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ABSTRACT

This report is divided into two sections. In the first section, the focus is on adaptive
transform-based image compression and motion compensation & low bit rates. A new
adaptive algorithm for image representation and coding is introduced. This algorithm is
based on the concept of segmented orthogonal matching pursuits (SOMP), and adaptively
selects the best representation from an overcomplete dictionary of wavelet functions. In
the second section, the pre-processing and post-processing of images and video streams
arefocused on. A new robust nonlinear filter based on the theory of generalized maximum
likelihood and order statistics (GMLOS) is introduced. It is shown that thisfilter is an -
optimal order statistics filter and some of its properties are proved. A novel algorithm
based on wavelet decomposition, variable size kerned GMLOS filters, and soft
thresholding for removing the blocking effects in block-based transform coding
techniques is introduced. Finaly, a simple algorithm for cell packingin ATM networksis
introduced, and a novel algorithm for error concealment of images and video streams,
based on Multi-directional Recursive Nonlinear Filtering (MRNF) with GMLOSfiltersis
introduced.

* Financial support provided by the Innovative Science and Technology (IST) program of the
BMDO, monitored by the Office of Naval Research (ONR) under contract ONR N00014-91-J-
4126 is hereby thankfully acknowledged.
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Spatio-temporal concealment of video frames. salesman frame 130, H.261 at
320 Kbps, (a) Intercoded using frame 128 with no errors, PSNR = 36.95 dB.
(b) Reconstructed frame 130, no concealment with lost spatid and MV
information. (c) Concealed MVs with inter/intra frame GMLOS filtering of
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1. INTRODUCTION
1.1 Introduction

In modem interactive communication systems two-way connections are used to
provide voice, data, image, and video to the users. There are four fundamental operations
associated with these systems. pre-processing, coding/decoding (CODEC), network
interfacing (NIU), and post-processing. The main building blocks of a rnodem interactive

cornmunication system asdepicted in Fig. 1.1.

input pre-processing [ —C post-pn@l——) output
| Ol'IN h
digital storage I D [IJ channel = digital storage |
ﬁ E I ‘
output «—{|post-processingle{ C pre-processing J¢— input

Fig. 1.1. The main building blocks of a modem interactive digital communication system.
CODEC stands for coder/decoder, and NIU for Network Interface Unit.

Most of the required bandwidth in these systems is occupied by visual information.
Since the amount of available bandwidth is limited by the channel, the CODEC should be
able to encode the visual information at very low bit rates. The coding algorithms for
visual information in these systems belong to the class of lossy image and video
cornpression techniquesl, which usually introduce visible distortions to the original
image. The amount of distortion is a function of the data rate used, and the particular
characteristics of the source image. In addition, the compressed data is vulnerable to
transmission impairments. In this case, the transmission errors may result in various types
of degradations or partial loss of the data, depending on the network interface algorithm
and channel characteristics. Some of these coding and transmission impairments can be

reduced by using a set of pre-processing and post-processing algorithms on the data. The

[. In some applications such as medical imaging systems lossless compression may be required.




following topics are studied in this thesis.

1.2 Multiresolution Imageand Video Compression with Adapted Bases

A large class of image compression algorithms exploit the fact that applying a linear
transformation to the input signal can result in a coding gain. The traditional approach in
this class of compression techniques is to use a fixed transformation matrix. For example,
the emerging image and video compression standards such as JPEG, H.261, and MPEG
use. Discrete Cosine Transform (DCT), which is a fixed transform with sinusoidal bases
[1]. Another fixed transform that has attained popularity in image coding applications is
the Discrete Wavelet Transform (DWT) [2, 3]. DWT offers good frequency selectivity at
lower frequencies and good time selectivity at higher frequencies, and when coupled with
a quantization strategy that exploits this property, it has achieved significantly better
performance over other transforms such as DCT [2, 3].

While coding agorithms with fixed transforms can be useful for a specific class of
signals, they may not be adequate for the characterization of a more general class of
signals with unknown or time varying characteristics [3]. In this case, it is advantageousto
use a transform that is signal dependent. The idea of adapting the transformation to the
signal in image compression applications is related to thefield of universal coding [4] and
has gained popularity in recent years 3, 5].

In transform based video compression techniques, usually a hybrid approach based on
the concept of intra-frame and inter-frame coding is used [6, 7]. In the intra-frame mode
of operation, spatial redundancy is exploited by treating the video frames as still images.
In the inter-frame mode of operation, temporal redundancy is often exploited by means of
block matching Motion Estimation and Motion Compensation (M EM C) techniques. In the
inter-frame mode, the current frame is coded by motion vector and residual error
information that has been predicted from previous or possibly future frames. The intra-
frame and inter-frameinformation is then combined to create the encoded video stream.

In the first part of this thesis, a new adaptive signal expansion technique called
Segmented Orthogonal Matching Pursuit (SOMP) is introduced. This algorithm is then

used for multiresolution image compression, and it is shown that at lower bit rates it
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performs better than traditional fixed transform coding techniques [8]. Moreover, it is
shown that the process of separate prediction and residual coding in hybrid MEMC video
cornpression techniques can be solved in a unified framework by using a modified version
of the SOMP algorithm. Furthermore, it isshown that at lower bit rates, this new algorithm
performs better than the traditional hybrid MEM C techniques [9].

1.3 Pre-Processingand Post-Processing of | magesand Video Streams

Pre-processing refers to spatial and temporal image processing agorithms, such as
noise smoothing and decimation, that are applied to the source image prior to data
cornpression. Similarly, post-processing refers to image processing agorithms that are
applied to the decompressed data to enhance its quality and appearance or to restore the
data lost during the transmission. Various image degradations, coding artifacts, and
transmission impairments can be corrected by using these techniques [10, 11]. In the
second part of this thesis, a new robust nonlinear filter based on the theory Generalized
Maximum Likelihood and Order Statistics (GMLOS) is introduced [12, 13]. It is an ;-
optimal order statistic filter that is well suited for the pre-processing and post-processing
of images and image sequences. Moreover, thisfilter is used in two novel agorithms for
the de-blocking of blocking artifacts in block-based transform coding [14], and the error
concealment of encoded image and video streams over ATM networks [15].

1.4 M easur esof Performance

In this thesis the quality of thefiltered or decoded images and image sequencesis often
referred to. In image processing applications, there are several different criteria to measure
the performance of visua information. These measures include the Mean Opinion Score
(MOS), Picture Quality Scale (PQS), Mean Absolute Error (MAE), Mean Square Error
(MSE), and Peak Signa-to-Noise Ratio (PSNR) [16, 17]. The most widely used
quantitative measures of quality are MSE and PSNR. Although these measures are not
always correlated with the perceived subjective quality of the Human Visua System
(H'VS), their widespread use is justified by their simplicity. In this thesis MSE and MAE
are used as quantitative measures of quality for filtered images, and PSNR for encoded
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images and image sequences. Visua subjective quality may also be used as a measure of
performance. Aside from visual quality, other measures of performance such as

computational complexity are also considered in this thesis.

1.5 Contributionsof thisThess

The contributions of this thesis can be summarized as follows.

* A new agorithm called Segmented Orthogonal Matching Pursuit (SOMP) is
introduced for adaptive signal expansion.

* It isshown that SOMP performs better than the original matching pursuit algorithm
in terms of sparsity of representation and convergence.

A new multiresolution image compression algorithm based on the SOMP algorithm
and an overcomplete dictionary of wavelet atoms are introduced.

* A new agorithm for MEMC is introduced that unifies the process of separate
prediction and residual coding into a unified framework by using a modified SOMP
algorithm. Moreover, it is shown that a lower bit rates this algorithm performs
better than the traditional hybrid block-matchingMEMC agorithms.

* A new robust nonlinear filter for pre-processing and post-processing of images and
image sequences is introduced. Thisfilter has been designed based on the theory of
Generalized Maximum Likelihood and Order Statistics (GMLOS).

* It is shown that this filter is an 1,-optima order statistics filter and some of its
properties are proved.

* A novel algorithm based on wavelet decomposition, variable size kernel GMLOS
filters, and soft thresholding for removing the blocking effects in block-based
transform coding techniquesis introduced.

o A simpleagorithm for ATM cell packing is introduced.

» A novel agorithm for error concealment of images and video streams, based on
Multi-directional Recursive Nonlinear Filtering (MRNF) with GMLOS filters is
introduced.



1.6 Organizationof thisThesis

The material presented in the remainder of thisthesis is organized as follows. Chapter
2 presents a brief overview of the linear expansion of signals with wavelet bases. In
chapter 3, signal expansion with adapted bases is studied. The Segmented Orthogonal
Matching Pursuit (SOMP) algorithm is also presented in this chapter, and the design of
optimal dictionaries for overcomplete expansions is addressed. Chapter 4 is devoted to
multiresol ution image compression with the SOMP algorithm and wavelet bases. Chapter
5 provides an algorithm for motion estimation using a modified version of the SOMP
algorithm. Chapter 6 presents the GMLOS filter and some of its properties. It also presents
anovel algorithm for removing the blockiness in block-based transform coding. Chapter 7
is devoted to the problem of error concealment over ATM networks. Finally, chapter 8

provides the concluding remarks and discusses future research.




THIS PAGE WAS INTENTIONALLY LEFT BLANK




2. SIGNAL EXPANSION AND ANALYSISWITH WAVELETS
2.1 Introduction

Signal expansion is one of the major components of many algorithms in digital signal
and image processing. The idea is to represent a signal by a linear combination of
elementary building blocks or atoms that exhibit certain desirable properties. In signal and
image processing applications the goal of these decompositions isto achieve sparsity, high
resolution, robustness, and speed. In particular, these properties are central to image
compression applications at low bit rates. Sparsity leads to the representation of signals
with a smaller number of significant coefficients, high resolution results in better
subjective quality by capturing the most prominent details of the signal, robustness
guarantees that small perturbations will not seriously degrade the quality of the
representation, and speed is required in rea time applications over the interactive
multimedia communication systems.

Until recently, the Discrete Cosine Transform (DCT) has been the most popular signal
expansion1 algorithm for signal and image compression, and the block-based DCT has
been adopted by many emerging image and video compression standards such as JPEG,
H.261, and MPEG [1]. DCT is a good approximation to the Karhunen-Loéve Transform
(KILLT) which isan optimal transform for stationary first order Markov signals based on the
[, error measure [18]. While KLT isa signal dependent transform and produces an adapted
basis dictionary for signal representation, DCT uses a fixed dictionary of sinusoids as
basis functions. This property has led to the design of fast and efficient algorithms for the
computation of DCT coefficients, and hence its popularity. Although under stationarity
and Markovian assumptions DCT is afairly good model for signal or image blocks, it fails

to exploit the global structure of data. Moreover, in block-based DCT compression

| . Discrete-time series expansionsare often called discretetime transforms.
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algorithms the correlation across the block boundariesis not removed. At lower bit rates,
this usually results in loss of compression, and annoying blocking effects in decoded
images [2].

More recently, there has been a growing interest in the representationand compression
of signals by using dictionaries of basis functions other than the traditional dictionary of
sinusoids. These new sets of dictionaries include Gabor functions [19], chirplets [20],
warplets [21], wavelets [22], multi-wavelets [23], and wavelet packets [24]. Among these
transformations, the Discrete Wavelet Transform (DWT) has attained nnore popularity in
image compression due to its good performance and the existence of efficient algorithms
for computing its coefficients [2]. In contrast to DCT, the wavelet transform gives good
frequency selectivity at lower frequenciesand good time selectivity & higher frequencies.
This trade-off in the Time-Frequency (TF) plane is well suited to the representation of
many natural signals and images that exhibit short-duration high-frequency and long-
duration low-frequency events. The TF-localization property of the wavelet transformis
also very attractive in compression applications, and when exploited with the proper
guantization strategy in a coding algorithm, can produce significantly better results than
other transforms such as DCT [2].

This chapter is designed to provide a brief overview of the wavelet transform as
relevant to signal and image processing applications. Although a number of excellent
tutorial papers and books on wavelet theory can be found in the literature [2, 22, 25, 26,
27, 28], this chapter presents a perspective that is particularly important for some of the
applications considered in this thesis. It establishes the notational conventions for the
algorithms that are adopted in subsequent chaptersfor the optimal adaptiveexpansion and

cornpression of signals with wavelet and wavelet packet dictionaries.

