for data [83, 841. In this 

thesis, an approximate model has been used for the input data to construct the GMLOS 

filter based on the concept of generalized maximum likelihood estimation, by taking 

advantage of the order statistics for outlier detection. 

Given a set of n mutually independent data points W={z,: i=l,  ..., n )  within the 



prolcessing window, it is assumed that a fraction (I-&) of them (the inlie,. set WI) obey the 

density p,(zl0), and the remaining fraction E (the outlier set Wo) obey the density p,(zl~$), 

where 0 <E <0.5. Therefore the approximate model for the data is given by 

Clearly, both W1 and Wo are subsets of W. The objective is to recover the expected value of 

the inliers based only on the contaminated data. That is, the data set W should be 

partitioned into 2 mutually exclusive sets Wo and W1, according to the following definition. 

DeAnition 6.2 A partition {W1) Wo) of the set W! Wo= W- W', is said to be valid if#W1 > #WO 

('#' denotes the cardinality of a set), where WO is an outlier set with respect to the inlier 

set WI according to the Dejinition 6.1. 

In general, the mean of outliers can be quite different from that of inliers, and the 

variance of outliers is much greater than that of the inliers, even though clustered outliers 

are not uncommon [83]. Consequently, the likelihood associated with a single inlier 

measured by its probability density function is much greater than the likelihood of an 

outlier computed by the same type of density function. Thus a subset of L observations 

consisting of only inliers is expected to have a greater likelihood than a subset of L 

observations having both inliers and outliers or one having mostly outliers. Assuming that 

the number of inliers is equal to L, then the optimum inlier set, W1, can be chosen as the set 

having the highest likelihood among all subsets of W with size L. Assuming that a 

Gaussian distribution the members of the inlier set W1, after omitting some nonessential 

terms, the negative log likelihood expression is 

if the members of W1are known, then the value of 0 which minimizes J(Wl,0) is 

ancl the new criterion function J,(WI) = min ~(Wl ,0 )  can be written as 
0 



J1(l.V1) should be minimized with respect to W1 over all subsets of W with size L. It may 

appear that such a procedure may not be computationally feasible, sin,ce the number of 

such subsets is n!l[L!(n-L)!]. However, for uni-variate data and with iinliers obeying an 

exponential family density function, the optimal subset of size L of candidate inliers can 

be obtained by comparing only n-L+l contiguous subsets of the rank ordered data 

acctording to the following definition and theorems. 

Definition 6.3 A subset W1 of the data set W=Jz,: i=l, ..., n] is said to be contiguous iffor 

eve,ry pair of members zi and zj of W\ where zi < z, the existence of a member z, of U! with 

zi <: Z ,  < z j  implies z ,  E WI.  

Theorem 6.1 Given a subset WNC of W with size L, which is not contiguous, there always 

exists a contiguous subset WC of W with size L, such that J (  WC) I J (  W N C) .  

Pra~of: The proof is given in the Appendix. 

The: following theorem follows directly from Theorem 6.1 and equation (6.6). 

Theorem 6.2 Let WR=Jz ,,,, z, ,,..., z,,] be the ordering of the data set Jzi: i =I ,..., n], such 
I 

that z( , ,  < z(,, < . . . < z(, , , then W ,  ,the global minimum of 4 (W'), h.as the following 

strk!cture 

where M, is given by 

and' the index i runs from ML to ML+L-1. 

Therefore, the criterion function J can be refined as2 

J has to be minimized with respect to both 0 and M, where the optimal values of 0 and M 

corirespond to the output of the filter and the starting point of the contiguous and ordered 

inliier data set of length L, respectively. This optimization problem can be carried out in 

2. For simplicity, the index L has been dropped in later developments. 



two steps. 

Step 1:  assume the value of M is known, then OM, the optimal value of 8 can be found 

from 

this is the well known least squares criterion function [84], and hence for I I M I n - L + 1 , 

Step 2: Assume 8, is given, and define b, as 

Now (6.9) has to be minimized with respect to M. bM will be computecl for i=l, ..., n-L+l 

and. the M for which b, has the minimum value will be found. This optimization could also 

be carried out recursively in two simple steps. 

Step 1: Compute 8, and b, by using equations (6.6) and (6.7). 

Step 2: Compute €I,, and bM+, from 8, and bM, recursively as 

Now, define c, as 

the:n 

ancl 

Equations (6.13), (6.15), and (6.16) can be used for M=l, ..., n-L to find the optimal value 

of the parameter M, where the length of the filter L can take any value between 1 and n.  



It is straightforward to construct a weighted GMLOS filter by assuming unequal 

weights for the members of the inlier set. The rationale for introducing the weighting 

factors into the error criterion is to emphasize the contribution of those: samples that are 

considered to be more reliable. In this case, the criterion function in (6.9)l can be written as 

i = M  

and the output of the Weighted GMLOS (WGMLOS) filter can be computed as 

where 

and. mi represents the weight associated with the ith sample of the inlier set. Assuming that 

the members of the inlier set are degraded with a zero mean and uncorrelated additive 

noise process with variance 6; , then 

andl 8, represents the Best Linear Unbiased Estimator (BLUE) of the location parameter 8. 

6.3.1 Properties of the GMLOS Filter 

Among the various properties of the GMLOS filter, particular attention will be paid to 

the ones that are crucial to the processing of digital images. Althou~gh the following 

properties of the GMLOS filter hold even if unequal weights are used, for simplicity 

throughout this section equal weights are assumed for all members of thle inlier set W* (i.e. 

mi== 1 for all i in [M, M+L-I]), throughout this section. 

Delinition 6.4 A Jilter T operating on an input sequence (z,:i=l, ..., n}, is said to be 

location equivariant if 

where R denotes the set of real numbers. 



Property 6.1 The GMLOSjlter is location equivariant. 

Proof: This property is implicit in the notion of a location estimator. Clearly, adding a 

constant to all the samples of an order set does not change the rank of its elements. 

Therefore, the optimizing value of M as obtained from (6.13), (6.15), and (6.16) will not 

change. From equations (6.11) and (6.17) 

M + L - I  M + L - 1  M + L - 1  

T(z l  + c , .  . . ,z, + c )  = 1 (z(, + C) = - 
i = M  i = M  

Dejbnition 6.5 A jlter T operating on an input sequence {zi:i=l,. . .,n], is said to be scale 

eqlrrivariant if 

Property 2 The GMLOSjlter is scale equivariant. 

Proof: Clearly, if c 2 0 , multiplying samples of an order set by c does not change the 

ranks of its elements and (6.18) follows from (6.10). If c < 0, the ranks of the order set 

would be reversed. However, the optimum value of M would not be cha.nged. This is true 

because the objective function as given in (6.11) remains unchanged since 
2 2 (0,, - z(~ , )  = (-8, + qi,)  . Similarly, (6.18) follows from (6.1 1). 

Definition 6.6 The breakdown point of an estimator may be dejneld as the smallest 

percentage of gross errors (or equivalently where E is dejned in (6.3)), that may 

caalse the estimator to take on arbitrary large values [105]. 

For example, if only one of the samples in the data set tends to in fin it:^, the mean of the 

san~ples will also approaches to infinity. This implies that the mean filter has a breakdown 

point of 0% and hence it is not robust. In the other hand, the median filter is robust and has 

a breakdown point of 50%. Obviously, the upper bound for the breakdown point is 50%, 

sin'ce beyond 50% differentiating between the good data (set of in1ie:rs) and the gross 

errors (set of outliers) is not possible. 



Property 6.3 The GMLOSJilter has a breakdown point of 50%, if L = I n/2 I .  

Proof: Recall the distribution function for the approximate model given in (6.3). It will 

now be shown that the response of the GMLOS filter given by (6.1 1) js finite, even if + 
approaches infinity, as long as E is less than 0.5. In other words, suppose that the input data 

set W= {z,: i=l, ..., n )  has Ln/2 1 data points that can take arbitrarily large values, then the 

estjmated value of 0 given by this method is finite. 

Consider the worst case when the outlier set is consist of impulses. In this case 

p 2 ( z ( + )  = 6(z - +), where $ is a fixed and positive number, and 6(*) is the usual delta 

function. Assuming a Gaussian density for p,(zle), the objective function given by (6.9) 

can be written as 

wh~ere J, and J, are given by 

ancl 

applying the sifting property of delta functions to J2(0, M) yields 

where the parameter M is related to the parameter P by 

Now, let ( e l ,  MI)  = arg 2:: J1(O, M)  and (0,, M,) = arg min J2(€l, M)  . Then from 
M, e 

the expressions for Jl(8,M) and J2(8,M) given above, and the Gaussian assumption for 

p,(:cl0), it is clear that as long as E < 0.5, J,(8,M) is finite and J1(O,M) < J2(0,M), even if 

+ -+ (.o. This implies that the output of the GMLOS filter is finite with a breakdown point 



Ideal step and ramp edges are frequently present in synthetic and real images. Their 

definitions are given below. 

Delinition 6.7 An ideal one dimensional ( l -D)  step edge with height h consists of two 

adj,acent constant segments that dzfSr in magnitude by an integer h (see Fig. 6.1 (a)). 

DeiRnition 6.8 A ramp edge of degree d consists of two unequal constant segments S, and 

S, with sizes M and N, which are separated by a monotonic sequence S, (of length d, where 

0 < d < min(M,N). The monotonic sequence S, is bounded by the constant segments S, and 

S,. .4 1 -D ramp edge of degree d = 2 is shown in Fig. 6.l(b). 

Fig. 6.1. Ideal step and ramp edges. (a) l-D ideal step edge, h=30. (b) l-D ramp edge, d=2. 

Property 6.4 The GMLOSjlter preserves the shape of an ideal 1 -D step edge3. 

Proof: Assume a monotonically non-decreasing ideal step edge of height h and length N 

that consists of two constant segments S, and S,, with values g and g+h, respectively. 

Coinsider a 1-D processing window W of size n as illustrated in Fig. 6.2. If all members of 

the set W belong to only one of the constant segments S, or S, (i.e. if W is entirely in a 

homogeneous region), then the L members of the inlier set W1also belong to that constant 

segment (since W' c W by definition). Therefore, without loss of generality assuming that 

all members of W1belong to S,, then the output of the GMLOS filter as given by (6.1 1) can 

be computed as 

which leads to the correct classification (value) of the data at the center of the processing 

window. - 

3. For simplicity the proofs ofproperties 6.4 and 6.5 are given for 1-D edges. The extc?nsion to 2 - 0  edges 
is straight forward. 



When the members of the set W belong to both S, and S, (i.e. when PV falls somewhere 

across the two segments), it has to be shown that the GMLOS correctly classifies the edge. 

Without loss of generality, assume that the center cell of the processing window is an edge 

pixel that belongs to S,, as depicted in Fig. 6.2. 

Fig. 6.2. A 1-D monotonically non-decreasing step edge (the members of the set Ware shown 
inside the square boxes). 

Since the length of the window is an odd number, and from the monotonicity of the 

edge sequence, it follows that the majority of the pixels in the set W are members of S,. 

According to Theorem 6.1, the set of inliers, W1, is a contiguous set of size L such that 

J(PP) < J(WA), where WA is any subset of W with size L. Due lto the contiguity 

requirements, and the above observations, and from (6.13), (6.15) and (6.16), it follows 

that the inlier set W1 is a minimizer of (6.6) if and only if all its members belong to only 

one: of the segments (e.g. S,  in this case). This means that the GMLOS filter correctly 

classifies the edge. This result also could have been concluded from Property 6.2, since 

the members of the set S, in W would have been classified as an outlier set with respect to 

the set S,. 

Property 6.5 The response of the GMLOSjilter to a ramp edge (or blurred step edge), 

ap~woaches an ideal step edge by repetitiveJiltering of the data, if the degree of the ramp, 

d, ~lnd the size of the processing window, n, satisfy d 2  < n. 