2.2 Linear Expansion of Signalswith Wavelet Bases

The linear expansion of signalswith elementary building blocks or atomsis central to
signal and image processing applications. Given any signal x from a Hilbert space #, a set

of atoms { @, } is desired such that x can be written as

YyeTI?

x= Y a0, 2.1)
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If the space # is the space of square integrable functions L,(R) or sguare summable
sequences L,(Z), it is infinite dimensional, and it is finite dimensional if #/= R", or 4/ = C",
where R™ and C" represent the space of rea and complex N-tuples, respectively. If al
signals x e # can be expanded as in (2.1), the set {9, } iscomplete for the space 7 and

there exist adual set { ¢, } such that the coefficients a, can be computed as

a, = J(I)Y(t)x(t)dt 2.2)
when they are real continuous-time functions, or as

ay = Y @y[nlx[n] (2.3)

when they are discrete-time sequences. The above equations represent the inner products
of the signa x with @, ’s, and are often denoted by {¢,, x). If the set {@,} is complete,
and the @,’s are linearly independent ((¢,, ®;) = §; ;, where §;, ; = 1 if i=jand O
otherwise), they constitute an orthonormal basis for #. In this case the basis and its dual

are the same, and (2.1) can be written as

x = Y (009, (24)
Y

If the set {¢,} is complete and the vectors ¢, are linearly independent but not
orthonormal, then they constitute a biorthogonal basisfor #. In this case the basis and its
dual satisfy (¢;, ¢, = &

i, j» and (2.1) can be written as

x = YA 00, = ) {0, 0, (2.5)
Y Y

Finaly, if the set {¢,} is complete, but the ¢,’s are linearly dependent, they do not
congtitute a basis for #, and the resulting redundant or overcomplete representation is
called aframe [2, 22].

For analytical and practical reasons, the expansion of signals with structured bases is
of great interest in signal and image processing applications. In these type of expansions,
the basis vectors are related by some elementary operations such as scaling, shifting in

time, and shifting in frequency (modulation). The Fourier series expansion, which uses
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harmonic sinusoids as basis functions, is aclassical example of linear signal expansion in
signal processing. Although this fast transform is well suited for many applications in
signal and image processing, it has a mgjor drawback; the Fourier base;; are not localized
in time. Therefore, Fourier analysis works well if the signal is composed of a few
stationary components. However, any abrupt change in time in a non-stationary signa is
spread out over the whole frequency axis, as shown in Fig. 2.1.

One may attempt to localize the Fourier bases by windowing the data at fixed intervals
with asmooth and compactly supported window prior to transformation. Thistransformis
known as the Gabor or Short-Time Fourier Transform (STFT) [2]. The basis functions
used in the STFT expansion are well structured (they are related to each other by shift in
time and modulation), and produce alinear frequency analysisthat partilions the TF-plane
into fixed size rectangles called logons [19]. Another alternative to Fourier analysisis the
Wavelet Transform (WT). In this transform, the signal is expanded by using the shifts and
scales of a prototypefunction called the mother wavelet. Although, STFT is useful for the
analysis of many types of signals, WT offers a number of advantages over STFT. Whileit
is possible to construct a variety of compactly supported orthonormal bases for WT, there
are no suitable orthonormal bases based on STFT. The second advantage comes from the
fact that the scales used in the construction of wavelet bases are powers of an elementary
scale factor that produces a logarithmic frequency analysis for WT. This property results
in a more efficient tiling of the TF-plane by WT analysis, because at higher frequencies
(smaller scales) the logons become more localized in time, while at lower frequencies they
are more localized in frequency. It is important to note that the localization in time and
frequency can not be arbitrarily small and their product is bounded by the Heisenberg
inequality [28]. Some of these facts areillustrated in Fig. 2.1.

2.2.1 ContinuousWavdet Transform

In WT the notion of scale is introduced as an aternative to frequency that leads to a
time-scal e representation. For a continuous signal, the time and scale parametersof WT can
be continuous, leading to the Continuous Wavelet Transform (CWT). Consider the family
of functions obtained by the scaling and shifting of a mother wavelet y(¢) € L,(R) as

Vau® = ™ y(=2) 26)
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Fig. 2.1. Time-frequency tiling of asignal [2]. (a) Sine wave plus impulse. (b) Discrete-time
Fourier series. (¢) Short-time Fourier series. (d) Discrete-time wavelet series. The vertical axis
represents either increasing frequency or decreasing scale, the horizontal axis represents time,
artd darker and stripped regions represent larger coefficients. Clearly, the TF-localization of the

WT analysisis superior to STFT or Fourier analysisfor this example.

where a, be R and a # 0. The mother wavelet should satisfy the admissibility condition

o 2
c, = L |‘P|(£;)| do> < oo @7

where W(w) is the Fourier transform of y(z). Whenever W(r) decays sufficiently fast,

the admissibility condition reduces to
P(0) = J w(r)dt = 0 2.8)

It isimportant to note that since ¥ (w) iszero at the origin and decays at high frequencies,
the wavelet spectrum has a band-pass behavior.

If the above requirement is satisfied, then the CWT of a conttinuous function
x(t) € L,(R) isdefined as

CWT (a,b) = _[ OV (DdE = (2, ) 2.9)
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It has been shown that the function x() can be recovered (in the L, sense) from its

CWT by thefollowing reconstruction formula, known as resolution d the identity [22]

dadb

2
a

x(1) = CLJ J CWT(a, b)y, ,(1) (2.10)
Yo o o

It is possible to have variations in the above reconstruction formula [22]. An important

case is when the analysis and synthesis wavelets are different. Let y,(#) and wy,(¢)
denote the analysis and synthesis wavelets, respectively. If the following inequality

satisfied

J-m |\P1(w)||\P2(w)|d(o< (2.11)

o]

and CUTMy, isdefined as

Cyrv. = r F*1(0)'Fy ()

dw #0 2.12
o) (2.12)

—o0

then the following reconstruction formula holds [22]

.[_: _I: (yy, , ¥V, (1)

In this framework, y,(#) and y,(¢) can have significantly different behaviors, a property

1 dadh

Cy

x(1) = (2.13)

2
Y2 a
that is desirable in many signal and image processing applications. For example, it can be
used for the design of biorthogonal systemsin which both analysis and synthesis bases are

symmetric and compactly supported.

2.2.2 Framesand the Discrete Wavdet Transform

From (2.9), it is clear that CWT produces a redundant representation for a signal,
because it maps a continuously indexed function of one variable into a continuously
indexed function of two variables. One way to overcome this problem isto sample the (a, b)
plane. Let a = a5 where me Z and a, # 1, then for y, ,(¢) to cover the whole time
axis at a scale a, the discretized parameters are [22]

a=a, b=nbyay, acR,beR, mneZ ay>1,by>0 (2.14)

and the discretized family of wavelets can be written as

-m/2

Vo a(t) = ag” "W(ag t —nby) 2.15)
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Therefore, a frame maps L,(R) to [,(Z*) with non-critical sampling of the scale and shift
parameters. A wavelet frame can be defined as follows [22]: afamily of wavelet functions

{Wm ntmne s inaHilbert space H = L,(R) iscaled awaveletframe, if for dl x in #, there
exists 0 < A £ B < «, such that

Al <Y (W, o 9| < Blxl® (2.16)

where A and B are called theframe bounds. The transformation that uses a wavelet frame
for the linear expansion of signalsis called Wavelet Frame Transform (FVFT).
When A = B, the frame is called a tightframe, and by virtue of equation (2.16) there

exists a reconstruction formula (at least in the weak sense [22]) given by

(1) =AY (Y DV (2.17)

mnel
It is important to realize that a frame is not an orthonormal basis for #. It isonly a set of
non-independent vectors that spans the space # A numericaly stable reconstruction
formula for general frames can be found in [22].
In general, frames represent a middle ground between the CWT and the discrete

wavelet transform. In fact, if {y,, ,} is atight frame, with frame bound A =1, and

mnelJ
|W, | = 1 foral mne J,then {y,, ,}constitute an orthonormal basis for 3L[2]. A
particular case of interest is when the scale and shift parameters are critically sampled on a

dyadic grid%. Inthiscaseif a, = 27", and b, = 1, then (2.15) becomes

m/2

V() = 2" (2"t —n) (2.18)

The linear expansion in (2.4), which employs the above orthonormal basis functions is
called the Discrete Wavelet Transform (DWT). DWT represents an octave-band
decomposition of the signals in the TF-plane and possesses the greatest sparsity of
representation among CWT, WFT, and DWT expansions for continuously indexed
functions in L,(R). The reconstruction formulafor DWT is given by

()= D AW DV (2.19)

mne J

2. Orthonormal DWT employing non-dyadic scaling can also be constructed.
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2.3 Wavdetsand M ultiresolution Analyss

Multiresolution Analysis of images by means of the multiresolution pyramid
algorithm was first introduced in computer vision and image processing [29]. In the
pyramid algorithm an image is decomposed into a coarse approximation plus a prediction
error that is the difference between the origina signal and a prediction based on the coarse
approximation. A coarse version of the image at each level of decomposition is obtained
by successive filtering and subsampling of the original signal with a low-pass filter.
Although in this method the expansion is redundant3, the pyramid agorithm is intimately
related to subband and wavelet decompositions [2]. The theory of Multiresolution
Analysis (MRA) based on the wavelet bases of L,(R) was developed in [30, 31, 32], and
the Discrete-time Multiresolution Analysis (DMRA) based on the wavelet bases of 1,(Z)

was studied in [33]. They are summarized in the following subsections.
2.3.1 Multiresolution Analysisand Waveet Basesof L,(R)

The MRA based on wavelet bases for continuous-time signals in L,(R) is defined as a
sequence of closed and nested subspaces V, of L,(R) [31, 22, 26], with the following
properties

L.V,cV;,,Vje Z,

2.x()e V,ox(2)e V,, ,

.x()e Voo x(t+1)e V,,

4. ]EJZ V; isdensein L,(R), andjg vV, = {0},

5. there exists a scaling function ¢ € V,,, with a non-vanishing integral, such that the

collection {¢(z - k)|k € Z}is aRiesz basis of V.
Since ¢ cV,cV,, and from (2)and (5)one may conclude that there exists a sequence
{h[n]} € 1,(Z), such that the scaling function satisfies a two-scale difference equation

given by
o) = 423 hlnlo(2t k) (2.20)

neZ

This equation is also called the refinement or dilation equation. Usually no explicit

3. The number of samples in the expansion is greater than the number of samples in the original image.
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expression for the scaling function ¢ is available, but fast algorithms exist that use the
dilation equation to evaluate ¢ at dyadic intervals [2, 22, 25]. Since the dilates and
trandates of the scaling function are often used, they will be denoted by
0,k = 2j/2¢(2jt - k). From the above properties it is immediate that the collection of
functions {9; ,}, . » iISaRiesz basisof V,

Now, let W, denote a space complementing V;in V,,, since V, c V,, 4, then
Via=V,ew, (2.21)

where @ denotes a direct sum. Equation (2.21) implies that the space W contains the
detail information needed to go from an approximation at resolution j to an approximation
at resolution j+1, as shown in Fig. 2.2.

v V. % V.
{0} - - - O——P - - - [(R)

W, W, W,

Fig. 2.2. Multiresolution analysisof L,(R).

Given the above properties, afunction y iscaled awavelet if the collection of functions
{y(t-k)|ke Z}is aRiesz basis of W,. If the shifts and dilates of this; wavelet function
aredenoted as y/; 5 = 2/"1y(2’1 - k) , then the collection of wavelet functions{ (I 9tire
isa Riesz basis of L,(R), and there exists asequence { g[n]} € /,(Z) such that

y(t) = N2 glnlo(2r-k) (2.22)

neZz
The above equation implies that the wavelet functions can be obtained from their
corresponding scaling functions.

In general, there exists adual multiresolution analysis associated with each MRA. For
the dual MRA the approximation and detail spaces are denoted by ‘7] and w,,
respectively. The propertiesof thedual MRA arethe same asthe origind MRA and its scaling
and waveet functions are given by éj,k = 2j/2$(2jt—k), and y;, = 2j/2xff(2jz—k),
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respectively. Then any function x in L,(R) can be decomposed into its projections in

approximation and detail spaces as

()= Y (60t Y Y 6y, v, (2.23)

k =~ j=0 k==
In the above equation, the projection of the function x onto W, is referred to as "'the details

a level j", and generates the wavelet coefficients associated with y; . It is important to
note that the spaces W are not necessarily unique, because there are different ways to
complement V, in V,,,. Therefore, it is possible to construct different classes of wavelet
functions for multiresolution analysis of signals [2, 22, 25, 26].

The above analysis represents a biorthogonal MRA, and the wavelets obtained with
this analysis are referred to as biorthogonal wavelets. It is possible to construct an
orthonormal MRA by imposing some orthonormality constraint. A sufficient condition for
an MRA to be orthogonal is W, L V,, or equivaently {y, ¢(.-k)) = 0, for al kinZ.
In this case, the wavelet spaces W are defined as the orthogonal complement of V,in V,,,.
Moreover, the collection of functions {¢(z- k) |ke Z}, and {y(r - k)|k e Z), constitute
orthonormal bases for spaces V, and W,, respectively. Finaly, in an orthonormal MRA the

scaling and wavelet functions are the same as their duals.
2.3.2 Multiresolution Analyssand Wavdet Bases of 1,(Z)

An orthonormal MRA based on wavelet bases for discrete-time signals in I(Z) is
defined as a sequence of embedded closed spaces V_, c...cV_,cV_, cV,, such that
Vi, = 1,(Z) [18]. Inthiscase, we have

0
UV, =V, = 1,(Z) (2.24)
j=
Let. W denote an orthogonal space complementing V, in V., then V,,, = V,® W,.
Assumethat there exists a sequence h[n] in V, such that {k[n - 2k]},. ; is abasisfor V...
Then, it can be shown that [33] there exists a sequence g[r] in the approximation space V,
such that {g[n - 2k]},. 5, iSabasisfor W,. This sequenceis given by

gln] = (-1)"h[-n+1] (2.25)
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From the above discussion, one may conclude that {i[n —2k], g[n-2k]},, 4 iS an
orthonormal basisfor V,. Therefore, this decomposition can be iterated on V., for Jtimes,

and V, can be written as
Vo= W OW,0..0W 0V, (2.26)

This decomposition into approximation and detail spaces can be efficiently implemented
by iterated perfect reconstruction filter banks[2,22, 25, 34].

In general, DMRA for discrete-timesignas is very similar to MRA for continuous-
time signals. However, there exist a few important distinctions. First, in DMRA only a
finite number of decomposition levels are being considered. Therefore, there exists a
coarsest resolution associated with V, and a finest resolution associated with V. Finally,
in DMRA variousiterated filters are used to perform the decomposition, whereasin MRA
for continuous-timesignals, asimplefunction and its scales and shifts are used to perform
the reconstruction.

Although multiresolution techniques are of great theoretical value and have been
successfully used in many signal and image processing applications, in some cases they
may be suboptimal or even misleading. A counter-example to multiresolution analysisis
shownin Fig. 2.3.

(b)

Fig. 2.3. Counter-example to multiresolution analysis. (a) The origina image (Comet Photo
AG). (b) A two-level multiresolution decomposition of (a) with D4 orthogonal wavelets [22].
The coarse approximation shown in top-left comer of (b) isunrelated to the full-resolution image
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2.4 Wavdets Multiresolution Analyss, and Filter Banks

Recent work on the construction of structured wavelet bases for the linear expansion
of signals has shown that this problem is in many ways analogous to the design of
multirate filter banks in signal processing applications [2, 22, 25, 34]. In fact, given a
discrete-time sequence of length N, the Discrete-Time Wavelet Transform (DTWT) of this
sequence can be efficiently implemented with multirate filter banks in (N) [2]. This
relation is evident from equations (2.20) and (2.22), which basically represent filtering
operations followed by sub-sampling. In these equations, the sequences A[n] and g[n] can
be considered as impulse responses of the high-pass and low-pass filters in the synthesis

portion of aiterated filter bank as shown in Fig. 2.4.

synthesis

analysis

Fig. 2.4. Iterated two channel filter bank and decomposition tree. (bottom) The iterated filter
bank, Hand G represent the high-passand low-passfilters, respectively. (top) The
clecomposition tree corresponding to the analysisbanks. The symbolsA, ad D, represent the
coarse gpproximation and detail decompositions at level J, respectively.

From Fig. (2.4) one can conclude that a frequency analysis can be obtained by
iterating a two-channel filter bank on the previous low-pass channel. The implementation
of multirate filter banks with iterated two-channel filter banks is often referred to as a
constant-Q filter bank algorithm [2]. If the above filter banks have the perfect
reconstruction property (i.e. if the transfer function of the entire system is unity), this
system exactly resembles the DMRA of section 2.3.2. The corresponding approximation
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and detail spaces for DMRA are labeled in the synthesis filter banks in Fig. (2.4). The
cortditions for perfect reconstruction filter banks, Quadrature Mirror Filters (QMF), and
their relation to wavelets is given in [2]. Another important link between the filter bank
and wavelet theory is the fact that continuous wavelet bases can be obtained by iterated
filter banks [2, 22].

In signal and image processing applications, the greatest interest is in construction of
structured bases. The wavelet bases more frequently used for image compression include
orthogonal wavelets, biorthogonal wavelets, and wavelet packets. The compactly
supported orthonormal wavelets can be efficiently implemented with FIR filter banks [25,
34]. The oldest example of this type is the Haar wavelet. This wavelet has good time
resolution, but its frequency resolution is poor. In addition, it has poor regularity
properties. To overcome these problems, Daubachies [22] proposed an agorithm for
designing orthonormal and compactly supported wavelets that are more regular, and can
be efficiently implemented with filter banks. These filters are called Daubachies (Dn)
filters. The Haar wavelet (or equivalently D1 wavelet), D2 wavelet, and their

corresponding scaling functions are shown in Fig. 2.5.

0 02 0.4 06 0.8 1 a 02 04 06 08 1

"¢ us 1 15 2z 25 "0 8s 1 1s 2 25

(d) D2 wavelet function

(c¢) D2 scaling funetion

Fig. 2.5. Examples of compactly supported orthogonal wavelet. (a) The Haar scaling function.
(b) The Haar wavelet function. (¢) The D2 scaling function, (d) The D2 wavel et function.
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A magjor disadvantage of the compactly supported orthonormal wavelets is their
asymmetry. In image processing applications it is more desirable to have symmetric
wavelets bases. A lack of symmetry results in nonlinear phase FIR filter banks, and
consequently causes reconstruction artifacts at the boundaries of the objects.

To obtain both compact support and symmetry, one may use biorthogonal wavelets
[2]. An example of abiorthogonal wavelet based on spline functionsis shown in Fig. 2.6.

0 2 4 [ i 10 0 2 4 6 8 10

(c) synthesis scaling function (d) synthesis bi-orthogonal wavelet

Fig. 2.6. Example for bi-orthogonal wavelets. () The analysis scaling function, (b) Theanalysis
wavelet function, (c) The synthesis scaling function, (d) The synthesis wavelet function.

Shift-orthogonal wavelets constitute another class of symmetric and compactly
supported wavelets that are suitable for image compression [35]. In this class the wavelets
are orthogonal to their trandates within the same scale but not across scales. They alow
thedesign of shorter wavelet synthesis filters while preserving the orthogonality within the
independent wavelet channels. These features can be used for efficient. quantization and
cocling of individual channels [36]. Furthermore, because of orthogonality with respect to

shifts this class of wavelets can be implemented with standard tree-structured perfect
reconstruction filter banks.
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2.5 Wavdet Packets

Wavelet Packets (WP) were introduced in [24] as a family of orthonormal bases for
discrete functions of R", and include the wavelet basis and STFT basis as their members.
In fact, wavelet packets represent a generalization of the multiresolution decomposition of
signas into wavelet bases that encompass the entire family of subband tree
decompositions. In contrast to wavelet analysis, in WP analysis the details as well as the

approximations are decomposed, asillustratedin Fig. 2.7.

(b)

Fig. 2.7. Decompostion tree for asignal. The symbolsA, and Dj represent the coarse
gpproximation and detail decompostionsat levd J, respectively. (a) Wavdet tree
decomposition. (b) Wavdet packet tree decompaosition.

Whilefor a Jlevel wavelet decompositionthereare J+| possible ways to decompose a
signdl, for a Jlevel wavelet packet decomposition there are 2/ possible different ways to
decompose asignal. This givesarich menu of basisfunctionsthat can be used to represent
independent segments of a non-stationary signal. Choosing one out of all possible
decompositions presents an interesting problem that will be discussed further in

subsequent chapters.

2.6 Concluding Remarks

Wavelet theory offers a set of new toolsfor signal analysis and expansion. The time-
frequency characteristics of wavelets, and their relation to multirate filter banks is well
suited to many image processing applications. An interesting case in wavelet based
expansion is when an adapted basisis used for analysis. In thiscase the transform depends

on thesignal and it is possibleto find best bases that will alow sparse and high resolution
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expansion of signals. These types of bases are most desirable in image and video
cornpression applications, because they result in expansionsthat retain the most energy in
the fewest possible number of coefficients. In addition, no prior modd for the data is
assumed in adaptive expansions. The adaptive expansion of signals based on best basis
selectionis the subject of the next chapter.
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3.OPTIMAL ADAPTIVE SIGNAL EXPANSION WITH SEGMENTED
ORTHOGONAL MATCHING PURSUITS

3.1 Introduction

In recent years, transform based techniques using a fixed set of Fourier or wavelet
basis functions have been extensively used for image representation and lossy image
cornpression [1, 2]. In these techniques, the signa is first expanded into a linear
cornbination of afixed number of basis functions called atoms. If the transform captures
the underlaying sparse structure of the signal, then most of the energy of the signal is
retained in afew terms of the expansion. Thisis often referred to as energy compaction of
the transform in compression literature. This energy compaction property of the transform
can then be exploited with various quantization and coding technique:; to achieve lossy
cornpression at low bit rates[2].

In this work the main concern is with the representation and compression of natural
images. Natural images are two dimensional signals with unknown or time-varying
characteristics. For thistype of signal, linear expansion with afixed set of basis functions
is not flexible enough to represent the data with the desired degree of sparseness. For
example, the Fourier transformis not agood fit for regions with sharp discontinuities such
as edges, and the wavelet transform is not a good fit for regions with periodic high-
frequency components such as localized textures or stripes [3]. In general, the Fourier
basis provides a poor representation of signals well localized in time (space), and the
wavelet bases are not well adapted to represent signals whose Fourier transforms have a
narrow high frequency support. As stated in [37], linear decompositionsin afixed basis set
are analogous to a text written with a small vocabulary. Although this vocabulary may be
sufficient to express general ideas, it requires the use of circumvolution, or replacing
available words by full sentences. Therefore, it is possible to improve the energy

compaction of a transform by enlarging the number of atoms beyond a basis. This
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enlarged and redundant set of atoms is called an overcomplete dictionary [37]. In
overcomplete dictionaries, some of the atoms can be represented by linear combinations
of others. Consequently, the expansion of signalsin these overcomplete dictionariesis not
unique. However, this non-uniqueness can be exploited by using efficient adaptive
algorithms to achieve signal expansions that are more sparse than the traditional fixed
transforms.

In recent years, there has been growing interest in the representation of signals with
overcomplete dictionaries of atoms [2]. In this type of signal expansion the following
issues should be addressed:

» Which atoms should be included in adictionary.

» Given adictionary, how to select the best atoms to represent the signal.

Answers to the first question have resulted in the introduction of .various dictionaries with
different characteristics, and answers to the second question have produced a number of
adaptive and non-adaptive algorithms for signal expansion.

In this chapter a new adaptive algorithm for signal expansion is introduced. This
algorithm often results in expansions which are sparse and high resolution. An algorithm
for the construction of optimal and near optimal hybrid dictionariesis also presented. The
organization of this chapter is as follows. Section 3.2 provides an overview of the most
widely used dictionaries and a brief description of their characteristics. Although this list
is not exhaustive, the dictionaries relevant to this work have been included. Section 3.3
presents an overview of existing adaptive and non-adaptive signal expansion algorithms.
Section 3.4 is devoted to the description of the new adaptive algorithm. Finally,

experimental results and concluding remarks are provided in section 3.5.