Proof: Consider a monotonically non-decreasing ramp edge of degree d and length N.  

Aclsording to dejinition 6.7, a ramp consists of three distinct segments S,, S,, and S,. S, and 

S, are constant segments of different magnitudes, g and g+h, res1,ectively. S, is a 

monotonic sequence of size d that is bounded from below by S, and from above by S,. 

Consider a 1-D processing window W of size n as shown in Fig. 6.3. If all members of the 



set W belong to only one of the constant segments S, or S,, then as shown in the proof of 

Prcperty 6.4, the output of the GMLOS filter is equal to g or g+h, respectively. The 

me:mbers of the set W can not entirely belong to the set S,, since by assumption d < d 2 .  It 

can be assumed, without loss of generality, that the center of the processing window is at 

the first pixel of the monotonically increasing sequence S,, as depicted in Fig. 6.3. 

Fig. 6.3. A I-D monotonically non-decreasing ramp edge (the members of thle set Ware shown 
inside the square boxes). 

According to Theorem 6.1, the set of inliers W1, is a contiguous set with size L, such 

that J(W1) < J(WA), where WA is any subset of W with size L. Due to the contiguity 

requirements, and the above assumption, and from (6.13), (6.15) and (6.16), It can be 

cor~cluded that the inlier set W1 is a minimizer of (6.6) if and only if all its members belong 

to only one segment (e.g. S, in this case), except for one member at the center of the 

processing window, which belongs to the set S,. Therefore the output of the GMLOS filter 

can. be written as 

since ~g << L , after a few passes of the filter over the data the output of the GMLOS filter 

approaches the mean value of the set S,. Similarly, by repetitive a.pplication of the 

GhILOS filter, the members of the set S,, which are closer in magnitude to the members of 

S,, will tend to the mean value of the set S, and the rest of the members of S, will tend to 

the mean value of the set S,. Therefore, the response of the GMLOS filter to a ramp will 

approach a step edge by repetitive filtering of the data. 



6.3.2 GMLOS for Noise Smoothing and Edge Enhancement 

The GMLOS filter has the desired properties of a nonlinear digital filter and can be 

used for 2-D spatial filtering of digital images. A single-stage 2-D spatial filter operates on 

the neighborhood of each pixel in the corrupted input image to estimate its value. This 

nei,ghborhood is called a processing window. Only windows with a support of size n have 

been considered, where n is an odd integer. The most popular 2-D proce!;sing windows for 

image processing applications are shown in Fig. 6.4. 

Fig. 6.4. Examples of 2-D processing windows (shaded areas correspond to support of the 
wirtdow). (a) Square window (n = 25). (b) Circular window (n = 21). (c) Cross vvindow (n = 9). (d) 

X-shaped window (n = 9). 

Let W ,  = {zi: i=l, ..., n )  be the set of pixels within the support of the pr.ocessing window, 

where the subscript p corresponds to the location of the center pixel in th;e window. Then a 

2-11 filter can be defined as an operator T lha t  maps the input data into the output y, as 

This value is then assigned to the center pixel of the window as i1lustrate:d in Fig. 6.5. 

a 
Wp = (z,: i=l, ..., n }  

Fig. 6.5. Spatial 2-D filtering with a 3x3 square window. 

Properties 6.1 and 6.2 of the GMLOS filter are usually desired in 2-11 nonlinear spatial 



filtering, because the operator T may not satisfy the superposition and proportionality 

principles in a 2-D nonlinear filter. Property 6.3 is also plays an important rule in 2-D 

spatial filtering. In many applications the existence of outliers (impulsive or salt-and- 

pepper noise) is almost unavoidable. They frequently occur at the acquisition time, during 

the image formation process (due to the existence of long-tailed noise processes), or 

during transmission over communication channels. Edge preservation is another important 

property of filters in image processing applications, because human visual perception is 

very sensitive to this feature [79]. Step edges are rarely found in natural images and most 

of  he edges in these types of pictures have a smooth and monotonic transition from one 

surface to another (ramp edges). However, in many image analysis and computer vision 

applications, where edges are being used as the primary features for segmentation and 

cla;ssification, step edges are more desirable. Therefore, the edge enhanc:ement property is 

an essential attribute of a preprocessing unit in image analysis systems. The majority of 

the most frequently used filters, such as the median filter and its extensions, do not posses 

this property. Actually, the median filter tends to preserve any monotoriic degradation of 

the edge, and therefore is not capable of enhancing blurred or ramp edges. This is 

illustrated in Fig. 6.6. 

Fig. 6.6. (a) an 1-D ideal step edge, (b) blurred edge (ramp edge), ( c )  response of the 1-D median 
filter ('0') superimposed on (b) after 2 passes, (d) response of the 1-D GMLOS filter ('*') 

superimposed on (b) after 2 passes. 



A major drawback in single-stage 2-D spatial filtering is the fact that these filters tend 

to tlistort or obliterate some of the fine details of the image [98, 73, 12:]. For example, a 

feature of size I c L in a homogeneous background will be eliminated when filtered by a 

single-stage GMLOS filter (SS-GMLOS) that has a square window support. To over come 

this problem in applications in which the preservation of fine details is Ithe major issue of 

concern, a multi-stage filtering scheme is proposed in [89]. 

6.3.3 The Multi-Stage GMLOS Filter 

A single-stage filter with a relatively large window size, usually destroys the fine 

det'ails of the image [73]. Moreover, the rank ordering process in order statistic filters may 

disirupts the structural and spatial information of the data. A uni-directional multi-stage 

filtering scheme was used in [89] to overcome some of these problems. Iin this algorithm, a 

few subfilters with different supports are used to filter the data. The output of the subfilters 

are then combined to produce the final estimate. These uni-directional subfilters are 

designed to preserve the image features in different directions. Therefore, by including 

sufficient number of subfilters, a feature oriented in any direction can be preserved [98]. 

The uni-directional subfilters for the Multi-Stage GMLOS filter (MS-GMLOS) are shown 

in Fig. 6.7. 

Fig. 6.7. The uni-directional window supports for the MS-GMLOS filter. 

The output of the unidirectional multi-stage GNILOS filter is determined by selecting 

the output of the subfilter for which the output variance is minimum. That is 

where yWd corresponds to the output of the horizontal (W,,), north-east (l'llr,,), vertical (W,), 

and north-west (W,,) uni-directional subfilters, and the 8;'s represent th.eir variances. The 



uni-directional filtering algorithm is illustrated in Fig. 6.8. 

Fig. 6.8, Multi-stage filtering with Four uni-directional subfilters. 

In a bidirectional multi-stage filtering scheme, the subwindows span two line segments 

in orthogonal directions. Two examples of such subfilters were showin in Fig. 6.4 (the 

Cross and X-shaped windows). The output of the bidirectional MS-GM[LOS filter is also 

det'errnined by selecting the output of the subfilter for which the output variance is 

minimum. The filtering operation is similar to the one shown in Fig 6.8, with the exception 

of having only two directional filters, corresponding to Wn,-,, and W,,-, 

Although multi-stage filters have superior performance in preserving the fine details of 

an image, they are not as effective as their single-stage counterparts in attenuating noise or 

enhancing edges. Within the class of multi-stage filters, bidirectional subfilters have better 

smoothing properties, but uni-directional subfilters are more successful in preserving fine 

details of the image. In section 6.4, these facts are verified by experimental results on real 

images. 

W = {z,: i=l ,..., n) 

6.3.4 GMLOS and Other Nonlinear Edge Enhancing Filters 

T(W*) 

T(W,) 

T(W,,) 

T(W,,) 

- 

- 

As mentioned earlier, only a few researchers have designed nonlinear filters with edge 

sharpening properties. Edges are one of the most important features of an image in many 

computer vision and image understanding applications, and have great impact on human 

visual perception [71, 751. The Comparison and Selection (CS) filter, Weighted Majority 

of rn values with Minimum Range (WMMRm) filter, and Lower-Upper-Middle (LUM) 
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fi1tt:r have been shown to be effective in smoothing noise while sharpening edges [77]. 

These filters and some of their important characteristics are summarized in the following. 

The output of the Comparison and Selection (CS) filter [I021 with pa.rameter k is given 

if fi 2 z((n + 1)/2) 
YCS = {:::: + otherwise 

whlere fi is the sample mean of the input set W, and 1 I k I (n + 1)/2. Clearly if k=(n+l)l 

2, then the output of the CS filter is identical to that of the median filter. In general, by 

seltxting different values for the tunable parameter k, different levels of enhancement can 

be achieved with the CS filter.   his filter has good sharpening properties but tends to 

distort or obliterate fine details of the signal and is not as effective as other nonlinear edge 

sharpeners in smoothing noise [77]. 

The output of the Weighted Majority of samples with Minimum Range (WMMR) 

filter [I041 is obtained by averaging the weighted sum of all subsets of 147 with cardinality 

(nt- 1)/2 that possess the minimum range property 

- Y W M M R  - average vw rm,, 

where Wrm1"denotes a set with the minimum range property as defined below. Let rM=z,,,-,,, 

,+, - z,, be the range of the elements in WR, for 1 < M < (n- 1)/2+1, and r,,,,= min {rM, 1 < M 

< (n-1)/2+1) be the minimum range of the input set W. Then any subset of W with 

cardinality (n+1)/2 is said to possess the minimum range property if all1 of its members 

have a range less than or equal to r,,. In (6.24), the o,'s represent the filter weights, and a 

use:ful choice of weights for edge enhancement [25] is 

1 if k = (n -1) /4+M 
.k = { 

0 otherwise 

The WMMR filter with this choice of weights simply computes the sample median of the 
wl;nrn 9 s, and is referred to as the WMMR-NIED filter. A good choice of weights for noise 

smoothing is the equal normalized weights. The resulting filter is called the WMMR-AVE 

filt~zr. This filter also distorts or obliterates the fine details of the image, and its edge 



enhancement property is poorly controlled. However, its noise suppression characteristics 

are better than CS and LUM filters [77]. 

The output of the Lower-Upper-Middle (LUM) filter [I031 with parameters k and 1 is 

given by 

YLUM = Z ( n - ~ + l )  if t,<Z((n+1)/2)<Z(n-1+1) I Z ( n - k + l )  if Z(n-k+l)<Z((n+1)/2) 
z(( ,+ otherwise 

where 1 I k 5 1 I (n + 1)/2 and t ,  = (q,, + z( , -  , + 1,)/2. The parameters k and 1 can be 

cor~sidered as tuning parameters that allow the LUM filter to have different characteristics. 

The output of this filter is bounded by the ranked ordered vales z,,, and z,,,,,, to remove the 

outliers. If k = 1 = (n+l)L!, the LUM filter acts as a median filter. In the case where 

1 = (n+ l)L! and k is varied, the LUM filter acts as an smoothing filter. When k = 1 and 1 is 

varied, the LUM filter acts as a sharpener. Finally, when 1 I k 5 1 5 (n + 1)/2, sharpening 

ancl outlier rejection can be achieved simultaneously. This filter may also distort or 

obliterate the fine details of the image but is better than the WMMR-MED and CS filters 

in preserving the details [77]. The optimal values of the tunable parameters k and 1 for this 

filter should be obtained through trial and error in different applications. 

In general, the CS and LUM filters share a common philosophy because they both 

select samples .that are away from the median, as their outputs. Therefore, different levels 

of ~cnhancement can be achieved by selecting different values of the tunable parameter k 

for the CS filter, and the parameters k and 1 for the LUM filter. However, these tunable 

par.ameters are obtained heuristically or by trial and error in different applications. The 

WMMR and GMLOS filters also share a common philosophy. They first partition the data 

into inlier and outlier sets before computing their outputs as a weighted sum of the 

members of the inlier set. For these filters different levels of enhancement can be achieved 

by choosing appropriate weights and filter length in different applications. While the 

WMMR filter selects its inlier set and weights by using a heuristic approach, the inlier set 

ant1 weights in GMLOS are obtained with a recursive maximum 1ike:lihood algorithm, 



which is I ,  norm optimal (see equations 6.9-6.1 I). The major characteristics of these filters 

are explained in more detail in the following. 