3.2 Classification of Dictionaries

A dictionary D, is a collection of parametrized atoms given by 1, = {¢,:ye I'}. In
this notation, the ¢, s are discrete-time vectors (atoms) of length N, and the parameter y is
an index. If the number of atoms in 1, is greater than N, then the dictionary is
overcomplete, and if this number isequal to N, the dictionary iscomplete. An overview of
the most widely dictionaries used in signal and image processing are given the following
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subsections.
3.2.1 Dirac Dictionary

The Dirac dictionary isthe collection of Dirac deltafunctions, which are zero except a
one point. Given a discrete-time signal of length N, this dictionary can be indexed by
v = (0, 1,...,, N-1}, and the atoms are given by

(Py[n] = I["=Y] 3.1

where I, -, is the usua Dirac delta function, which is equa to one if n =y, and zero
otherwise. From (3.1) it is clear that D is a collection of standard basis functions, and
therefore it constitutes an orthonormal basis for R". The atoms in this dictionary are well

localized in time, but their frequency localizationis very poor.
3.2.2HeavisdeDictionary

The Heaviside dictionary is acollection of step functions. Given adiscrete-time signal

of length N, the atoms in this dictionary are indexed by y = {0, 1, ...,N-1}, and are
given by

Oy[n] = L5y (3.2)

Thetime localization of the atomsof thisdictionary is not as good as the Dirac dictionary,
but the atoms have better frequency localization properties. Although in this case D is

complete, it iseasy to show that the atomsin this dictionary are not orthogonal.
3.2.3Frequency or Fourier Dictionaries

This type of dictionary is simply a collection of sinusoidal waveforms. The atoms in
this set can be indexed by an angular frequency o € [0, 21t), and a phase type indicator
pe {0,1}, where the indices 0 and 1 correspond to sine and cosine functions,
respectively. Therefore, the atoms in a Fourier dictionary can beindexedby y = (o, p),

and are given by

Pa, oln] = sin(wyn) (3.3)
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9o, 1] = cos(wyn) (3.4)

In the standard Fourier dictionary the cosines are sampled a w, = 2nk/N, for
k=01.. N/2,and sinesaresampled a w, = 2nk/N,fork = 1,..., N/2-1.This
dictionary consists of N waveforms that are mutually orthogonal, and therefore form a
basis for ,(Z). It is aso possible to obtain overcomplete Fourier dictionaries by
oversampling the angular frequency. Other frequently used dictionaries in this class
include the sine and cosine dictionaries. This class suffers from poor frequency

localization properties.

3.2.4Time-ScaleDictionaries

A time-scale dictionary is a collection of the dilations and translations of afunction,
called the mother wavelet, together with the dilations and trandlations of afunction called
the scaling function. In this case the atoms are indexed by vy = (a, b, p), where
ae (0,0),be [0,N],and pe {0, 1}. Here, the values0 and 1 for p correspond to the
scaling function and the mother wavelet, respectively. The atoms in this dictionary are

given by

Ousolnl = a*0(a(n—b)) (3.5)

Ou s 1ln] = a"Pyla(n-b)) (3.6)

For the applicationsof thisthesis, discrete-time atoms defined on adyadic grid are of main
interest. In this case thedyadic scalesare given by a, = 2'/N,ford = 1,..., log,(N)-1,
and the trandations are specified by integer multiples of the scale as b, y = k. a,, for
k=0..,2-1

The oldest member of thisfamily is the Haar dictionary, in which the mother wavelet

isdefined as ¢ = I}, 1,2 and the scaling function is givenby ¢ = Iy ;. The

-y 110
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wavelet forms an orthonormal basis for 2(Z), and has good time locdjization properties,
but poor frequency localization and regularity properties [22]. For thistype of dictionary a
wide variety of wavelets with various time localization, frequency localization, and
regularity properties can be derived from the two-scale equation. The most important
variations include the compactly supported and orthogona Daubechies wavelets, and
Daubechies near symmetric wavelets [22], biorthogonal wavelets [2], shift-orthogonal
wavelets [35, 36], and spline wavelets [26], and multiwavelets [23]. For 2-D signals both
separable and non-separable wavelets are possible [2, 22]. Separable 2-D wavelets are
obtained from the tensor product of 1-D wavelets, and because of this directional

preference awider range of separable wavelet dictionariesis possible.
3.25Time-Frequency Dictionaries

A time-frequency dictionary is a collection of modulated functionsindexed by angular
frequency, time location, phase, and duration. In this case the atomsin the dictionary are

indexed by v = (®,, 1,, An, 8), and the atoms are given by
¢,[n] = exp{~(n—-1,)"/(An)’} - cos(@,(n—1,) +0) (3.7)

where O e {0, m/2}, and for afixed An, completeand overcomplete sets of dictionaries
are obtained by different choices of sampling frequenciesfor ®, and t, [38]. The oldest
members of this class of dictionaries are the STFT or Gabor dictionaries [19]. These
dictionaries are complete, and have better time and frequency localization propertiesthan
the Fourier dictionaries. However, their time and frequency localization properties are
inferior to those of time-scaledictionaries. More recently a number of overcomplete time-
frequency dictionaries have been proposed that have better localization properties than
Gabor dictionaries. These are wavelet packet (WP) and cosine packet (CP) dictionaries[2,
24]. These dictionaries offer a rich menu of atoms for signa expansion. In fact, the
orthonormal wavelet dictionaries are special cases of the wavelet packet dictionary, and
the standard Fourier and Gabor dictionaries are special cases of the cosine packet

dictionary.
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3.3 Optimal and Sub-optimal Signal Expanson

Let x = {x[n];n=0,1,...,N-1}, be adiscrete-time signal in a finite dimensional

Hilbert space #'= R", with theinner product of x,y € # defined as

(x,3) = Y xnl. yln] (3.8)

and its norm as [lx| = (x, x)'”*. Given adictionary of basisfunctions D = {¢,:ye I'}
in 24 with |9, = 1and span(D) = 7 the goal is to obtain an exact representation of x

with linear combinations of asmall number of atoms in 2 such that

x= Y a0, (3.9)

YeTl
or an approximate decomposition as
X =Y a0 +r (3.10)
YeTl
where {9} er represents the set of atomsin D, the a,’s are the coefficients of expansion
(ay € C, where C denotes the set of complex numbers), and r isthe residual.
Alternatively, If all atoms in the dictionary are written out as columns of a matrix @,
and al the coefficients as a column vector a, then the decomposition in (3.9) can be

written as alinear equation given by
Pa = x (3.11)

In this notation, the problem reduces to that of finding an exact or approximate solution for
the above linear equation.

In signal representation and compression applications, the goal is to expand a signal
over D, with a small number of atoms retaining most of the energy of the signal. These
expansions will be also referred as approximations. An optimal approximation with L
atoms can be defined asfollows.

Definition 3.1 Let D = {¢,:ye I'}, be a dictionary d atoms in an N-dimensional
Hilbert space #H Let & denote the approximation d x € #, by L atomsin D (L <N),
such that
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L-1
£ = a0, (3.12)
y=0

Then, an L-optimal approximation isan expansion that minimizese, = ||lx - x| .

When D is complete and the atoms in 2 are orthogonal, it constitutes an orthonormal
basis for A, and the error €, is minimized by smply selecting L atoms that have the
largest inner products with x. Therefore, an L-optimal approximation for x can befound in
O(IN?) operations. For certain bases and spaces, it is aso possible to estimate the rate of
decay for €, , asL increases. For example, when atomsin 1) are wavelet bases, the rate of
the decay of ¢; for functionsthat belong to certain Besov spaces can be estimated [39].
Furthermore, it is shown that this wavelet representation is asymptotically near optimal in
the sense that the rate of decay for €; isequal to the largest decay attainable by a genera
class of nonlinear transform-based approximation schemes [39].

When D is overcomplete, the error €, can be minimized by simply selecting the L
atoms that have the largest inner products with x. In fact, the problem of finding an L-
optimal approximation with general overcomplete dictionaries is NP-hard due to the
following theorem [40].

Theorem 3.1 Let 1) be the set of all dictionaries for an N-dimensional Hilbert space #
that contains O(N*) atoms, where k=1 Then finding the L-optimal approximation
problemis NP-hard.

The above theorem implies that the problem of finding an L-optimal approximation
for general dictionariesis an NP-hard problem. However, for specific dictionariessuch as
the orthonormal wavelet dictionary mentioned above, this problem can be solved in
polynomial time.

Because of the difficulty of obtaining an L-optimal approximation, one can resort to
near optimal or suboptimal expansions over aspecificdictionary of atoms. In recent years,
a variety of algorithms have been proposed to find near optimal expansions in different
applications. Some of these algorithms are explained in the following subsections.

3.3.1 TheMethod Of Frames

The Method of Frames (MOF) uses an optimization procedure that adaptively refines
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the signal approximation over a redundant dictionary of basis functions [22, 38]. Given
®a = x, and an overcomplete dictionary 2 whose elements belong to a finite
dimensional Hilbert space # = R", MOF tries to find a representation of the signal whose

coefficients have minimal [, norm by solving the following optimization problem
min|lal, subjectto ®a = x (3.13)

The solution to the above problem is often called a minimum-length solution, because the
collection of al the solutions to (3.11) form an affine subspace of R", and MOF finds the
element of this subspace closest to the origin [41]. The minimum-length solution to this

problem isfound by the generalized inverse of ® as
a3 = @' @) x (3.14)

The numerical valuedf a,,, isoften obtained with conjugate gradient iterativealgorithms,

opt
which are faster than the generalized solutions using singular value decomposition [41,
42]. For the wavelet packet dictionary, the frame istight, and the solution to MOF is given

in closed form by
a,, = (log;N)'®'x (3.15)

In this case @' is the analysis operator of the wavelet packet dictionary and can be com-
puted with N(log,N) operations. The mgjor disadvantageof MOF is that it often does not
exploit the sparse structure of signals [43]. Moreover, the resolution of' the MOF expan-
sion islimited and can not resolvethose features of the signal that are sharply localized in
time [43].

3.3.2The Method Of Best Orthogonal Basis

The method of Best Orthogonal Basis (BOB) is afast algorithm that adaptively selects
asingle orthogonal basisthat is the best basisin the wavel et packet dictionary, based on an
entropy measure [44]. Let x[B], represent the vector of coefficients corresponding to the
expansion of x over an orthogona basis set B, e(+) be a scalar function with a scalar
argument, and let E(x[B]) = Z,e(x[ﬂ],) define the entropy of x[B]. Then BOB finds
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the best orthogonal basis in order of N(logN) operations, by solving the following

optimization problem
min{E(x[B]): (Bc D)} (3.16)

When asignal can be sparsely expanded over an orthogonal basisin D, this method works
well and produces near optimal expansions for a signal in terms of sparsity, but fails to
deliver a sparse representation when the signal is a superposition of a moderate number of

highly non-orthogonal components [43].
3.3.3 TheSingle Tree Algorithm

The Single Tree Algorithm (STA) searches a wavelet packet dictionary for the best
bases to represent the signal, by using acost function and afast search algorithm [45]. The
goal of the STA isto find arepresentation that is more suitablefor signal compression in a
Rate-Distortion (R-D) sense. STA uses the Lagrangian cost function J = D + AR, which
tracles off rate for distortion at a quality factor given by the Lagrange multiplier A >0. In
STA the parameter A represents the absolute slope of the R-D curve, and the optimal slope
for a specific coding goal should be matched to the target rate R. Due to convexity of the
R-D curve, the optimal value of A can be obtained with afast search algorithm, asfollows.
Assume that the R-D cost metrics are additive over the entire WP tree. This assumption
can be written as R(tree) = 3 R(leaf nodes), and D(iree) = > D(leaf nodes).
Then grow afull treefor theentire signal up to a maximum fixed depth, and popul ate each
WP tree node with the minimum Lagrangian cost over all quantization choices Q, for that

nocle. Then the minimum cost at each node can be found from
J(node) = r‘rgn [D(node) + AR(node)] (3.17)

then starting from the leaf nodes, the full WP is recursively pruned subject to an optimal
dyrniamic programing split-and-merge decision. In this algorithm the children nodes are
pruned if J(parent node) < [J(child1) + J(child2)]. For a discrete-time signal of size
N, the computational complexity of thisalgorithm is N(logN).
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For 2-D images, it can be shown that the number of atoms A(d), in a single tree of
depth d, is given by the recursion A(d) = [A(d - 1)]4 +1, with A(l) = 2. For examplein
a depth five 2-D WP decomposition, the STA agorithm should search a wavelet packet
dictionary of 5.60 x 107 atoms.

The STA agorithm produces an R-D optimal expansion for stationary signals.
However if the signa is non-stationary or exhibit time-varying characteristics, this

algorithm can not locally adapt to different segments of the signal.
3.3.4The Double Tree Algorithm

The Double Tree Algorithm (DTA) issimply an extension of the STA from frequency
decomposition to thejoint time-frequency decomposition of signals, asshown in Fig. 3.1 [46].

frequency decomposition

—_————
——

—

Fig. 3.1. Singleand double tree of depth twofor a1-D signal. Thesingle tree algorithm (left) uses
a fixed dictionary of wavelet functionsand performs a static frequency decomposition on the
signal. The double tree algorithm (right) performs a spatial decomposition.in addition to
frequency decomposition. Solid lines present the frequency tree and dotted lines present the
spatial tree.

In DTA asingle tree is first grown on the entire signal and stores the associated cost at
each node by using the single tree algorithm. It then calculates the single tree for the first
and second halves of the signal and stores the costs a each node and continues the
decomposition by bisecting the signal in a similar manner until the desired depth is
reached. The double tree is then pruned in a manner similar to STA.
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For adiscrete-time signal of size N, the computational complexity of this algorithmis
N(logN)z. For 2-D images, it can be shown that the number of atoms D(d), in a double
tree of depth d, is given by the recursion D(d) = [D(d - D]*+ A(d) - A(d - 1) +1,
with D (I) = 2, where A(d) is the number of bases searched by asingle tree of depth d. For
example, in adepth five 2-D doubl e tree WP decomposition, the algorithm should search a
wavelet packet dictionary of 6.50 X 10% atoms. In this algorithm, coarse segmentation of
the signal in this algorithm may result in boundary artifacts in the reconstructed signal.

This problem can be solved in anumber of ways as explainedin [47, 48].
3.3.5 The Method Of Basis Pursuit

The method of Basis Pursuit (BP) uses a convex optimization procedure that
adaptively refines the signal approximationover a redundant dictionary of basisfunctions
[43]. Given ®a = x, and an overcomplete dictionary D, whose elements belong to a
finite dimensional Hilbert space # = R", the method of BP triesto find the representation
of the signal whose coefficients have minimal [, norm. That is, one has to solve an

optimization problem of theform
min|a|, subjectto ®a = x (3.18)

From one point of view, the method of BPis very similar to the method of frames, because
it simply replaces the I, norm in the method of frames with the I, norm. However, this
minor change has a major impact on the outcome of this optimization problem [43]. While
the method of frames solves a quadratic optimization problem, BP should solve a convex
and non-quadratic optimization problem. Although the method of BP involves nonlinear
optimization, it is possible to reformulate the equation (3.17) into a linear optimization
problem with the method of slack variables[49]. Moreover, for asignal a a noiseleve of
G > 0, it is possible to obtain an approximatesolution asin (3.10) by solving thefollowing

optimization problem

min||®a - x|5 +A,lal, (3.19)

where A, = 642log(card(D)), and card(D) denotes the number of distinct basis
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functions in the dictionary. Based on the theory of linear programing, it is possiblefor the
linearized BP to converge to a global optimum. However if the signa is non-stationary,
this algorithm will choose a set of atoms that is best on average for the whole signal, but
can. not effectively exploit the local sparse structure of the signal.

All of the above optimization techniques start with a general model for the signal and
perform a global optimization to select a subset of atoms from the dictionary which best
represent the signal according to an optimization criterion. In other words, they adopt a
bottom up approach by expanding the signal over al the atoms in the dictionary and
proceed by pruning the representation into an approximation which is optimal for the
entire signal. However if the signal is non-stationary or exhibit time-varying (space-
varying) characteristics, most of these algorithms1 can not locally adapt to different
segments of the signal and produce expansions which are suboptimal for the entire signa
in terms of sparsity.

In signal compression applications, it may be more advantageous to use a top-down
greedy algorithm that starts with a single atom that best approximate the signal according
to a given measure of optimality and proceeds by refining the approximation by selecting
more atoms from the dictionary until the desired bit budget or PSNR is achieved. A top-
down algorithm that is suitablefor such agreedy approximation is the method of matching

pursuit.
3.3.6 The Method of Matching Pursuit

The method of Matching Pursuit (MP) [37] uses a greedy algorithm that adaptively
refines the signal approximation with an iterative procedure. This algorithm is basically a
special case of the Projection 'Pursuit (PP) algorithm in statistical parameter estimation
theory [50, 51]. Let 2, = {¢,:ye '}be a dictionary of unit vectors in % = RY,
andx e Hbe the input signal. The MP begins by searching P for some ¢, , and

projecting x onto this atom as

x = (x, ¢ )0, +r'x (3.20)

1. The DTA algorithm is the only bottom-up algorithm that can adapt to local structure of the signal.
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where the superscript (+) denotes the number of iterations. Clearly, the residual rPx is

orthogonal to ¢, . Thisimplies that

el = [(x, @) + [r el (321)

In order to minimize the norm of theresidual in (3.21), the atom 9, €D hasto be chosen

such that | (X, (pY“)| is maximized. Therefore ¢, should be selected such that

|{x, o) 2 sup |(x, o) (3.22)
Ye

where the parameter 0<a <1, is an optimality factor. For finite dimensional spaces
(3.22) reduces to |<x, ‘Pv(,>| > al(x, 9,)|, for yo#y, and a. is typically close or equal to
one. The algorithm then chooses the next basis in © to match *x, and proceeds
iteratively on the residues until some measure of error or convergence criterion such as
I,norm is met. For example, the algorithm could be terminated at iteration p if
I x|) < el|x]l for some £> 0.

()

The MP agorithm can be summarized asfollows. Let r'x = X, assuming r“x have

been already computed, then ¢,, can be chosen from D, such that
|(r(k)x, (ka>‘ >q sup; |(r(k)x, (Pv>| (3.23)
Ye

then proceeding by projecting r®x onto 9y, as

P&y = Wy (r(k)x, 9y) 9y, (3.24)
since r** "x isorthogonal to Oy,
|40l = [ ©xl® - [P, )| (3.25)
Then, after piterations of the algorithm
p-1
x =Y ("% 0.0, +r'x (3.26)
k=0
The residual r"x in (3.26) isthe approximation error, and itsenergy isgiven by
2 el 2
I Pxl® = Jal® = 3 |7, @) (3.27)
k=0
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The convergence of the error to zero in infinite dimensions can be proven as a
consequence of the proof for the convergenceof projection pursuit regression [52], and is
given in [37]. The convergence of error can be extremely dow in infinite dimensional
spaces. However, the convergence in finite dimensional spaces is exponential. For finite

r )x” depends on the correlation between the

dimensional spaces, the rate of decay of ||r
residues and elements of . This correlation can be quantified by using the correlation
ratio as defined below.

Definition 3.2 Let D = {¢,:y € '} beadictionary in ajinite dimensional Hilbert space
3L 'Thenfor any x € #, and ¢, € D, the correlation ratio of x with respect to D is given

by
p(x) = sup ({x, 9/ xl) (3.28)

The correlation ratio can be used to prove that in finite dimensional spaces the rate of
convergencefor MP isexponential, as stated in the following theorem [37, 40].
Theorem 3.2 Let D = {¢,:ye I'} beadictionary in ajinite dimensional Hilbert space

(p)

H. Then for any x € #, the energy of the residual ||r x||2 in the MP algorithm has an

exponential decay.
Proof: Let Oy, be the atom selected by the MP agorithm at iteration p, and let a = 1.

Then the correlation ratiofor »”x is given by
p(r"'x) = |(XPx, ¢, )| /[Pl
and by (3.25), theenergy of the residual error in iteration p+l is given by
|7 Oxl® = IrPxl* - p* Pl Pl = 1472l - 977y

Since thereexistsat least one basisfor Hin ©, and the unit sphere of His compact in finite
dimensions, it can be concluded that there exists a A,,;, >0, such that p(r(” )x) > Ain
[37]. Therefore, from the above equation it can be concluded that the energy of the

residual decays exponentially with a minimum rate of %log(l ~ Ao,

O
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3.4 The Segmented Orthogonal M atching Pur suit

Although in (3.26), the residue Py is orthogonal to Dy, 1s it may not be orthogonal
to the other bases in the dictionary. Therefore, even in finite dimensional spaces, the rate
of convergenceof the MP algorithm can be extremely dow. Thisfact isillustrated in the
following example.

Example 3.1 Let # = R, ad D = {9,,0,}, where o, = [1,0]", and
@, = [cos(0), sin(8)]', and let x = [0.5, +/3/2]. Then it can be verified that for small
valuesof 8, the MP algorithm converges very slowly. The convergence curvefor the above

example when 8 = 20°, isshown in Fig 3.2.

Normalized residual error

No. of iteration

Fig. 3.2. Convergencerated the matching pursuit agorithm for example 3.1.

The time varying characteristics of non-stationary signals can aso dow down the
convergence and sparsity of the matching pursuit expansions. In this case, because of the
time varying behavior of signal, a single atom from the dictionary can not be a good
matched to the local characteristics of the signal. Therefore, it is possible that the
algorithm selects wrongly in the first few iterations, and then start correcting for these
mistakes by iterating on the residue.

To overcome these problems a simple two-step algorithm is introduced in the
following subsection. This agorithm greatly improves the performance of the original
matching pursuit in terms of sparsity of expansion and speed of convergence. This
algorithm is called the Segmented Orthogona Matching Pursuit (SOMP).
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3.4.1 The Segmented Orthogonalized M atching Pursuit Algorithm

In general, the atom ¢, selected a each iteration of the MP agorithm is not
orthogonal to the previousy selected atoms Oy » for 0<p<k. When the agorithm
subtracts the projection of *®x, it introduces new components in the directions of the
previoudly selected atoms. This problem can be avoided by orthogonalizing the direction
of projectionsat each step of the algorithm. The time varying characteristicsof the signal
can be exploited by a proper time (space) segmentation algorithm. If proper criterion for
segmentation is selected, the algorithm will convergefaster and consequently produces an
sparse representation for the data. The SOMP agorithm for one-dimensional discrete
signals of length N can be summarized asfollows?.

Let D = {¢,:y e '} beadictionary in afinitedimensional Hilbert space #=R", and
let x = {x[n];n=0,1,...,N -1}, represent adiscrete sequence of length N, whereNis
an even integer. Assume in thefirst iteration of the MP algorithmthe, atom ¢, is selected
from D. The Segmentation and orthogonalization steps of the SOMP algorithm are
performed asfollows.

» Step 1: (segmentation)

Let x, = {x[n];n=0,...,N/2-1}, andx,1 = {x[n];n=N/2,...,N—1} bethe
left-child, and right-child of x, & iteration one, respectively. Let J(x, @, ) = (x, @, }/lx[,
be the measure of correlation between the selected atom ¢, and the given signal X. Then

segment x into its left-child and right-child if thefollowing criteriaare met

J(x, (pyl) < min{J(xll’ (le)’ J(xrl’ (pyl)} (329)

1
()x

[P Oxl > [, | + || (3.30)

The objective function in (3.29) is basically the correlation ratio that was introduced in
Definition 3.2. It is a drictly positive number [37] that can be used to estimate the
closeness of the match between the selected atom and signal in every iteration of the MP

2. Extension to 2-D signals for image processing applications is straightforward.
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algorithm. The equation (3.29)states that if the atom is more correlated with any of the
children, then segment the data, otherwise proceed with the next iteration. The condition
in equation (3.30)ensures that the error at the boundary of the segmentation is finite. If
needed, the segmentation procedure can be carried out on children of x in a similar
manner. The segmentation step allows the MP agorithm to use different type of atoms at
each iteration to represent different segments of the signal, and consequently can greatly
improve the speed of convergence and quality of the expansion.