Selection of the inlier set - The WMMR filter selects its inlier se:t(s) by finding all 

subsets of the ordered input data with cardinality (n+1)/2 that have an 1, norm less 

than or equal to the minimum range. For digital images this algorithm may often 

select multiple inlier sets with the required minimum range. For example, consider a 

1-D ramp edge W={1,1,1,3,3,3,5,5,5] of degree d=3. This set has a minimum range 

of 2, and there are four subsets W1'={1,1,1,3,3], Wa={1,1,3,3,3), Wn={3,3,3,5,5] 

and WI4 ={3,3,5,5,5), corresponding to this minimum range. Tm these cases the 

WMMR filter uses a heuristic algorithm to compute the output. WMMR-MED 

averages the medians of the inlier sets, and WMMR-AVE averages the sample mean 

of the inlier sets. In contrast, the members of the inlier set in the GMLOS filter are 

recursively chosen based on the theory of maximum likelihood, leading to a 

recursive optimal I ,  norm solution. For the above example, the GNILOS filter selects 

a unique inlier set W1={1,1,3,3,3], which has the highest likelihood of being an 

inlier set. The output is then computed by selecting the weights that yield the BLUE 

estimate of the location parameter 8, as was explained earlier in this section. The CS 

and LUM filters do not explicitly partition the data into inlier/outlier sets, however, 

they can be thought of as having an inlier set with only one member (the output of 

the filter). In these algorithms the output is obtained by some heuristic choice of the 

tunable parameters k and I .  

Edge enhancement property - The edge enhancement properties of the LUM, CS, 

and WMMR-MED filters are studied in [77]. They are shown to be effective in 

enhancing blurred edges in presence of impulsive noise. Although the edge 

enhancement properties of the LUM and CS filters are very similar, in some cases it 

has been shown that the CS and WMMR-MED filters are somewhat less effective 

than the LUM filter in enhancing the edges [77]. In general, the GMLOS filter has 

better edge enhancement properties than the WMMR filter and produces edges that 

are more localized. The edge localization enhancement properties of the WMMR 

filter are poor whenever it can not select a unique inlier set. In the above example, 



both WMMR-MED and WMMR-AVE produce a value of 3 for the middle pixel, 

and hence no enhancement is achieved. However, the GMLOS filter is capable of 

enhancing this ramp edge by producing a value close to 2 in the first iteration, and a 

value close to 1 in the second iteration (these values are truncated to 2 and 1 

respectively). 

Noise smoothing property - The CS and LUM filters have similar smoothing 

properties. However, the LUM filter can have potentially better smoothing 

characteristics than the CS filter, because it has an additional tunable parameter. The 

WMMR-MED filter has better smoothing properties than the CSI and LUM filters 

[82]. The GMLOS and WMMR filters have comparable noise smolothing properties. 

Detail preservation property - As mentioned earlier, the single--stage 2-D spatial 

filters have a tendency to distort fine details of the image (specifically when a large 

size square window is used). The LUM filter has better detail preservation properties 

[77] than the CS, WMMR and GMLOS filters. The price to be pa.id is the selection 

of two tunable parameters through trial and error in different applications. 

Moreover, a set of parameters that may perform well in one region of the image that 

has fine details may not perform as well in other regions with different spatial 

characteristics. In general, when the preservation of fine derails is of prime 

importance, a multi-stage filtering scheme should be used. While it is possible to 

adopt an 1, norm optimal decision rule for computing the output of the MS-GMLOS 

filter, a heuristic algorithm should be used to implement multi-stage WWMR, CS, 

and LUM filters. 

Filter weights - The CS and LLTM filters do not use weights in computing their 

outputs. In the case of the WMMR filters, it is not tractable to co~npute the optimal 

values of the filter weights, because this filter uses the 1, norm to select the inlier set. 

As a result, only WMMR-MED and WMMR-AVE filters are used in practice. On 

the other hand, the GMLOS filter has a tractable solution based on a recursive 

maximum likelihood algorithm for computing the inlier set and filter weights that 

are 1, norm optimal. 



6.4 GMLOS for Pre-Processing and Post Processing of Images and Image Sequences 

Block-based transforms have been extensively used in image and video coding 

applications [72, 6, 1061. Recently, the Block-Based Discrete Cosine. Transform (BB- 

DCT) has been adopted by emerging image and video compression stiandards including 

JPEG, H.261, MPEG, and the grand alliance HDTV broadcasting ['I]. In a block-based 

image compression Algorithm, such as JPEG, the picture is first divided into many small 

squ.are blocks that are transformed, quantized, and coded into a sequence of bit streams 

along with other side information. In a block-based video coding system, such as H.261 

ancl MPEG, a hybrid approach based on the concept of intraframe and .interfame coding 

is being used. In the intraframe mode of operation, spatial redundanc:~ is exploited by 

structuring a single frame into many small square blocks (e.g. 8x8) that are then 

trailsformed, quantized, and coded. In the interframe mode of operation, temporal 

redundancy is exploited by using motion compensation to generate a prediction of the 

current video frame from previous (and in the case of MPEG possibly from future) frames. 

The difference between this prediction and the actual frame is then transformed, 

quantized, and coded along with motion vector information. Finally, tlhe intraframe and 

interframe information, as well as the synchronization and other side information are 

stmctured into a sequence of compressed bit streams for storage or transmission. 

The above mentioned standards belong to the class of lossy data compression and 

usu~ally introduce visible distortions in the form of blockiness andfor motion jerkiness to 

the original data. The amount of distortion is a function of the coding parameters (e.g., 

quantization step sizes and range of motion vectors), the data rate used, the buffer control 

algorithm, and the particular source video sequence. In addition to Gaussian and impulsive 

sensor noise, blockiness, and motion artifacts, the encoded bit streams are vulnerable to 

transmission or media impairments that may cause loss of block(s) of data or loss of 

syr~chronization. Some of these impairments can be reduced by perfonning a set of pre- 

prc~cessing and post-processing algorithms on the encoded or decoded data [lo], as shown 

in Fig. 6.9. 



Fig. 6.9. A generic block diagram for pre-processing and post-processing algorithms in 
modem interactive communication systems. 
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Pre-processing refers to spatial and temporal image processing a1go:rithms (e.g., noise 

smoothing, scaling, etc.) that are applied to the data signal prior to compression. Similarly, 

post-processing algorithms refer to signal or image processing functior~s that are applied 

to data after compression. 

The removal of additive Gaussian and impulsive noise can be achieved by the GMLOS 

filters introduced in the previous section. In this section a novel algorithm is introduced for 

reduction of blocking effects in block-based transform coded images and video frames. 

The effects of temporal filtering in reduction of motion artifacts is also discussed. The 

cor~cealment of errors due to transmission impairments is the subject of the next chapter. 

6.4.1 De-blocking of Encoded Images and Video Frames 

CODEC 

At lower bit rates, the coarse quantization of transform coefficients in block-based 

imiige and video compression algorithms usually results in visible distolrtions in the form 

of blockiness, as illustrated in Fig. 6.10. 

In recent years, a variety of post-processing algorithms have been proposed to remove 

the blocking effects. The most intuitive solution is to use a low-pass filter to smooth out 

the boundary effects [lo, 1071. Although the low-pass filter can smooth the boundaries of 

the blocks, it also eliminates the high frequency information corresponding to the interior of 

the blocks, and thus blurs the real edges. 

encoded data 
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Fig. 6.10. The blocking effects in block-based transform coding algorithms at lower bit rates. (a) 
Original Lena. (b) Encoded with JPEG at 0.5 bitstpixel. (c) Encoded with JI'EG at 0.25 bits/ 

pixel. The visible distortions in form of blockiness is noticeable in (c). 

At the cost of computational complexity, better results have been achieved by iterative 

algorithms such as Projection Onto Convex Sets (POCS) [log, 1091, and edge-based 

spa.tially adaptive filtering [I 101. More recently, wavelet-based post-proc:essing techniques 

have gained popularity. In [I 11 1, a wavelet-based algorithm that uses soft-thresholding of 

the wavelet coefficients [I121 is used to remove the blockiness. 

Our approach to de-blocking is motivated by the following facts: 

In a block-based image coding algorithm, the locations of the block boundaries are 

known. Therefore, the smoothing operation should be restricted to regions around 

the block boundaries. 

The detail images in the wavelet-based MRA of a blocky image contain vertical and 

horizontal artifacts in the vertical and horizontal high-pass images, respectively. 

These artifacts are usually located at the block boundaries, as sh~own in Fig. 6.1 1. 

Therefore, most of these artifacts can be removed by proper filtering and 

thresholding. 

The block boundaries in the approximation image of the wavelet based MRA should 

be smoothed with a filtering scheme that does not smear the true edges of the image. 

The de-blocking algorithm should be computationally efficient. 



Fig. 6.1 1. Vertical and horizontal artifacts in wavelet-based MRA of blocky images. (a) The 
vertical high-pass image of original Lena of Fig. 6.10(a). (b) The vertical high-pass image of 

blocky Lena of Fig. 6.10(c). (c) The horizontal high-pass image of original Lena of Fig. 6.10(a). 
(d) The horizontal high-pass image of blocky Lena of Fig. 6.10(a). Figs. (b) and (d) are 

enhanced for display purposes. The results are shown for level 1, with an orthonormal MRA, and 
based on D4 compactly supported wavelets. 

In this algorithm the blocky image is first decomposed into approxiimation and detail 

subspaces with J-level biorthogonal or orthonormal MRA analysis (in practice, a 2-level 

dec:omposition is sufficient). In the next step, the low-pass approximatiion image and the 

high-pass detail images are processed independently. 

Although a low-pass filter can be used to smooth the boundaries of the blocks in the 

approximation image, it also eliminates some of the high frequency information and thus 



blurs the edges. In order to overcome this problem, Spatially Variant Fil'ters ( S V F )  can be 

used [lo], Since the location of the block boundaries are known, it is intuitive to smooth 

the signal along these boundaries, while preserving the pixels that are located well within 

these blocks. Moreover, different kernels can be used for the pixels along the block 

boundaries, where the shape and size of the kernel depends on the 1ocai:ion of each pixel, 

as shown in Fig. 6.12(a). In this method a corner pixel is processed with a two dimensional 

kernel, while pixels along the boundaries are filtered with one dimensional (vertical or 

horizontal) kernels. In addition, the size of the kernel (one or two dimensional) can vary 

depending on the distance between the pixel under consideration and the block boundaries 

based on the local statistics of the image [lo]. Linear low-pass SVF filters may blur edges 

that are close to the block boundaries. To overcome this problem, a variable length 

GlLlLOS filter is used to smooth out the boundaries while preserving the true edges. 

Fig. 6.12. Examples of variable size kernels (window supports) for an SVF filter. (a) SVF 
window support for filtering the approximation image. (b) 1-D horizontal and vertical support 

for filtering of block edges in the vertical detail and horizontal detail images, respectively. 

As shown earlier (see Fig. 6.1 I), the detail images in wavelet-based MRA of a blocky 

image contain vertical and horizontal artifacts in the vertical and hoirizontal high-pass 

images, These artifacts are located exactly at the boundary of blocks. In addition, our 

experimental studies have shown that the wavelet coefficients associated with these 



artifacts are much smaller than those corresponding to the true edges of the image, and are 

mostly clustered around zero. In this algorithm, the pixels at the vertical boundaries of 

blocks in the vertical high-pass image are filtered with a 1-D horizontal GMLOS filter. 