* Step 2: (Orthogonalization)

The MP agorithm can be orthogonalized to ensure that at each step of iteration the
residue is orthogonal to &l the previous terms in the expansion. The procedure for
orthogonalization of the MP is similar for x or any of its children. However to keep the
notation simple we only discuss the orthogonalization when x is being expanded. Let
Yy = @, ,and assume that at iteration p, the MP algorithm selects Dy, - This atom can be
orthogonalized with respect to al the previously selected atoms by

"o (9,0
9, =0, - >0, (3.31)
=0 [0

and the residual can be found by computing the orthogona projection of x onto the

orthonormal complement of the space that has been created by the previously selected

atoms, as
ST RN T W e .U (3.32)
) o> |
14
using (3.30)and (3.31) we can write
) 2
17+ 0 = |2 - 7% 0, (333)

191"

The orthogonalization step ensures that the residue HP

x is orthogona to al the

previously selected atomsfrom the dictionary, and the signal x can be expanded as

r-1 r(k)x’ >
x = <—(p”f>k+r"”x (3.34)

2
i=o 9
The above orthogonalization procedure results in a Orthogonalized Matching Pursuit
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(OMP). The orthogonalization process is an obvious step to improve the convergence of
the matching pursuit. The need for orthogonal projectionsin an adaptive greedy algorithm
was first noticed by Donoho in the context of projection pursuit regression in statistics and
has also been studied independently in [40].

The SOMP algorithm uses steps 1 and 2 until a stopping criterion is met. For 1-D
signals, after piterationsof the algorithm, the signal x can be represented by a binary tree
of depth p, with x as its root, and the parameters of the expansion can be efficiently
indexed at the nodes of the tree for further processing. For 2-D signals, the algorithm

generates aquadtree in asimilar manner.
3.4.2 Convergenceof the SOMP Algorithm

Because of the orthogonality of the residues with previously selected atoms from the
dictionary, in finite dimensional spaces the SOMP and OMP agorithms converge in a
finite number of iterations.

Theorem 3.3 Let Hbe an N-dimensional vector space. Then for any x € A, orthogonal
matching pursuit (OM P)algorithm converges in lessthan or equal to N iteration.
Proof: The Proof isin the appendix.

The convergence of the SOMP algorithm can be proven as a direct consequence of
Theorem 3.3. However, It has to be shown that the error introduced at the boundary of the
segmentation is finite. But this is true by virtue of the condition in equation (3.30).
Therefore, the convergence property of the SOMP algorithm can be summarized in the
following theorem.

Theorem 3.4 Let Hbe an N-dimensional vector space. Then for any x € %, segmented
orthogonal matching pursuit (SOMP) algorithm converges in less than or equal to N
iteration.

In general, for time-varying signals, the SOM P algorithm produces expansions that are
more sparse than the OMP algorithm. Thisfact isillustrated in the following example.
Example 3.2 Consider the signa shown in Fig. 3.3(a). Thissignal consists of aslow sin
wave followed by a medium sine wave. Thedictionary isa WP dictionary formed with D4
atoms. The length of the signal is512, and it is desired to expand the signal with 6 atoms.



The residue plot for OMP and SOMP agorithms is shown in Figs. 3.3(b) and 3.3(c),
respectively. While an OMP expansion with 6 atoms results in a PSNR of 8.51 dB, the
SOM P expansion with the same number of atoms has a PSNR of 9.39 dB.
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Fig. 3.3. The OMPand SOMPresidueplotsfor example 3.2.(a) Thetest signal. (b) Residue plot
for OMP, PANR = 851 dB. (c) Residue plot for SOMP, PANR = 9.39dB.

The computational complexity of the SOMP algorithm is discussed in the following
subsection.

3.4.3 Computational Complexity of the SOM P Algorithm

We assume the space Hi s finite dimensional and 2 is a dictionary with finite number
of atoms. This algorithmisfirst initialized by computing a set of inner products given by
(x, @y fordl y e I'. Theseinner productscan be stored in atablefor further processing.
The process of selecting the first best atom from the table requires O(1) operations, on
average. After the selection of the best atom from the dictionary, the inner product of the
children and residuals must be found. Theinner product for the residuals,can befoundin a
recursive manner with the following updating formula




<r(l)+ 1) (r)

x ¢ = (r7x 9 - (r7x, 0, )(0y, 0) (3.35)

Since at iteration p, the first two terms on the right hand side of (3.35) are already
cornputed, the inner product ((pr, (py) isthe only additional computation needed to obtain
(r(P Dy, ¢, - Assume theinner product of any two atomsin the dictionary requires O(N)
operations and there are O(M) inner products that has to be computed at each iteration.
Therefore, for p iteration of the algorithm the total complexity is (MNp). Now the
nurnber of operations for orthogonalization process has to be computed. The
orthogonalization can also be performed in a recursive manner in O(p*) operations for p
atoms that have been selected by the algorithm [41]. Therefore, for p iteration of the
algorithm, the total number of computationsfor 1-D signalsis given by O(p*+p°MN).

3.4.4 Design of Optimal and Sub-optimal Dictionaries

The selection of a suitable dictionary is crucia to the quality of representation in any
signal expansion algorithm. Clearly, a dictionary with afixed set of atornsis not adequate
for expansion of general class of signals. For example, the Fourier basisis not suitablefor
expansion of signals with discontinuities and Haar basis is not suitable: for expansion of
smooth signals. On the other hand, a very large dictionary with a variety of atomsis not
also desirable. Because an optimal expansion over genera dictionaries is an NP-hard
problem according to the Theorem 3.1.

An aternativeis to establish an analogy between the problem of Vector Quantization
(VQ) and matching pursuit. In fact, a single iteration of the matching pursuit is very
similar to the shape-gain VQ agorithm [18], and the MP agorithm can be seen as a
cascade shape-gain VQ. Therefore, the generalized Lloyd algorithm can be used for
design of optimal dictionariesfor matching pursuit. However, given the complexity of the
algorithm, and the need for training, suggests the need for a suboptimal solution.

In many applications, various heuristicsrules can often be used to design a suboptimal
dictionary of atoms. This heuristic rules can be deduced from the properties of various
dictionaries, as discussed earlier in this chapter. According to this study, wavelet packets

constitute a more genera class of wavelets and offer a rich menu o atoms for image
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representation and image compression applications[3]. They are easy to implement and
can. be efficiently indexed on atree structure. Thistype of dictionary isaso well suited for
the SOMP agorithm. Because if a good match to the characteristics of the signal is not
found, then the algorithm iteratively segmentsthe signal until an efficient representationis
obtained. Wavelet packet dictionaries are used in thefollowing section, and will be used in

the subsequent chapter for image compression.

3.5 Experimental Results And Conclusions

Simulations were carried out to demonstrate the effectiveness of the proposed
algorithm. The first test signal consists of 256 samplesfrom three different AR first order
Markov processes with zero mean [78]. Thefirst quarter has a varianceof 50, and p = 0.1,
the second and third quarter have a variance of 100, and r = 0.9, and the fourth quarter has
avarianceof 1, and p=0.1, asshown in Fig. 3.5(a). Thetest signal 2 consists 512 samples
from line 256 of the test image Peppers, and is shown in Fig. 3.6(a). Findly, the test signal
3 consists of 512 samples from line 256 of the test image Lena, and is shown in Fig.
3.7(a). The corresponding segmented signals with the SOM P al gorithm are shown in Figs.
3.5(b), 3.6(b), and 3.7(b), respectively. The rates of convergencefor the OMP and SOMP
agorithms, and D4 wavelet packets are shown in Figs. 3.5(c), 3.6(c), and 3.7(c),
respectively. In all cases the SOMP algorithm converges faster than the OMP agorithm.
The rates of convergence for the test signals and OMP algorithm with Haar and D4
wavelet packets are shown in Fig. 3.8. All the vertical axes in this section represent the
normalized mean squared error.

The experimental resultsin this section confirmed that the SOM P expansions are more
sparse than the OMP algorithm. It aso indicates that the rate of convergence can be

reduced by selecting a suitable dictionary for signal expansion.
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signal 1, mixed AR(1) processes. (b) Segmented signal with the SOMP algorithm. (c)

Convergencecurvesfor the OMP and SOMP algorithms.
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Fig. 3.5. Convergence rates of OPM and SOMP algorithmsfor the test signal 2. (@) The test
signal 2, Line 256 of test image Peppers. (b) Segmented signal with the SOMP algorithm. (c)
Convergence curves for the OMP and SOMP algorithms.
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Convergence curves for the OMP and SOMP algorithms.




_47 -

T T
=1u] 20 100
T
[n] 10 20 30 <40 50 60 70 j=1u] 90 100
T T — T T
T |
50 60 70 80 a0 100
©

Fig. 3.7. Convergence of the OMP algorithm with Haar and D4 WP dictionary. (a) Test signal 1
(b) Test signal 2. (3) Test signal 3.
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4. ADAPTIVE MULTIRESOLUTION IMAGE CODING WITH QSOMP

4.1 Introduction

The storage and transmission of digital images in their original or raw form is usualy
very expensive or impractical. In order to make the widespread use of visual information
in rnultimediaapplications practical, data compression algorithmsthat operate at very low
bit rates are needed. Moreover, progressive transmission is required in many multimedia
applications where a user may only have access to a low bandwidth communication
channel. For example, if progressive transmission is used in a telebrovvsing application,
the user can stop the transmission of an intermediate version of an image, if it is of no
interest to him. This can effectively reduce the required search time and bandwidth. In
general, a good image compression technique for interactive multimedia systems should
be able to operate a very low bit rates (below 0.25 bits/pixel), produce an embedded bit
stream, and be easy to implement.

The main objective in any lossy compression technique is to optimize the trade off
between the amount of compression, measured in bits per pixel (bpp), and the
reconstructed image quality, measured by the Peak Signal-to-Noise Ratio (PSNR) or
subjective evaluation. The above mentioned requirements motivate the use of
multiresolution image coding techniques in future communication systems. The current
techniques used in very low bit rate lossy image compression include fractal coding,
segmentation based coding, and subband/wavelet based coding.

Fractal coding techniques were developed based on the theory of iterated contractive
transformations and collage theorem to exploit the existing self similarities of natura
images [53].

Segmentation based or so called second generation image coding techniques try to
exploit structural propertiesof the image in order to achieve compression at very low bit

rates [54]. In these techniques the image is segmented using edge maps or hierarchical
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data structures. Hierarchical data structures have gained popularity because they are
relatively easy to implement and are multiresolutionin nature [55].

Subband coding techniques have been devel oped based on the theory of filter banksin
signal processing [2] and compactly supported wavelets in applied mathematics [22].
These multiresolution image coding techniques are rich in theory and easy to implement.
The initial wavelet coding algorithms were designed to exploit the wavelet’s transform
ability to compact energy into low frequency coefficients. These early subband coding
algorithms demonstrated modest improvement in coding efficiency over standard
transform based algorithms[2, 3]. In recent years, anew class of wavelet based algorithms
that exploit the wavelet's space-frequency compaction properties have achieved
significantly improved performanceover the previous techniques. These agorithms have
been developed based on the fact that the wavelet decompositions can efficiently
frequency compact the energy into a small set of low frequency coefficients, and also
spatially compact the energy into a smal set of high-frequency coefficients around the
edges. The most popular wavelet based techniquein this class is the Ernbedded Zerotree
Wavelet (EZW) coder [56], that was further improved in [57]. Further improvement was
achieved in [58] by using a Space-Frequency Quantizer (SFQ) for encoding of the wavelet
coefficients. SFQ uses ajointly optimized spatial zerotree quantizer and scalar frequency
guantizer in arate-distortion sense. A novel algorithm that unifiesthe EZW data structure
and fractal coding was proposed in [59]. Finally, adaptive image compression techniques
based on wavelet packets have shown promising resultsat lower bit rates.

Because of the sparsity, high resolution, and robustness properties of signal
representation with the methods of Matching Pursuit, it is possible to use these
representations to achieve compression & lower bit rates. In this chapter two new adaptive
multiresolution agorithms are proposed for image compression at low 'bit rates. The first
algorithm is based on the encoding of QuadTree hierarchical data structures with
Matching Pursuit (QTMP) [60]. The second algorithm uses the Quantized Segmented
Matching Pursuit (QSOMP) to represent an image by a quadtree data structure. It will be
shown that the QSOM P coding technique performs better than the existing wavel et based
algorithms a rates below 0.5 bits/pixel and its performance is comparable to other
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techniques at higher bit rates. The organization of this chapter is as follows. Section 4.2
presents the QTMP coding agorithm. Section 4.3 introduces the QSOMP algorithm.

Finally, experimental results and concluding remarks are provided in section 4.4.

4.2 Image Compression with Hierar chical Data Structuresand M atching Pur suit

The QTMP or QuadTree Projection Pursuit (QTPP) algorithm, is a novel agorithm
that adaptively encodes the image segmentsthat have been obtained from.a variance-based
quadtree segmentation. In [60] it was shown that this algorithm performs considerably
better than JPEG in terms of subjective evaluation and PSNR, and its performance is
comparable to the EZW algorithm at rates below 0.25 bits/pixel. In [61] it was shown that
the QTMP can be efficiently implemented with a three layer neural network. Finally, the

application of the QTMP algorithmin color image compression was studied in [62].
4.2.11mage Segmentation with Hierar chical Data Structures

Natural gray-level images can usually be divided into regions of different sizes with
variable amounts of detail and information. There are a variety of hierarchical data
structures for representing spatial data a multiple resolutions [55]. These models have
been developed based on the principle of recursive decomposition and have found many
applications in computer graphics, computer vision, pattern recognition, solid modeling,
image processing, and geographic information systems. Hierarchical data structures are
attractive for the following reasons

They arerelatively smpleto implement.

» They adoptively decompose the imageinto subregions.

* The decomposition actually resultsin image segmentation.

» Thetree structure can be efficiently encoded with a negligibleamount of overhead.
The most popular hierarchical data structures for image compression applications are
QuadTree (QT) and Binary Space Partitioning (BSP) binary tree[5, 63, 64].

Quadtree decomposition is a simple technique of representing irnages at multiple
resolutions. In this technique, the image is recursively divided into four equal square

regions depending on the activities in the blocks [55]. Quadtree segmentation of a 2"x2"
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image results in a tree whose root represents the original image at resolution level zero,
and thefour equally sized squares represent its children at resolution level one. Each pixel
at resolution level j, has itsown intensity x', and the parent node intensity isequal to the
mean value of the intensities of its children nodes. At resolution level j (except for j =

(n+1)), the node intensity is given by

xi,l = % qgo mf;oxé/:iq,zum 4.1)
forj=1,.., nandk, 1=0..., 2"7-1. At each node, adecision must be made as to whether to
decompose the corresponding block into four squares of equal sizes or to stop the
decomposition. In order to arrive at a decision, several measures of activity have been
proposed in the literature. The most widely used measure of activity is the absolute

difference [55]. At each node, the value of the absolute difference is compared to a
threshold value Tas

1
O\ =Xk e goram ST 4.2)
q,m=0

If the absolute difference is smaller than Z the recursive decomposition at that node is
stopped. Otherwise, the node isfurther decomposed into four squares of equal sizes.

The Binary Space Partitioning (BSP) tree is a binary tree whose root represents the
original image [65]. This recursive partitioning technique takes as input an unpartitioned
region R (initially the entire image), and aline 1(selected according to some criteria) that
intersects &, and produces as output two new regions formed by partitioning ® by [ into
two half-regions, £ and ®*. The two half regions can then be similarly partitioned in a
recursive manner until a termination criterion is met. This results in a hierarchy of regions
in which the leaves of the tree correspond to unpartitioned convex regions called cells. A
good segmentation is obtained when the pixel values within each cell are homogeneous.
This desired feature (i.e. homogeneous cells) can serve as a terminating criterion. The
non-leaf nodes of the BSP tree are associated with the partitioning lines, and the leaves
represent the cells of the image. Every node in the tree represents a convex region of the
image. Finaly, the parameters of the partitioning line (p, 8) should be stored in the nodes

of the BSP tree. There are two techniquesfor obtaining the parameters of the partitioning
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lines in a BSP tree. The first one is based on a boundary-based Hough transform
technique, and the second one uses an optimization technique based on minimization of
the |, norm [65, 66]. In the latter case, the parameters of the partitioning line are obtained

by minimizing the error €, given by

E(RAP0) = Y [z (4.3)

k,le R(p.6)
where (p, 0) correspond to all possible values for the partitioning line |, R ,(p, 8) denotes
the set of regions associated with |, x, y represents the pixels in the image, and z, ,
represents the model for the cell.
Although the process of generating a BSP tree is more complex than a quadtree, the
BSP tree is more efficient than the quadtree in representing images. These facts are
illustrated in Fig. 4.1.

L2

(a) (b) ©

G)) (e)

Fig. 4.1. Quadtree and BSP tree segmentation of a syntheticimage. (a) image of a polygon. (b)
Quadtree segmentation map of (a).(c) BSP tree segmentation map of (). (c) The quadtree of
(9). (e) TheBSP tree of (s).

Unlike the quadtree representation, which only allows square segmented regions, the

segmented regionsor cellsof a BSP tree can be arbitrary shaped polygons. This may result
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in a more efficient and compact representation of digital images. In quadtree, the
partitioning lines are ssimply vertical and horizontal lines a dyadic intervals and no extra
computation or bits are needed to encode these lines, but the representation is considerably
more complex than a BSP tree. For the BSP-tree, most of the bits and computational
power is used for generating and encoding the partitioning line parameters (p,8), a each
node. In [5], the coding efficiency of the BSP and QT trees for natural images were
compared. It was shown that the BSP coding gain is marginally higher than the QT tree,

but it is computationally more expensive.
4.2.2The QTMP Image Compression Algorithm

After generating the Quadtree representation of the image, each subregion or block in
the tree can be coded using the matching pursuit image approximation technique. In every
iteration, afunction that best approximates the current image in the given block is selected
from the dictionary. In the first step of the iteration, the current image is the original
image, and in step p, the current image is the residual (error) image which is obtained by
subtracting linear combinations of all (p-1) previous approximations from the original
image. Although various measures of error such as mean square error (or I, norm),
absolute error (or 1, norm), and uniform error (or I.. norm) can be used to assess the
quality of the approximation, , is used because of its mathematical tractability.

In order to obtain an efficient representation for each block, the dictionary should
include both continuous and discontinuous functions, each with different degrees d
smoothness and regularity. Two possible disadvantages of considering a large dictionary
are a dight increase in coding overhead, and an increase in computation. In [62], it is
shown that even with a dictionary of sigmoidal functions, the QTMP agorithm performs
considerably better than JPEG at rates below 0.4 bits/pixel.

The QTMP image compression algorithm is shown in Fig. 4.2. In this algorithm x, ;
denotes the intensity of the image at location (k, 1), %, , its estimated value, and ri",) the
residual image at iteration p. 7 = {¢”,a®, B, '} represents the set of parameters
at iteration p, d(.,.) the desired error metric, s’ = (k, 1), and optimal values are indicated

by the superscript “*".
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| . Create the Quadtree segmentation map of the image;
Sart {
2. Sdlect adictionary D = {¢,}, . r;
3. For every block 8=x in segmentation map, given desired PSNR,;
4.While (PSNR< PSNR,) {
5.Let ro=X;
6. At iteration p, select the optimal parameter vector G),*, ;
®) = arg{ min { min 3 d(r "V, ((a7) s + B‘”)))H "

P ED | o B, AP e B

P
#P th o (Qes + B:)’

i=1
ax(p)
r(l’)_x_.i[’ :

7. Compute the PSNR, and the Bit Rate, R, at iteration p);

pt
. . ax(p*y . - N *
8. The expansion is £ = 27‘:‘ o] (e es +B);
i=1
9. Quantize, and code.

end.)

Fig. 4.2. The QTMP compression agorithm.

In the above algorithm the error metric is usually the mean square error, and the

linear expansion in step 6 is written in a different format to resemble the.output of athree

layer neural network. The neural network corresponding to the above coding scheme is

shown in Fig. 4.3.

4.2.3 Quantizationand Coding of the Parameters

In order to achieve low bit rate compression, the optimum parameters for each block

must be quantized before encoding. The optimum quantizer, in the mean sguare error

sense, is a non-uniform quantizer that matches the probability density function of its

input signal.
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Fig. 4.3. Neurd network implementation of the QTMP agorithm. Parameter B is mimicked in
the node function ¢,

Based on the distribution of the weights and biases and their dynamic ranges ranges,
separate Lloyd-Max quantizers were designed for each set of block parameters [16].
Finally, the resulting quantized parameters were entropy coded. Various coding schemes
such as Huffman coding, Shannon-Fano coding, and arithmetic coding [16] were
considered, and arithmetic coding was chosen because it has the following advantages

* It can approach the entropy limit in coding efficiency.

* It requires only one pass through the data.

* It isgenerdly faster than Huffman coding.

L[]

In arithmetic coding, the encoder and decoder can work on-line.
* Itrequires noapriori analysis of the data set for bit allocation.
Experimental results for the QTMP algorithms are provided in section 4.4.

4.3 The QSOM P Image Compresson Algorithm

There are two basic problems with the QTMP algorithm. The first problem results
from the fact that the processes of segmentation and expansion in this algorithm are
independent. The second problem is associated with the sub-optimal quantization and
coding of the MP parameters. In the QSOMP algorithm, the segmentation is performed
based on the quality of representation, and the quantization of the parametersis performed

in an optimal Rate-Distortion( R D) sense. These facts are explained in more details in the
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following subsections.
4.3.1 Integration of Segmentation with the Quality of Representation

In the QTMP algorithm, the image is first ssgmented into homogeneousregions. Then
the matching pursuit is used to construct acode for each segment. Therefore, the processes
of segmentation and expansion are totally independent. In other words, the QTMP
algorithm fails to utilize the concept of the adapted bases [3] for signal expansion in a
global sense. However, it producesacompact representationfor the homogeneous regions
of a quadtree segmentation map, by performing a local adaptive search over a small
dictionary. For example, consider the encoding of a synthetic image with a dictionary of
four atoms, as shown in Fig. 5.4. The QTMP algorithm first segments the image into four
quarters, then uses the M P algorithm on each segment, and for this example convergesin
one step. Thisresultsin aquadtree of depth one, with one atom at each leaf. However, if
the algorithm would have searched the dictionary for the best match before segmentation,

the same image could have been represented with one or a most two atom.

(b)

Mesh plots of the 2-D atoms in a4 element dictionary

Fig. 4.4. Separation of segmentation and quality of representation in QTMPalgorithm. (a) The
synthetic image can be represented with asingle atom. (b) The QTMP agorithm segments the
image and needs four atoms.
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In contrast to the QTMP algorithm, the SOMP algorithm searchesthe dictionary for a
best match before it makes a decision regarding the segmentation of the image. It is
straightforward to show that the performanceof the SOMP algorithmislower bounded by
the QTMP algorithm.

4.3.2 The Quantized SOM P Algorithm

In the QTMP algorithm, quantization of the MP parameters is performed after all
parameters have been collected. This procedure is not optimal for anumber of reasons. In
this algorithm quantization is independent of the greedy algorithm. At every step of the
greedy algorithm, the new coefficients of the expansion are obtained by using the results
of the previous step. In addition, this algorithm normally produces high precision
coefficients that might limit its use by general purpose hardware. In addition, the PSNR
connputation at step 7 of the agorithm (see Fig. 4.2), is performed on unquantized
coefficients and can not be used as areliable stopping criterion for the QTMP agorithm.
To avoid these problems, the coefficients of the expansion can be quantized at every step
of theiteration in an R-D sense. This strategy was used in the SOFM algorithm of chapter
three, as explained below.