Siniilarly, the horizontal boundaries in the horizontal high-pass image are filtered with a 1- 

D vertical GMLOS filter. The window support for these 1-D filters is shown in Fig 

6.12(b). This filtering scheme is performed prior to thresholding the w,avelet coefficients 

in order to strengthen the value of the coefficients for possible real edges at the boundary. 

The wavelet coefficients in detail images should then be thresholded for elimination of 

false boundary edges. A soft thresholding algorithm similar to [I121 can be used to 

achieve this task. Finally, the filtered and thresholded approximation andl detail images are 

used to reconstruct the image at the original resolution. This algorithm is simple and 

cornputationally efficient. It successfully de-blocks the encoded images and its 

performance is comparable to the more sophisticated and computationally expensive 

iterative algorithms. Experimental results are provided in section 6.5. 

6.4.2 Temporal Filtering of Image Sequences 

The frame rate of the video signal at the output of a decoder operating at low bit rates 

is ilsually less than 30 frames per second [6, 11. For example, an H.261 codec (coder1 

decoder) operating at 384 kbitsls operates at a rate of about 10-15 frames per second. In 

order to generate a standard 30 frames video signal, some temporal processing has to be 

performed at the output of the decoder. The most simple approach is to repeat the decoded 

frames to compensate for the missing frames that the encoder did not transmit. This 

creates motion jerkiness that is commonly noticed when the codec corrlpresses the video 

signal at a rate of 15 frames per second or lower [I]. The motion artifacts are also 

noticeable at the boundary of the blocks due to possible inaccuracies of motion vectors in 

a block-based motion compensation algorithm [6]. 

Temporal interpolation and filtering can be effectively used to reduce some of these 

artifacts. Under this approach, two consecutive decoded frames are used to create the 

missing frame. Moreover, the consecutive frames can be filtered in the temporal direction 



to reduce some of the motion artifacts at the boundary of the blocks [lo]. Although 

tenlporal interpolation at the output of the codec may improve the quality of the video 

signal by producing smoother motion, it also introduces additional de1,ay and costs [lo]. 

The increase in delay is due to the fact that the post-processor has to wait for two 

cor~secutive frames (which are, in general, two or more frames apart) before it begins 

displaying the output video. The extra cost is due to the additional franne buffer that will 

be needed to support this process. It has been shown that [lo] bilinear iinterpolation is the 

optimal choice (in the cost-performance sense) for post-temporal interpolation. The 

bilinear temporal interpolation is illustrated in Fig. 6.13. 

Frame Number: k 

k+d - x,,, - d x r '  + (1-4 x:, 

Fig. 6.13. Post-temporal bilinear interpolation of video frames. The value of the pixel at the 
iriterpolation site (i j )  is a function of the distance d and the pixel values of it:$ closest neighbors. 

The performance of the post-temporal interpolation was found to be highly scene 

dependent. When the inter-frame motion is small, post-temporal filtering consistently 

iml~roves the PSNR. However, as the motion content of the scene increases, bilinear 

interpolation is not as effective. In this case, it is possible to reduce some of the artifacts 

with uni-directional multistage GMLOS filtering of the consecutive frames in the temporal 

direction. The filtering scheme is identical to the one introduced in section 6.3.3, with the 

exception that each subfilter has a support across the consecutive frames in the temporal 

direction. Experimental results are presented in section 6.5. 



6.5 Experimental Results and Conclusions 

6.5.1 Noise Removal and Edge Enhancement 

The simulations were carried out on various test images with different types of 

degradations, such as Gaussian, impulsive, and linear blur, as listed in Table 6.1. 

Corrupted 
Image 

TI-1 (Fig. 6.14(b)) F 

Table 6.1 
The description of test images. 

Original Description of degradations 

Peppers (Fig. 6.14(a): 512x512~8) 3x3 mean filter 

Einstein (Fig. 6.15(a): 512x512~8) 1 (0,100) 1 10% 1 None I 

TI-1, which does not contain fine levels of detail, is shown in Fig. 6.14(b). It was 

created by blurring the original Peppers with a 3x3 mean filter (linear blur), followed by 

randomly replacing 10% of the pixels with gray scale values of k200. A 3x3 square 

wiildow was used for all single-stage filters. This type of processing window normally 

achieves the highest level of noise attenuation, but it has a tendency to obliterate fine 

details of the image [76, 981. For multi-stage filtering, 5x5 bidirec:tional processing 

windows were used. These filters have been shown to have better noise attenuation 

properties than uni-directional multi-stage filters, but are not as good at preserving the 

details [12, 981. 

TI-1 was filtered with the Weighted Single-Stage (WSS-GMLOS) and Weighted 

Multi-Stage GMLOS (WMS-GMLOS) filters. The results are shown in Figs. 6.14(c), and 

(d), respectively. Both of the GMLOS filters appear to be successl'ul in editing the 

impulses and enhancing the edges. The corresponding Mean-Absolute-.Error (MAE) and 

Mean-Squared-Error (MSE) for these filters is listed in Table 6.2. The MAE and MSE 

measures, are the most frequently used measures of error in image proce.ssing applications 

[7 11. For comparison, the MAE and MSE for the nonlinear filters of section 6.3.4, median, 

anti multistage median filters are also listed in Table 6.24. 

Stream (Fig. 6.16(a): 512x512~8) 

Rods (Fig. 6.17(a): 256x256~8) 

4. No algorithm were found in the literature for multi-stage LUM, CS, or WMMRjlters. 

None 

None None 3x3 mean filter 



Fig. 6.14. The result of GMLOS filters for TI-1. (a) Original Peppers. (b) Noisy test image 1 (TI- 
1). (c) Weighted single-stage GMLOS filter. (d) Weighted multi-stage GiMLOS filter. 

Table 6.2 
MSE and MAE for test image 1 (TI-1). 

Filtering 

WSS- 
GMLOS 
3x3 

Square 

242.21 

5.40 

N[SE 

L [ A E  

2318.63 

17.11 

CS 
k = 4 
3x3 

Square 

258.27 

5.81 

WMMR- 
AVE 
3x3 

Square 

248.96 

5.57 

WMMR- 
MED 
3x3 

Square 

257.47 

5.68 

LUM 
k=2,05 GMILOS Median 
3x3 

Square Bidire~dional Bidirectional 

256.25 248.96 263.05 

5.70 5.155 



The second test image TI-2, which has more fine details than TI-1, is shown in Fig. 

6.15(b). It was created by adding Gaussian noise (zero mean, and variance of 100) to the 

original Einstein, followed by randomly replacing 10% of the pixels with gray scale values 

of +200. A 3x3 square window was used for all the single-stage filters, and 5x5 

bidirectional processing windows were used for multi-stage filters. TI-2: was filtered with 

WSS-GMLOS and WMS-GNILOS filters. The results are shown in Figs. 6.15(c), and (d), 

respectively. Both of the GMLOS filters appear to be successful in editing the noise while 

preserving the signiJicant details of the image. The corresponding MAE and MSE for 

these filters is listed in Table 6.3. 

TI-3, which has the finest level of details among the test images of Table 6.1, is shown 

in 'Fig. 6.16(b). It was created by randomly replacing 10% of the pixels in the original 

Stream image, with gray scale values of f200. A 3x3 X-shaped window was used for all 

the single-stage filters, because X-shaped filters are more suitable for detail preservation 

than the square windows. For multi-stage filtering, 5x5 uni-directional processing 

wiridows were used, because they are more effective in preserving the details than 

bidirectional filters. TI-3 was filtered with WSS-GMLOS and WMS-GTVILOS filters. The 

res.ults are shown in Figs. 6.16(c), and (d), respectively. Both of the GMILOS filters appear 

to be successful in editing the noise. However, WMS-GMLOS performed better than 

WSS-GMLOS, in terms of preserving details. 

TI-4 was used to demonstrate the edge enhancement properties of the nonlinear 

sha.rpeners of Section 6.34. It was created by filtering the original Conne'ction Rods image, 

with a 3x3 mean filter (linear blur). This image was then filtered by single-stage median, 

GhlLOS, CS, WMMR-AVE, WMMR-MED, and LUM filters. The filtered images and 

their corresponding gradient based edge maps are shown in Fig. 6.17. A subjective 

eva.luation of Fig. 6.17 reveals that the SS-GMLOS has produced an edge map that is more 

localized, and has more amount of detail than the other nonlinear sharpeners. 

For processing TI- I ,  TI-2, and TI-3, all possible values for the tunable parameter(s) of 

CS and LUM filters were used, and the tunable parameter(s) that produced the minimum 

MSEIMAE was chosen. For TI-4, the tunable parameters for which the edge maps had 

more detail were chosen. 



Fig;. 6.15. The result of GMLOS filters for TI-2. (a) Original Einstein. (b) Noisy test image 2 (TI- 
2). (c) Weighted single-stage GMLOS filter. (d) Weighted multi-stage GMLOS filter. 

Table 6.3 
MSE and MAE for test image 2 (TI-2). 

'I-' 
No 

Filtering 

2084.82 

20.00 

WSS- 
GMMS 
3x3 

Square 

136.83 

8.63 

CS 
k = 4 
3x3 

Square 

128.27 

7.72 

WMMR- 
AVE 
3x3 

Square 

156.42 

8.55 

WMMR- 
MED 
3x3 

Square 

168.89 

8.84 

LUM 
k=3,1=5 
3x3 

Square 

140.38 

8.42 

WMS- 
GMltOS Median 

5x5 

125.32 127.67 

7.12 



Fig. 6.16. The result of GMLOS filters for TI-3. (a) Original Stream. (b) Nois,y test image 3 (TI- 
3). ( c )  Weighted single-stage GMLOS filter. (d) Weighted multi-stage GMLOS filter. 

Table 6.4 
MSE and MAE for test image 3 (TI-3). 

WSS- CS WMMR- WMMR- LUM 
GMLOS k = 4 AVE MED k=3,1=5 GMLOS Median 
3x3 3x3 3x3 3x3 3x3 



Fig;. 6.17. Edge enhancement with nonlinear filters. (a) Original rods (256x256~8). (b) The edge 
malp of (a). (c) Blurred rod (linear blur). (d) The edge map of (c). (e) Median filter. (f) The edge 

map of (e). 



Fig. 6.17. Continued: (g) SS-GMLOS filter. (h) The edge map of (g). (i) CS filter (k=2). (j) The 
edge map of (i). (k) WMMR-AVE. filter (1) The edge map of (k). (m) WMM:R-MED filter. (n) 

The edge map of (m). (0) LUM filter (k=l, 1=2). (p) The edge map of (0). 



6.5.2 De-blocking of Block-Based Transformed Coded Images 

The proposed de-blocking algorithm of section 6.4.1 was tested on various blocky 

images. The test image Lena is used here, because of its wide-spread use in the literature. 

The original zoomed Lena is shown in Fig. 6.10(a). The JPEG compressed Lena at 0.25 

bitslpixel is shown in Fig. 6.18(a), and its zoomed version in Fig. 6.18(b). A 2-level MRA 

was performed on this image by using Daubechies D4 wavelets. The high-pass vertical and 

horizontal detail images are shown in Figs. 6.18(c), and (d), respectively. The 

corresponding GMLOS filtered and soft-thresholded detail images are shown in Figs. 

6.18(e), and (f), respectively. Finally, the reconstructed de-blocked image and its zoomed 

version are shown in Figs. 6.18(g), and (h), respectively. The subjective quality of the de- 

blocked image is good, and it has a PSNR of 30.52 dB. The obtained results are comparable 

to those reported in [109], as listed in Table 6.5, however the proposed algorithm is 

cornputationally efficient, because it is not iterative. 

Table 6.5 
De-blocking results for Lena test image (PSNR in dB). 

6.5.3 De-blocking and Temporal Filtering of Video Frames 

In this experiment the mobile-calendar and table-tennis Common Intermediate Format 

(CIF) [6] image sequences were used. The sequences where 100 frames long. These 

sequences were compressed at 384 Kbps with an H.261 software cotlec. The decoded 

frame rate was 15 frames per second. The decoded frames were first de-blocked, and then 

bilinear interpolation was used to interpolate the missing frames. The interpolated frames 

were then filtered with a uni-directional multi-stage GMLOS filter, where each sub-filter 

had a support of length three (i.e. the pixels from the previous and the next frame were 

used). The de-blocked frame 50 of both sequences is shown Fig. 6.191. On average, the 

post-temporal filtering and interpolation improved the PSNR by up to 2 dB. The results 

are shown in Fig. 6.19. 

Bit Rate 

0.15 

0.24 

JPEG (PSNR) 

26.57 

29.35 

Method in [46] 

27.58 

30.43 

Our algortthm 

27.45 

30.40 



Fig. 6.18. De-blocking with GNILOS and wavelet based MRA (Daubechies D4, J = 2). (a) JPEG 
encoded Lena at 0.25 bitstpixel. (b) Zoomed version of (a). (c) Vertical high-pass image of (a) at 
resolution J = 1. (d) Horizontal high-pass image of (a) at resolution J =l. (e) (Ic) processed with 
C;MLOS and soft-thresholding. (f) (d) processed with GMLOS and soft-thresholding. (g) The 

de-blocked image, PSNR = 30.52 dB. (h) Zoomed version of (g). Figs. (c) and (d) were 
enhanced for viewing purposes. 



Fig. 6.19. Average PSNRs for post-temporal filtering and de-blocking. H.261 encoded at 384 
Kbps, and decoded at 15 frames per second. (a) De-blocked frame 50 of mobile-calendar (CIF: 
288x352). (b) Average PSNR performance for mobile-calendar with no post-1:emporal filtering, 
bilinear interpolation, and bilinear interpolation with MS-GMLOS temporal filtering. (c) De- 

blocked frame 50 of table-tennis sequences (CIF: 288x352). (d) Average PSNR performance for 
table-tennis with no post-temporal filtering, bilinear interpolation, and bilinear interpolation 

with MS-GMLOS temporal filtering. 



In this chapter a new class of robust nonlinear filters based on the theory of generalized 

maximum likelihood estimation and order statistics were introduced. I:t was shown that 

this class of filters is not only capable of attenuating noise and preserving details, but also 

has the ability to sharpen edges. The simulation results on real images have confirmed 

these claims. In general, when the image does not contain fine levels of detail and some 

degree of edge enhancement is desired, it is advantageous to use the single-stage GMLOS 

filter. However, when the goal is to preserve the fine details, the unidirectional multi-stage 

GhILOS is a better choice. Comparative experimental studies on real images showed that 

the weighted single-stage GMLOS filter has better edge enhancement and noise 

smoothing properties than other nonlinear edge sharpeners, and the wei.ghted multi-stage 

GhILOS filter is better than other single and multi-stage nonlinear fil.ters in preserving 

details. Moreover, while most of the other filters use heuristic algori.thims to obtain their 

outputs, the GMLOS filter uses a recursive and computationally efficient algorithm which 

is I ,  norm optimal. 

When prior knowledge about the degradation process is available, tunable nonlinear 

filters such as CS and LUM filters give the designer some degree or degrees of freedom to 

optimize the performance of the filter. However, the optimal value of the tunable 

parameters may vary drastically for different types of degradations. Therefore in many 

practical applications such as satellite or deep space imaging and image sequence filtering, 

where complete knowledge of the degradation process is not available, or user interrupts 

are not allowed, non-tunable filters such as GMLOS might be more desirable. A few 

applications of the GMLOS filter in the pre-processing and post-processing of images and 

imiige sequences were also presented. It was shown that when used in a mitable algorithm, 

this filter can greatly improve the quality of the decoded images. 
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7. ERROR CONCEALMENT OF IMAGE AND VIDEO STREAMS OVER 
THE ATM NETWORKS 

7.1 Introduction 

In addition to the coding artifacts that usually introduce visible distortions in the forms 

of blockiness, ringing, and motion jerkiness, encoded bit streams are vulnerable to 

tra~lsmission or media impairments that may result in loss of block(s) of data or total loss 

of synchronization in the modem packet-switched broadband communic:ation networks or 

wireless communication systems. The effect of cell loss on picture quality mainly depends 

on the image or video compression algorithm and the packetization technique used for the 

trailsmission of visual information. Block-Based Discrete Cosine Tran~sform (BB-DCT) 

has been adopted by emerging image and video compression standards including JPEG, 

H.2!6 1, MPEG, and the grand alliance HDTV broadcasting [I]. Asynchronous Transfer 

Mode (ATM) has recently been accepted as the switching protocol standard for the 

iml~lementation of the Broadband Integrated Services Digital Networks (B-ISDN) [I131 

ancl is provisioned to be the switching protocol standard of future broadband multimedia 

cornmunication systems. Two major drawbacks of ATM networks are the jitter delay and 

cell loss due to channel congestion or buffer overflow which are important issues of 

concern in image and video communications. In the latter case, isolated or contiguous 

blocks of spatial or temporal data may be lost, resulting in severe degradations in the 

sutdective quality of the decoded image or video streams. 

In ATM networks, simple error recovery techniques such as automatic retransmission 

request (ARQ) may not be effective. ARQ will further aggravate the channel congestion 

and cause the system to drop more cells. During recent years, many error concealment and 

correction techniques have been proposed to make the information loss of the decoded bit 

streams subjectively imperceptible. These techniques include block interleaving and 

forward error correction [114, 1151, deinterleaving and scrambling [11(5], layered coding 



ancl prioritizing of cells [117, 118, 1191, and spatial and temporal post-processing error 

concealment [120, 121, 122, 123, 124, 1251. These algorithms use one or more of the 

foll.owing classes of techniques: 

Error correction techniques: in this class of techniques, comupted or missing 

information is detected and replaced by its exact value using the redundant 

information that has been inserted into the compressed data stream. 

Error reduction techniques: in this class of techniques, the data stream is either 

interleaved, prioritized, or sent in layers to reduce the impact of cell loss on the 

perceived quality of the decoded image. 

post-processing concealment techniques: in this class of techniq,ues, corrupted or 

missing information is estimated by using the uncorrupted inforrr~ation available in 

the data stream. 

Error correction techniques that require the insertion of extra information into the 

cornpressed bit stream do not always offer a feasible solution for the cell loss problem 

because of the limited bandwidth available. For example, the optional double error 

correction code of H.261 (BCH (51 1,493,2)) requires 18 parity bits foir each 493 bits of 

infmnation. If we were to have a 10 error correction BCH code, the number of parity 

bit:; should be increased to 90 bits, and the number of information bits decreased to 421. 

Moreover, in packet based networks such as ATM, the amount of overhead is much 

higher because of the demand for an FEC with high correction capability in the event of 

cell loss due to channel congestion or buffer overflow. 

Likewise, error reduction techniques that require layered transmission or cell 

prioritization do not offer a feasible solution for the cell loss problem. This is mainly due 

to the fact that low error rate transport channels for high priority data are costly, and the 

saf~s delivery of high priority information is not always guaranteed in these systems. 

The post-processing techniques that use the available uncorrupted data to approximate 

the value of missing information have gained popularity in recent years because of their 

effectiveness, low overhead, and low computational complexity. While for still images 

only spatial reconstruction is required, for video, both spatial and temporal reconstruction 

should be performed at the decoder to approximate the missing information, as depicted in 



Fig. 7.1. 

Fig. 7.1. Block diagram of post-processing error concealment scheme. 
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It is important to note that in post-processing techniques the lociation of the lost 

information must be known a priori to the decoder. Since most of the encoders, including 

the existing image and video standards, only provide a differential address for data blocks, 

the location information must be provided to the decoder by the cell packing algorithm. 

In this chapter, a novel post-processing technique for error concea1m1:nt in block-based 

image and video coding systems over ATM networks is presented. The encoded bit 

streams are packed into ATM cells using a simple error reduction techinique such that in 

the event of cell loss the location of the missing block is known to the decoder, and to 

guarantee safe transmission of important synchronization and header information. The 

post-processing in spatial domain is achieved by using the WSS-GMLOS filter [12, 131 in 

a multi-directional recursive nonlinear filtering scheme [ l  11 with variable size kernels, and 

the lost temporal informations are reconstructed with GMLOS filtering of the motion 

vec:tor (MV) components of the neighboring macroblocks. 

7.2 ATM and ATM Cell Packing 

ATM is a low-delay, high-bandwidth switching and multiplexing technology for both 

public and private networks and is provisioned to become the pireferred transport 

technology for future broadband communication networks [ 1 13, 1261. This is mainly 

because of its high flexibility in handling multimedia data under const.ant or variable bit 

rate channel requirements. An ATM network can support a variety of applications, ranging 

from video on demand to videoconferencing, that may have different requirements in 

tenns of bit rate, end-to-end delay, jitter delay, and quality of service. Although most 

aspects of ATM are well defined to form a standard for this new technology, the 

encoder + cell 
packetizer 

channel cell 
depacketizer 



methodology for image and video transmission is still an open issue for further research. 

An ATM network organizes data into fixed-size packets called cells. An ATM cell has 

a fixed length of 53 bytes which consists of 5 bytes of header and 48 bytes of payload. The 

header contains the necessary information for routing, payload type, ce.ll loss priority, and 

cyc:lic redundancy check for error correction. The payload consists of an adaptation layer 

ancl the encoded bit stream, which may contain voice, image, video, or data. The 

adaptation layer specifies how the data is packed into the payload and clan be designed to 

meet the desired requirements of different applications. 

Besides jitter delay which is an important issue of concern in video transmission, an 

ATM based network may encounter three types of errors; Type I: bit errors in the payload, 

which may corrupt the data, Type 11: bit errors in the header information: which may cause 

cell loss, and Type 111: cell loss due to channel congestion or buffer overflow. These errors 

may result in severe visual distortions in the decoded images and video frames in the form 

of missing block(s) of data. The effects of cell defect on picture qua1:ity in conjunction 

with current image and video compression techniques have been studied in [127], and in 

[I 14, 1 15, 1 16, 1 17, 1 18, 1 191 a variety of prioritizinglinterleaving techniques have been 

prclposed to reduce the effect of ATM cell loss. Unfortunately, none of these techniques 

address the question of how the location of the missing data can be detected at the decoder. 

The information regarding the location of lost information is crucia.1 to the effective 

coricealment of errors by post-processing techniques. 

In block-based compression techniques, the image is first partitioned into blocks of 

fixed or variable sizes. In variable block size algorithms such as the one introduced in this 

thesis, the image is segmented into blocks of NxN for N = 4, 8, 16, and 32. In the fixed 

block-based algorithms such as JPEG, H.261, and MPEG [I] the image is segmented into 

square blocks of 8x8 or 16x16. These blocks are then separately coded and grouped into 

Ma~croblocks (MBs), Group of Blocks (GOBS), and slices along with the proper 

synchronization and header information to form the encoded bit stream prior to 

tra~~smission. As an example, the Common Intermediate Format (CIF) frame structure and 

the bit stream hierarchy for the H.261 video compression standard is illustrated in Fig. 7.2. 
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Fig. 7.2. (a) H.261 CIF frame structure (luminance 288x352). (b) H.261 encoded video multiplex 
bit stream hierarchy. 



An empirical study of different image and video compression technjques reveals .that it 

is possible to pack more than one block of image or video data into ;an ATM cell. For 

exalmple the JPEG baseline algorithm allocates an average of 4 bytes to each square block 

of 8x8 in a 512x512 gray scale image that has been encoded at 0.5 bits per pixel (bpp), and 

the H.261 algorithm allocates an average of 3.5 bytes to each MB for a CIF video clip 

enc:oded at a bit rate of 320 Kilo bits per second (Kbps). 

In this approach to ATM cell packing, it is proposed to insert the important 

syn~chronization and header information into high priority cells and thein pack an integral 

nurnber of blocks or MBs into normal cells by a proper interleaving mechanism [116, 127, 

128, 129, 101. A simple interleaving technique is to insert every nt

h 

encoded MB of 

alternate oddfeven rows into a cell until it is filled. Moreover, we can encode and transmit 

the even and odd fields of a frame independently. If an integral number of MBs do not fit 

into a normal ATM cell, fill bits can be used after the cell end marker to pack that cell, as 

shown in Fig. 7.3. The interleaving step size n is also packed into high priority cells along 

with header information for guaranteed safe delivery to the decoder. 

' ' I c  

Ihl.&rlAAl MB#i l d M ~ f i + n l  ... I&lfi'll bits 

AA: Absolute Address ME: Macroblock End 
MB: Macroblocks CE: Cell End 

Fig. 7.3. Packing of normal ATM cells with interleaved MBs. 

Although this ATM cell packing technique may require extra overhead and buffer size and 

result in extra delay, it offers the following major advantages: 

It guarantees the safe arrival of the synchronization and header infbrmation. 

It localizes the loss of MBs within a frame. 

It forces the lost MBs to be isolated within a frame. 

The first advantage prevents the loss of entire frame(s) during transmission while the last 

two are essential for the effective reconstruction of missing information via post- 

prc~cessing techniques. A detailed study of the interleaving mechanism, buffer constraints, 

and delay analysis is the subject of our future research. Error conce;slment with post- 

processing techniques is presented in following sections. 



7.3 Spatial Error Concealment with Post-Processing Techniques 

Once the location of a lost block is known to the decoder, post-processing techniques 

can. be used in the transform or pixel domain to conceal the errors. Let M! denote a missing 

block of size NxN, ii,, the estimated value of the missing pixels in M, and xi, the value 

of uncorrupted pixels in the neighboring blocks. The missing block M ca.n have up to eight 

NxV neighbors Bk, k = {n, S, e, W, ne, nw, se, sw), where the values of k correspond to the 

blocks at the north, south, east, west, north-east, north-west, south-east, and south-west of 

M, respectively. A variety of post-processing techniques could be used to approximate the 

missing information by using the available uncorrupted data in the neighboring blocks as 

explained in the following subsections. 

7.3.1 Error Concealment with Replacement Techniques 

In this class of techniques the missing block M in the decoded image or intracoded 

video frame is replaced by one of its available neighboring blocks in the same frame 

[130]. For video frames the missing block can also be replaced with the block of the 

previous frame which has the same physical location. This technique works reasonably 

well if the two adjacent blocks are highly correlated. But if M belongs to a region in the 

image across the edges or close to the boundary of different objects, the performance of 

this method is severely degraded and it produces visible distortioin in that region. 

Moreover, when a lost block is replaced by an uncorrelated block from the previous video 

frame that has a relatively high contrast with the surrounding area, vi~sually distracting 

flashes can appear in the decoded image sequence. 

7.3.2 Error Concealment with Least Square Techniques 

In this class of techniques the single-pixel wide boundary pixels of the four nearest 

neighbors adjacent to M are used to impose smoothing constraints on the reconstructed 

values inside the missing block [120, 122, 123, 11, 1281. A number of different cost 

functions can be used to impose smoothness constraints, but an appropriate cost function for 

~m~oothness measure in image processing applications is the sum of the weighted square 

differences between each lost pixel and its four nearest neighbors, as shown in Fig. 7.4. 



Fig. 7.4. An 8x8 missing block and the single-pixel wide boundaries of its 4.-nearest neighbors 
(shaded area) used to compute weights in the least squares techniques. 

Let x be a vector of length N2 composed of the samples in ,'M arranged in a 

lexicographic order, and wy ,, w: ,, wy,, and wt , the weighting coefficients, then the cost 

function J(x)  is given by 

- where j - s  - j-s, s = {-1,1 }, for pixels at boundaries of llrl adjacent to its 

neighbors. This cost function must be minimized recursively for .the pixels at the 

boundaries of M toward its center such that the boundary information from adjacent 

blocks can be propagated into the interior of the missing block. 

The above cost function is the well known least squares cost function and can be 

written in matrix form as 

where 



and 

The matrices Q, are lower and upper diagonal matrices with zero entries along the main 

diagonal such that Q, = Q; and Q, = &f, . The matrices S,,, are diagonal matrices with 

entries o: for the north, south, west, and east directions along the main diagonal. The 

vectors b, contain the values from the adjacent border pixels of M and zeros 

corresponding to the lost pixels. The proper choice of weighting coefficients guarantees 

the positive definiteness of Q [I201 and the optimal least square  solution^ is given by 

Alternatively, instead of the above matrix inversion approach, we can use an iterative 

gra.dient descent algorithm to find the optimal solution. If we let g, = Q2, - b be the lth 

iteration of the gradient vector of J(x) ,  then an iterative solution for i,,,, can be obtained 

via the steepest descent algorithm [49] by 

It is important to note that in this method in order to guarantee that the estimated pixel 

values fall within the dynamic range of the original image, they should be truncated to the 

allowed minimum and maximum values after each iteration. 

It is possible to reduce the computational complexity of the least squares concealment 

of \:he lost pixels by computing a single weighting coefficient in the north, south, west, and 

east directions [123]. In this technique the four weighting coefficients are obtained by 

minimizing the squared errors between the single-pixel wide boundari~es of the missing 

block and its four nearest neighbors, and the reconstructed block is given by 

where on,  o", on', and me are the weighting coefficients corresporiding to the four 

neighboring blocks. If all the weighting coefficients are set to 0.25, the reconstructed 



block is simply the average of its four nearest neighbors. 

Least square concealment techniques are computationally efficient ;and perform well 

when the neighboring blocks of the lost cells are strongly correlatecl. However, their 

performance is degraded when the missing block falls across the boundaries of objects or 

where multiple edges or details are present in the region. 

7.3.3 Error Concealment with Bayesian Techniques 

In this class of techniques, the decompressed image is modeled as a Markov Random 

Field (MRF) or Gauss Markov Random Field (GMRF) [I311 stochastic process, and 

concealment is achieved by using a Maximum A-Posteriori (MAP) estimator [132]. Let X 

and Z be discrete parameter MRFs representing the decoded N, x AT2 image and the 

decoded image with missing blocks of data, respectively. Let xi  and zi be the 

lexicographic ordering of the ih block in X and Z. If there are m blocks of'N x N in X and Z 
I I I t then each image can be represented by vectors x and z as x = [ x, x2 ... x,, ] , and 

I I  r z = [ zl z2 ... d ] . T and z are related by 

where T is a transformation matrix of size (N,N2 - nN 2, x N,N2 that is constructed by 

removing N2 consecutive rows of an identity matrix, and n is the total number of missing 

blocks. Let f (xlz) denote the conditional probability density function of x given z, then 

the MAP estimate of x can be computed as 

tmUp = arg X I Z  max = TX L(xJz)  (7.10) 

where L(x lz) = In f (x lz) is the log-likelihood function given by Baye7s rule as 

the third term in the above equation is independent of x, and the probability of z = Tx 

given x is equal to one when z = Tx and zero otherwise, thus the MAP estimate of x can be 

obt,ained by 

4,,, = arg min [-ln f (x)]  
xlz  = Tx 



Since the original image X is modeled as an MRF, the probability density function of x can 

be defined as [13 11 

where P is a normalizing constant known as the partition function, V,.(x) is a potential 

funlction defined over a collection of connected points c called cliques, and C is the set of 

all cliques over which the potential function is defined. Using the pl-obability density 

fun~ction in (7.13) the MAP estimate of x can be computed by 

= arg rnin 

The above optimization problem can be solved by means of iterative algorithms such 

as :simulated annealing [131], conjugate gradient [133], or iterative conditional modes 

[134]. Although Bayesian techniques have been successfully used for image segmentation 

and restoration [131], their utilization for error concealment does not offer a clear 

advantage. Their performance is highly correlated to the choice of potential function and 

they are computationally expensive. Moreover, on average they do not yield better results 

thain the least square or polynomial interpolation techniques in terms of subjective quality 

of the concealed images. 

7.3,.4 Error Concealment with Polynomial Interpolation 

In this class of techniques polynomial interpolation algorithms such as spline based 

interpolation [I351 or wavelet based interpolation [I361 can be used to approximate the 

values of the pixels in M. Interpolation with higher order polynomials is computationally 

expensive and on average does not show a significant improvement over the binomial 

intupolation. In bilinear interpolation every pixel in M is reconstruc:ted by using the 

values in the single-pixel wide boundary pixels of the four nearest neighbors adjacent to 

M. The bilinear interpolation can be written as 

where p1 = dl / N, p, = d, / N, and h is a weighting factor which determines the 
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contributions of the neighboring blocks on either side of M as shown in Fig. 7.5. 

XN. i 

Fig. 7.5. The four closest pixels used in Bilinear interpolation. 

In general, this method is computationally simple and results in good rec:onstruction when 

the missing block belongs to a relatively homogenous surface or smoothly varying 

regions. However, its performance is not as good around comer edges or for regions with 

multiple objects. 

7.3.5 Error Concealment with Edge-Based Techniques 

In this class of techniques the gradient information [124, 1371 or ihe binary pattern 

[32] in the neighboring blocks is used to exploit the local geometrica.1 structure of the 

image by hypothesizing single or multiple edges passing through th~e missing block. 

Finally, the reconstruction is achieved by interpolation along the edges. In [137] the 

magnitude and angular direction of the gradient for each pixel in the surrounding 

neighbors of a missing block is computed with a Sobel operator. Then each pixel is 

classified into one of eight quantized edge directions 22S0i, i = 0, 1, ..., '7. Then by using a 

threshold value, a voting mechanism is employed to determine the direction of possible 

edges that might pass through the missing block. If the algorithm detects an edge through 

the missing block, it tries to align the interpolation in the direction of the edge using the 

linear weighted sum of pixels or Projection Onto Convex Sets (POCS). If multiple edges 

are detected, the algorithm interpolates the missing block along each direction separately. 

These multiple images are then mixed together according to some htxristic rule. This 

method performs well when the missing block can be characterized by a single dominant 

edge direction or when the surrounding pixels of the missing block contain highly 



correlated edge information. However, its performance is not as good in regions that are 

texlxred or have multiple edges. In addition, the gradient edge operators are very sensitive 

to noise and may produce false edges, thus causing classification erroi-s. Moreover, this 

algorithm is computationally expensive, especially when the POCS algorithm is used for 

spatial interpolation. 

In [I381 a two-pixel wide binary pattern around the missing block is converted to a 

binary pattern via thresholding. This binary pattern is then used along with some heuristic 

rules to hypothesize straight edges through the missing block. This method works better 

than the former technique when corner or multiple edges are present and is 

cornputationally simpler. However, its performance degrades when the size of the missing 

block is greater than 8x8, because some of the heuristic rules used for hypothesizing 

straight edges fail to hold for larger blocks of missing data. 

7.3.6 Error Concealment with Multi-Directional Recursive Nonlinear Filtering 

The majority of post-processing error concealment techniques are based on the 

assumption of statistical correlation of neighboring MBs, but most of them fail to 

explicitly exploit the spatial structure of the missing information. Therefcore, if the missing 

block and its neighbors belong to a homogeneous region, then any of the above methods 

will produce a good approximation for the lost information. However, if the missing block 

lies on the border of different objects or multiple edges, most of these methods produce 

faulty estimates. Only in the edge based techniques, structural properties of the 

neighboring blocks are used to interpolate along hypothetical edges that may pass through 

the missing block, thus reconstructing the missing information. However, these techniques 

are either computationally expensive or fail to produce reliable estimates in textured 

regions or when multiple edges are present, as was explained in the previous subsection. 

In general, a good interpolation scheme must have the following properties: 

The interpolation should exploit the correlation structure of neighboring blocks. 

The interpolation should be multi-directional. 

The interpolation scheme should be robust. 

The interpolation scheme should be computationally efficient. 



In this novel approach, a multi-directional recursive nonlinear -filtering (MRNF) 

scheme with variable filter kernels is used to achieve the above requirements [ l  1, 151. The 

reconstruction is started from all directions at the boundaries of the missing block M, and 

the values of the missing pixels are recursively estimated toward the center of the block. 

Tht: multi-directional filter kernels or processing windows are choslzn to exploit the 

stn~ctural correlation of the missing block with its neighbors while the: robust nonlinear 

WSS-GMLOS filter [12, 131 exploits the statistical correlation of the neighboring MBs. 

The support of the processing windows is chosen according to the local statistics of the 

nei,ghboring pixels within a 3x3 square window based on a birr~odal distribution 

assumption similar to [139]. Two possible filter kernels for multi-directional filtering of 

the neighboring blocks are shown in Fig. 7.6. The darker squares correspond to the 

available pixel(s) at the opposite side of the missing MBs and are used to exploit the cross 

correlation of the interpolating MBs on opposite sides of M. 

Fig. 7.6. Examples of processing windows or filter kernels for multi-directional recursive 
nonlinear filtering of the missing blocks. The darker shades correspond to pixels on the opposite 

sides of the missing block. 

Once the processing window W for a missing pixel at the boundary of M is selected, 

the WSS-GMLOS filter can be used to estimate the value of the missing pixel. Let x be a 

vector of length n composed of the samples in W arranged in lexicographic order, and 

x, = {x(,): i = I ,. . . ,n) be the rank ordered vector of samples in x arranged in an 

ascending order, then the missing pixel can be estimated as 



where W1is the inlier set for W mi is the weight associated with the ith sample of W', and 

s =: C mi . We assume that the members of the inlier set are degraded with a zero mean 

andl uncorrelated additive noise process with variance 6: , such that 

After reconstruction of the boundary pixels in M with multi-direction.al WSS-GMLOS 

filters, the estimation process is continued recursively toward the center of the missing 

block until all the samples in Mare reconstructed. The flowchart of our MRNF algorithm 

is shown in Fig. 7.7. 

START Q 
set the fi1,tering direction, to 
all dlrectlons at boundaries 

select a processing window -4 based on local statistics 

I reconstruct the boundary 
pixels with WGMLOS I 

move toward center of the 
missing block by 1 pixel 

Fig. 7.7. The flowchart of MRNF error concealment algorithm. 

The MRNF technique is a computationally efficient algorithm that is capable of 



exploiting both geometrical and statistical structure of the missing pixels with their 

immediate neighbors in each direction for effective concealment of erroirs due to cell loss. 

Moreover, the robustness of the WSS-GMLOS filter could eliminate the effect of false 

edge pixels in the process of interpolation. 

7.4 Concealment of Temporal Information 

In block-based motion compensated video compression techniques iI hybrid approach 

based on the concept of intraframe and inte$rame coding is being used. In the intraframe 

mode of operation, spatial redundancy is exploited by segmenting a single frame into 

many small blocks that are then transformed, quantized, and encoded similar to a still 

image. In the interframe mode of operation, temporal redundancy is exploited by using 

motion compensation to generate a prediction of the current video frame from previous 

ancl possibly from future frames. The difference between this prediction and the actual 

frame is then transformed, quantized, and coded along with motion vector information. 

Finally, the intraframe and interframe information as well as the synchronization and other 

side information is structured into a sequence of bit streams for storage c)r transmission. In 

this class of video compression techniques a single lost block may affect the subjective 

quality of more than one block in the future frames, even if no temporal information is 

lost, as illustrated by an error propagation tree in Fig. 7.8. clearly, the: loss of temporal 

information will further degrade the quality of the decoded bit stream. Therefore, both 

spatial and temporal reconstruction algorithms are needed in video error concealment. 

Frame number: i 

Fig. 7.8. An example of block error propagation into the future frames in motion compensated 
video compression. 

The errors in the intraframe coded frames can be concealed by using the spatial error 



concealment techniques of the previous subsection. In the interframe mode of operation, 

the encoded bit stream normally contains predicted and bi-directionally interpolated 

frames. When temporal information is lost, the decoder has to generate am estimate for the 

prediction direction (forward, backward, or interpolative) and the missing motion vectors. 

The experimental results on different test sequences demonstrated that the components of 

the adjacent motion vectors have intraframe correlations that range between 0.1 to 0.45. 

Moreover, the interframe correlation between the neighboring motion vt:ctors in temporal 

direction was much higher in scenes with little motion but considerably smaller in scenes 

with rapid motion. These correlations suggest that both intraframe and interframe motion 

vectors could be used to estimate the lost motion vector components. 

The simplest temporal reconstruction algorithm is the temporal replacement technique 

[I 18, 1251. In this method temporal information from the previous frame is used to replace 

the lost temporal information. This technique works well in areas with no motion or small 

motion but fails when moving objects with moderate or high motion are present at the 

scene. It is possible to achieve a better temporal concealment by using a least squares cost 

function based on a smooth movement assumption across the successive frames [I 18, 120, 

123, 129, 1401. In this class of techniques, the average or weighted average of motion 

vectors in the surrounding or possibly previous frame MBs are used to rt:construct the lost 

temporal information. These techniques work well in areas with no motjon, small motion, 

or inoderate motion but fail when multiple moving objects or high motion is present at the 

scene. In [14 I] the median filter is used to reconstruct the lost motion vector information. 

This algorithm performs better than the least squares techniques at the boundaries of 

moving objects where motion vectors may point in different directions, however its 

performance is inferior to that of the least squares techniques in regions with small and 

moderate motion components. A few temporal concealment techniques based on motion 

cornpensation at the encoder or receiver are also investigated in [125], but these method 

are either computationally expensive or the overhead information associated with them 

may not fit into the available channel bandwidth. A Bayesian approach to the recovery of 

the motion vector is also proposed in [132]. This method is computationi.illy expensive and 

its performance is highly sensitive to the potential function used for the Bayesian 



estimation. 

Our experimental results showed that the replacement of lost motion vectors with the 

output of the GMLOS filter operating on the motion vectors in the neighboring MBs 

within the current frame yield better subjective image quality than the averaging or 

Bayesian techniques. This is partly due to the fact that near the boundaries between two 

objects the corresponding motion vectors may point in different directions, in which case 

averaging or Bayesian techniques may produce an unreliable estimate for the missing 

motion vector components. In addition, our algorithm performs better than median based 

techniques in areas with small or moderate motion vector components. The use of the 

motion vector components of the previous frame along with the CiMLOS filter for 

rec~~nstructing the missing temporal information of the current frame was also studied. 

However, this technique produces unreliable estimates for motion vector components near 

the boundaries of multiple objects and results in visual distortions in the form of high 

contrast discontinuities along the edges across different objects. The experimental results 

of using this method on real images and video clips are provided in the following section. 

7.5 Experimental Results and Conclusions 

The simulations were carried out on various test images and video sequences. The still 

images were grayscale 512x512, and 8 bits per pixel (bpp). The video sequences were in 

CII; (luminance 288x352) format [I], with luminance frame size of 2:88x352, and 100 

frames long. Some of the test images are shown in Fig. 7.9. JPEG and QTMP compression 

algorithms were used for still images. For the video sequences H.261 at a bit rate of 320 

Kbps, and MPEG at 1.5 Mbps with an interframe interval of 1 to 10 frannes were used [I]. 

The ATM cell loss was simulated with an evenlodd interleaving scheme and a random loss 

pattern. The performance of the algorithm was only studied for the luminance component 

of ithe test video sequences because the human visual system is less sensitive to errors in 

the chrorninance components. The experimental results confirmed that when a 

reconstructed video clip is viewed at a full frame rate (30 frames per second), the 

luminance errors are clearly visible, while the chrominance errors are virtually 

imperceptible. 



Fig. 7.9. Test images: some of the still images and video sequences used in our simulations. The 
still images are 512x512~8 and the video sequences are CIF with luminance:; of size 288x352. 



The peak signal-to-noise ratio (PSNR) is not always a reliable measure of perceived 

quality, thus the performance of the algorithm was measured with both PSNR and 

subjective image quality. 

The test image Peppers of Fig. 7.9(a) was encoded at 0.5 bpp (PSNR = 36.15 dB) with 

the QTMP compression algorithm and packed into ATM cells. The rec:onstructed image 

with 10% block loss and no error concealment is shown in Fig. 7.10(~~). The test image 

Ein.stein of Fig. 7.9 (b) was encoded at 0.5 bpp (PSNR = 29.84 dB) with the JPEG 

algorithm and packed into ATM cells. The reconstructed images with 5% block loss and 

255% block loss and no error concealment are shown in Fig. 7.10(b) and Fig. 7.10(c), 

res:pectively. In addition to annoying visual artifacts in the form of missing blocks, the 

PSIVR of the reconstructed images dropped by as much as 15 dB. MNIRF-GMLOS error 

cor~cealment was used to conceal the errors in these test images, and the results are shown 

in Figs. 7.10(b), (d), and (0. The PSNR values for bilinear intlerpolation (BLI), 

constrained least squares (CLS), Bayesian interpolation (BI), and MNRF-GMLOS 

cor~cealment algorithm for the test images are listed in Table 7.1. 

Table 7.1 
PSNR (in dB) for different spatial concealment techniques. 

The proposed algorithm was also tested on the salesman, mobile calendal; power 

gal-den, and table tennis image sequences. One hundred frames of each image sequence 

were encoded by using a H.261 encoder at 320 Kbps and an MPEG encoder at a bit rate of 

1.5 Mbps. The encoded bit streams were then packed into ATM cells. The H.261 

intracoded frame 128 of the salesman sequence (PSNR = 38.83 dB) is shown in Fig. 7.1 l(a), 

and the same frame with 5% MB loss and PSNR of 16.20 dB is shown in Fig 7.1 1 (b). 



Fig. 7.10. Concealment of still images: (a) Peppers encoded with QTMP, and 10% block loss, 
PSNR = 20.17 dB. (b) Concealed peppers with MRNF-GMLOS, PSNR = 34.194 dB. (c) Einstein 
encoded with JPEG and 5% block loss, PSNR = 22.37 dB. (d) Concealed Einstein with MRNF- 
GIMLOS, PSNR = 29.78 dB. (c) Einstein encoded with JPEG and 5% block loss, PSNR = 13.75 

dB. (d) Concealed Einstein with MRNF-GMLOS, PSNR = 28.65 dB. 



Fig. 7.1 1. Spatial concealment of video frames: salesman frame 128, H.261 at 320 Kbps, (a) 
Inti:acoded, PSNR = 38.83 dB, (b) 5% of the MBs are lost, PSNR = 16.20 dB. (c) Concealed with 
con~strained least squares (CLI), PSNR = 34.75 dB. (d) Zoomed version of (c). (e) Concealed with 

bilinear interpolation (BLI), PSNR = 36.49 dB. (f) Zoomed version of (e). (g) Concealed with 
MRNF-GMLOS, PSNR = 37.21 dB. (h) Zoomed version of (g). 



The reconstructed versions of corrupted frame 128 when concealled with the CLS, 

BLI, and MRNF-GMLOS techniques are shown in Figs. 7.1 l(c), (e), anti (g), respectively. 

In order to evaluate the subjective quality of the concealed frames, their zoomed versions 

are also included in Fig. 7.1 1. The PSNRs of the concealed salesman frame 128 for these 

teclhniques and the BI concealment technique are listed in Table 7.2. The H.261 intercoded 

frame 130 of the same sequence (PSNR = 36.95 dB) that was predicteld from frame 128 

with no errors is shown in Fig. 7.12(a). The reconstructed frame 130 with no concealment 

ancl 5% loss of spatial and MV information is shown in Fig. 7.12(b). The concealed 

motion vectors with interlintra frame GMLOS filtering of neighboring motion vectors and 

the reconstructed frame 130 with the MNRF-GMLOS spatio-temporal concealment 

algorithm is shown in Figs. 7.12(c) and (d), respectively. The difference or error image of 

fraine 130 when lost temporal information is concealed by averaging is shown in Fig. 

7.12(e). Finally, the error image of frame 130 when GMLOS is used for temporal 

concealment is shown in Fig. 7.12(f). The PSNRs of the concealed salesman frame 130 for 

various spatio-temporal concealment techniques are listed in Table 7.2. Except for the 

proposed algorithm, the temporal information for frame 130 was concealed by simply 

ave:raging (AVE) the available motion vectors in the neighboring macrot)locks. 

Table 7.2 
PSNR (in dB) for different concealment techniques acting on salesman test sequence. 

Frame No., Type Corrupted Spatio-Temporal Error 
(% MB loss) Frame BLI-AVE CLS-AVE BI-AVE MRNF-GMLOS 

intracoded(5%) 16.20 36.49 34.75 35.36 

k 3 0 ,  intercoded 14.65 34.76 34.09 34.49 1 35.17 1 

To evaluate the performance of the ATM cell packing and spatio-,temporal MRNF- 

GhlLOS algorithms for various cell loss rates, the average PSNR of 100 video frames of 

the four test image sequences were computed at various cell loss rates. The video clips 

were encoded with a MPEG software codec at a bit rate of 1.5 Mbps. The results for the 

MRNF-GMLOS and CLS-AVE concealment algorithms are shown in Fig. 7.13. 



Fig. 7.12. Spatio-temporal concealment of video frames: salesman frame 130, H.261 at 320 Kbps, 
(a) Intercoded using frame 128 with no errors, PSNR = 36.95 dB. (b) Reconstnlcted frame 130, no 

concealment with lost spatial and MV information. (c) Concealed MVs with interlintra frame 
GMLOS filtering of neighboring MVs. (d) Reconstructed frame 130 with the MNRF-GMLOS 

spatio-temporal concealment algorithm, PSNR = 35.17 dB. (e) Error image when motion vectors 
are concealed by simple averaging. (f) Error image when the motion vectors are concealed by 

GMLOS filtering. 



I Cell loss rate (in percent) I I Cell loss rate (in percent) I 
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Fig. 7.13. Spatio-temporal concealment coding gain vs. cell loss rate: MPEG ;at 1.5 Mbps, PSNR 
averaged over the 100 frames of the test image sequences, concealed with M:RNF-GMLOS and 
CLS-AVE algorithms. (a) Salesman sequence. (b) Mobile calendar sequence. (c) Flower garden 

sequence. (d) Table tennis sequence. 

The above graphs support the conclusion that even under extreme channel congestion 

conditions, spatio-temporal post-processing concealment techniques can remarkably 

improve the quality of the decoded video streams. These  technique:^ are specifically 

effective when the sequence does not contain large or complicated motion components. 

Foi- example, as the cell loss rate increases the improvement in the concealed salesman 

sequence is greater than the other sequences that contain more complicated motion 



cornponents. 

The simulation results for still images, which are shown in Fig. 7.10 and Table 7.1, 

reveal that for small and isolated block loss patterns, the subjective and quantitative 

quality of the decoded images concealed with spatial error concealment is excellent. 

Moreover, most of the post-processing techniques have comparable performances under 

these conditions. The results of the spatio-temporal concealment of image sequences, 

which are shown in Figs. 7.11, 7.12, 7.13, and Table 7.2, reveal that these techniques can 

greatly improve the quality of the decoded video streams in presence of cell loss. It is 

noteworthy that the performance of intraframe spatial concealment is a function of the 

sequence content, with errors being mostly noticeable across boundaries of the objects, 

diagonal lines, comer edges, and highly detailed regions. The performance of interframe 

teniporal concealment is also a function of scene contents, and degrades considerably in 

scenes with high and complicated motion components. The subjective evaluations showed 

that in most cases, when both spatial and temporal information are lost, the quality of the 

concealed sequences is good to acceptable, and as the cell loss rate increases only a few 

blatantly errant blocks may appear in the reconstructed video streams. 

In this chapter a novel approach for error concealment of still images and image 

sequences in multimedia communication systems was presented. The experimental results 

dernonstrated that the MRNF algorithm with WSS-GMLOS filter for spatial 

reconstruction, and the GMLOS filter for temporal reconstruction can effectively conceal 

the missing spatial and temporal information. In addition, the concealment algorithm is 

cornputationally efficient and can be implemented in real time with general purpose 

processors. Our ATM cell packing algorithm is simple and guarantees the safe delivery of 

important header, synchronization, and block loss location information. Moreover, the 

incorporated interleaving algorithm for cell packing mostly results in the loss of isolated 

blocks of data. This is an important factor in the effective concealment of errors via post- 

processing techniques. 



8. CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

Signal expansion with adapted bases is a new field of interest in signal and image 

processing. In this thesis it was shown that the greedy Segmented Orthogonal Matching 

Pursuit (SOMP) is an adaptive signal expansion technique that can effectively exploit the 

sparse structure of signals. It was shown that the SOMP algorithm performs better than the 

original matching pursuit algorithm in terms of sparsity of representation and speed of 

conlvergence. 

It was shown that the SOMP algorithm can be used for lossy image compression at 

low bit rates. Experimental results confirm that this technique is able to compress natural 

images at low bit rates, and its performance is better than the wavelet based algorithm at 

very low bit rates, and it is comparable to the best available compression techniques at 

higher bit rates. It was argued that the computational complexity of the compression 

algorithm can be justified due to the increasing computational power of digital computers 

in recent years. It was also shown that this projection based expansion technique can be 

used to unify the processes of separate prediction and residual coding into a unified 

framework for video compression applications. Moreover, it was shown that this algorithm 

performs better than the traditional hybrid block-matching MEMC algorithms at lower bit 

rates. 

For the pre-processing and post-processing of visual informatioln, a new robust 

nonlinear filter (GMLOS) was introduced. It was shown that this new filter can effectively 

improve the quality of degraded images and image sequences. It was also shown that this 

filter is an 1,-optimal order statistic filter and some of its properties were proved. A novel 

algorithm based on wavelet decomposition, variable size kernel GMLOS filters, and soft 

thresholding for removing blocking effects in block-based transform coding techniques 

was introduced. It was shown that this algorithm is easy to implement and can effectively 



remove blocking effects. 

A simple algorithm for the packing of visual information into ATM cells was 

introduced. It was shown that this algorithm is well suited to effective error concealment 

with post-processing techniques. Finally, a novel error concealmerlt technique was 

introduced based on the Multi-directional Recursive Nonlinear Filtering (MRNF) of lost 

information with the GMLOS filter was introduced. Experimental results confirmed that 

this new technique can effectively conceal errors at low to moderate cell loss rates. 

8.2 Future Work 

The performance of the SOMP signal expansion algorithm can be improved in a 

nurnber of ways. For example, it would be interesting to consider a more flexible 

representation by allowing arbitrary segments, using dynamic prograrr~rning techniques. 

Flexible segmentation can be particularly attractive for speech compression applications. 

The optimal quantization and coding of SOMP coefficients is also an interesting problem 

for future research. In particular, study on the distribution of the coefficients in the TF- 

plane can be used for the design of optimal quantizers. Another interesting problem is the 

design of optimal dictionaries by utilizing techniques from vector quantization literature. 

The design of adaptive orthogonal matching pursuit filter banks is also another interesting 

topic for future research. It is also possible to use the results of Chapters 4 and 5 to design 

a ()SOMP video codec for low bit rate applications. Finally, theoret.ica1 study of the 

SOMP algorithm and its relation to the KL transform can be an interesting research topic. 

The GMLOS filter can be improved and extended in a number of ways. It would be 

interesting to let the filter length vary according to local statistics of the processing 

window. It is also possible to explore a Bayesian cost function to improve the performance 

of the filter. ~ h k  algorithm can also be used for design of nonlinear filter banks. 

The cell packing algorithm should be studied in more detail, and its delay 

characteristics should be analyzed under different network interface scenarios. Finally, 

with the increasing demand for progressive video communication, it wcluld be interesting 

to extend the error concealment algorithm to a multiresolution framework. 
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APPENDIX: PROOF OF THEOREMS 

Proof of Theorem 3.3 

Assuming the atom cp is selected by the OMP algorithm at iteration p < N, then there 
YP 

exists two possibilities: 

1. (r("'x, cp ) = 0 ,  f o rp<  N. 
YP 

2. ( r'"x, cp,) t o , for p < N. 

If statement 1 is true, then the algorithm has converged in less than N iteration. If 

stalement 2 is true, it has to be shown that the set of orthogonalized atoms {6,), where 

0 I k < N ,  form an orthogonal basis for 31: 

Clearly, r("x is orthogonal to {qyk) for 0 5 p < k . Since (kp'x, cpy) # 0, by 

assumption the atoms in the set {cpyk) should be linearly independent. In finite 

dimensional spaces this implies that the set {cpYk) for 0 l k < N form a basis for 31: 

Therefore, the orthogonalized set of atoms (6,) obtained from this set, form an 

ortllogonal basis for 31: This means that the OMP converges in less than or equal to N 

iterations. 

Proof of Theorem 6.1 

Let {z,:i=l, ..., n )  be the set of input data points within the processing window W, and let 

WNC = {zNC-: k = 1, ..., L)  be any non-contiguous subset of W with size L, L < n. Let the 

members of WNC be ordered, such that 

Note the absence of z,,,,, in the above list. Since WC is not contiguous (DeJinition 6.3), 

there must exist a member, say z,,,,, such that ZNc(2) E W, Z J , C ( ~ )  P WNC, and 

zN,;(,) < ZNC(2) < Z N C ( ~ + , ) .  It has been assumed, without loss of' generality, that 



zN( : ( , )  < Z N C ( 2 )  < z N C ( ? ) .  TWO subsets W' and WL+', which are less con;figuous than WNC, 

can be constructed by adding the member z,,,,, and deleting one of the two extreme 

values, z ~ ~ ( ~ ) o ~  z,,~+,,. By less contiguous it is meant that if there exist m members in WNC 

that are not in W, but have values within the extremes z,,, and z,~+,,, then Wl or WL+l have 

only (m-1) such numbers. 

These sets can be described as WL+l= { ~ , ~ ( ~ , : i = l  ,..., L ) ,  Wl= {~,~(~): i=2, , . . . ,L+ 1 ), and W2 

={~: ,~( ; ) : i= l ,3 ,4 ,  ..., L+ 1 ) .  The superscript i in the subset W means zNC, is not present in that 

sub'set. Now, the objective function in (6.6) can be written as 

Now, it will be proven that either J,+, < J z  or J I  < J z .  Let 

then 

there are only two possibilities 

Case 1 



If (A.3) is true, then (J, - JL + , )  2 0 ,  since (zNC(, + ,) - zNc(2)) > 0 .  If (A.4) is true, then 

similar to (A.2), the following expression can be derived 

r 1 

By definition, (zNC(,) - zNC(])) 1 0,  and by (A.4) 

hence, It can be conclude that (J, - J,)  2 0 .  
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