Let O(-) be ascalar quantizer with a variable step size, and R(*) be the desired rate in
bits. At iteration P of the SOMP algorithm, after selection of the best atom Dy, 5 the
coefficients of the orthogonal projections should be found and quantized appropriately.
The orthogonalization step is performed by orthogonal projectionsin a recursive manner,

as before, and the residue can be computed as
rPx = 17 e 0" Vx 0, Doy, (44)

Now, to incorporate an R-D optimal procedurefor the selection of the best atom in the
dictionary, the variation in rate and distortion should be quantified. The change in
distortion can be defined as

AD(g,) = [r7Vx]* — |7 4.5)

Although, thetermsin the right hand side of equation (4.4) may not be orthogonal because
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of the quantization, (4.5) and (4.4) can be used to approximate AD(¢,) as

AD(9,) =|0((r*Vx, o))’ (4.6)
The variation in rate can be quantified by
AR(9,) = R(Q({(r'"™"x, ¢,))) + R(selecting ¢,) 4.7

Therefore, an R-D optimal quantized SOMP can be obtained by selecting the best atom

q)yp > as

AD(¢,)  AD(p,)

AR(¢,) - *AR(g" YFTr (45

The quantized version of the SOMP produces a bit stream that isoptimal in an R-D sense.
Clearly, this holds only if a variablestep size quantizer is used. A good agorithm to find
the best quantizer is studied in [45] (see aso chapter 3). When the above quantization
strategy and selection criterion is used in SOMP, the resulting algorithm is called the
Quantized SOMP (QSOMP) agorithm.

4.3.3 Near Optimal Dictionariesfor Image Compression

As mentioned in the previous chapter, the optimal design of dictionaries for the
matching pursuit algorithm is analogous to the codebook design problem in vector
guantization. Therefore, one should to use suboptimal dictionaries with a heuristic
selection criteria. For image representation and compression applications, a rich collection
of atoms with variousdegrees of smoothnessor regularity are needed. In this chapter, a set
of orthonormal one-dimensional (1-D) atoms were used, based on the study in [67], to
create adictionary of separable 2-D wavelet packets[2].

Using 1-D atoms in the dictionary has two major advantages. First, the directional
preference leads to the concept of steerable wavelets [67]. This characterization can be
exploited to create a richer menu of atomsfor 2-D expansions, as illustrated in Fig. 4.5.
The second advantage is the considerable reduction in the computatiorial complexity of
searching for the best atom in the dictionary. The computation of inner products for 2-D
atoms can be performed more efficiently with two 1-D atoms. Because of these
advantages, this dictionary of steerable wavelet packets, is called a near optimal
dictionary.
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4.3.4 The QSOM P I mage Compression Algorithm

The QSOMP image compression algorithm is shown in Fig. 4.6. The main features of

thisalgorithm are

* It adaptively finds the best atomic representation of the image over a dictionary of

functions.

* It creates a multiresolution hierarchy of atoms with lower frequency information at

the beginning of the stream (near the node of the tree), and the detail information

appended to the bit stream & every iteration of the algorithm.

» The code is embedded. The encoder (decoder) can cease at any time and providethe

best achievablerepresentationof an image over the given atomsin the dictionary.

target bit rate, and

* Itis possible to control the algorithm by constraining the PSNR,

number of atoms.

* It performs better than the existing wavelet based image compression agorithms at

lower hit rates, and its performanceis comparable a higher rates.
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Sart {
| Select a dictionary of steerable | -D wavelet packets 2 = {@,}, . r;
2. Let o= x, (i.e. let theinitial residual be the original image)
3. Let R, equal to bit budget, PSN\R, desired quality, NC, desired no. of coefficients;
4. While (PSNR< PSNR, or R2R,; or NC<NC,;){
5. Perform QSOMP on x {
6. At iteration P select the best atom;
7. Pack the atom and index at the quadtree node;
8. If segmenting {
9. Create the embedded code by adaptive arithmetic coding;
10. Mark end of tree if segmented (insert EOT symboal);
|
[1. Compute PINR, RP, and NC at iteration p,

};

Fig. 4.6. The QSOM P adaptive multiresol ution compression algorithm.

In the QSOMP agorithm a quadtree data structureis used. QT has a simple structure,
and can be efficiently encoded [55, 68], since the quantized coefficients are available at
each step of the iteration. If the algorithm decides to segment the image, it will store the
required information regarding the atoms and atom indices at that node using link lists.
The atoms in the dictionary are wavelet packets that can be efficiently indexed on a
quadtree as well. The optimal quantizer for this algorithmis a variable step size quantizer,
however using a variable step size quantizer requires extra overhead. When the data is
segmented and the tree expanded to the next resolution, the available data on the parent
nodes isentropy coded with an adaptive arithmetic encoder and inserted into the bit stream
followed by an End of Tree (EOT) symbol. In contrast to most of wavelet based image
compression algorithms, which first expand the signal and then select the best atoms by
exploiting the space-frequency characteristics of the wavelets, this algorithm adaptively
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selects the best atom and progressively improves its estimate by adding more detail to the
image. Experimental results are presented in section 4.4. The PSNR vaues and rate
distortion curves of the test image Lena at rates below one bits/pixel for QTMP, QSOMP,
JPBG [1], EZW [56], Improved EZW (IEZW) [57], SFQ [58], Single Tree Algorithm [3],
and Double Tree Algorithm[3] are presented at the end of section 4.4.

4.4 Experimental Resultsand Conclusions

Simulations were carried out to demonstrate the effectiveness of the proposed
algorithms. The test images Peppersand Lena (512x512x8) are shown in Figs. 4.7(a), and
4.8(a), respectively.

For the QTMP algorithm, the quadtree segmentation maps were generated by first
dividing the test images into blocks of 32x32. These blocks were further subdivided into
blocks of 16x16 and 8x8 based on different measures of activity. Both visual entropy and
image variation measures [68] that produced nearly identical segmentation regions were
examined. The segmentation map based on image variation measure for the test images
are shown in Figs. 4.7(b), and 4.8(b). Once the image was segmented, the resulting blocks
were coded using the following procedure. Every function in the dictionary was used to
obtain the best approximationfor each block by optimizing the parameters of thefunction
in the mean sgquare error sense. The optimal basis function was selected by performing a
greedy search over all the functions in the dictionary. This provided the first level
approximation for each block. The next levels of approximation were obtained by
repeating the above process on the residua errors. The process was tenninated when the
overall error dropped below the desired threshold, or the desired bit rate was achieved. The
dictionary considered in the experiments included the Daubechies orthonormal wavelets
of order 4 or less. Although theoretically a greedy search on a large dictionary should
produce a better approximation of the image, the experimental results showed that afew
basis functions (3 to 5, with various degrees of smoothness) are sufficient to produce
almost identical results. The parameters of the optimal bases for each block were
quantized using Lloyd-Max quantizers. The histograms of the parameters of each block

were used to design the quantizers. For the experiments, Gaussian and Laplacian Lloyd-
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Max quantizers with 5 or 6 bits were used, which provided signal-to-quantizationratiosin
the range of 33-35dB for dl the parameter sets. Finally, the quantized parametersfor each
block were separately encoded with an adaptive arithmetic encoder [56] to form the
compressed image. The decoded Pepperstest image at the bit rate of 0.125 bit/pixel with
PSNR of 30.38 dB is shown in Fig. 4.7(c). For comparison, the JPEG algorithm was used
to encode Peppers a a bit rate of 0.125 bit/pixel and PSNR of 23.75 dB. The severe
blocking artifact present a the JPEG decoded image can be seen in Fig. 4.7(d). The
decoded Lenatest image at the bit rate of 0.125 bit/pixel with PSNR of 30.25 dB is shown
in Fig. 4.8(c). For comparison, the JPEG algorithm was used to encode Lena at a bit rate
of 0.125 bit/pixel and PSNR of 26.75dB. The severe blocking artifact present at the JPEG
decoded image can be seen in Fig. 4.8(d). The SQOMP algorithm was tested on the same
test images. The resultsfor Peppersand Lenaat rates of 0.5 bitspixel, 0.25 bits/pixel, 0.15
bits/pixel and 0.0625 bits/pixel, are shown in Fig. 4.9 and 4.10 respectively. The subjective
quality of the reconstructed images are excellent. The dictionary consisted of steerable
Daubechies wavelet packets. Fixed step size scalar quantizers were used in these
experiments. The computational complexity of searchingfor asingle atom in the QSOMP
algorithm, for a block of NxN in the image, with L |-D atoms of size N is given by
L*N *+2LN’. Typica valuesfor N are 16, 32, and 64. Therefore, the complexity of the
algorithm highly depends on the size of the dictionary. However, the experimental results
showed that the performance of our algorithm remains stable even for very small size
dictionaries. Moreover, In [62] it was shown that even with a single element dictionary,
QTMP agorithm outperforms JPEG at rates beow 0.25 pits/pixel. For the QSOMP
algorithm, the PSNR values along with the number selected atomsfor the test imageLena
arelisted in Table 4.1.

For the test image Lena, the PSNR of afew recent wavelet based image compression
algorithms is shown in Table 4.2 and Fig. 4.11. The results show that the QSOMP
algorithm performs better than the existing wavelet compression techniques at lower bit
rates, and its performance is comparable a higher rates. Findly, the computational
complexity of the algorithm can be further reduced by adopting a sub-optimal search

criterion, and can be justified with the increasing power of digital computers.
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(a) original Peppers(512x512x8) (b) QT segmentation map

(¢) QTMP@0.125 bpp, PSNR=30.38 [l (d) JPEG @0.125 bpp, PSNR=23.75

Fig.4.7. Comparison of QTMP & JPEG compression algorithms for the test image Peppers. (a)
Original Peppers. (b) QT segmentation map of (a). (¢) QTMP encoded at 0.125 bpp, PSNR =
30.38 dB (d) JPEG, encoded at 0.125 bpp, PSNR = 23.75 dB.
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(a) original Lena(5

(¢) QTMP@0.125 bpp, PSNR=30.25 (d) JPEG @0.125 bpp, PSNR=

Fig. 4.8. Comparisonaf QTMP & JPEG compression agorithms for the test image Lena. (a)
Original Lena. (b) QT segmentation map of (a). (¢) QTMPencoded at 0.125 bpp, PSNR = 30.25
dB (d) JPEG, encoded at 0.125 bpp, PSNR = 26.75 dB.
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(¢) QSOMP@0.125 bpp, PSNR=31.87 gl (d) QSOMP@(.0625 bpp, PSNR=28.13

Fig.4.9. QSOMP compressionresultsfor the test image Peppers. (8) QSOM Pencoded at 0.5 bpp,
PSNR = 36.43 dB. (b) QSOMPencoded at 0.25 bpp, PSNR = 33.95 dB. (¢) QSOM P encoded at
0.125 bpp, PSNR = 31.87 dB. (d) JPEG, encoded at 0.0625 bpp, PSNR = 28.13dB.
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4.55

Fig. 4.10. QSOMP compression resultsfor the test image Peppers. () QSOMP encoded a 0.5
bpp, PSNR = 37.35dB. (b) QSOM Pencoded at 0.25 bpp, PSNR = 34.55dB. (c) QSOM Pencoded
at 0.125 bpp, PSNR = 31.46 dB. (d) JPEG, encoded at 0.0625 bpp, PSNR = 27.92 dB.
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Tabled.1
PSNR and number of atoms encoded by QSOM P compression algorithm for the test image Lena.
. : “No, of
Bit-Rate Comipression Enicoded PSNR
(bpp) Ratio. Atns (dB)
1 8:1 37546 40.50
0.5 16:1 17852 37.35
0.25 32:1 9172 34.55
0.125 64:1 4750 31.46
0.0625 128:1 2110 27.92
Table4.2

PSNR’s of five different wavelet compression techniquesfor the test image Lena.

Bit-Rate Come;I on EZW IEZW STE DTE SFQ
1 8:1 39.55 40.23 39.34 40.00 40.52
0.5 16:1 36.28 36.90 36.35 36.73 37.36
0.25 32:1 33.17 33.53 33.40 33.65 34.33
0.125 64:1 30.23 31.10 30.25 30.28 31.09
0.0625 128:1 27.54 27.72 27.52 27.56 27.62

0 0.2 0.4 0.6 0.8 1
Bit-Rate (bpp)

Fig. 4.11. Rate-distortioncurvesfor the test image Lenaand JPEG, EZW, QTMP, and QSOMP
agorithm.
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5. MOTION ESTIMATION AND COMPENSATION WITH QSOMP
5.1 Introduction

Due to the increased use of digita video in multimedia systems, in recent years,
video compression has emerged as an area of intense research in recent years [2, 6, 7].
Video is a three dimensional signal consisting of a sequence of images. The individual
images in a video signal are often called frames. Usually, video camera systems capture
about thirty frames per second for a smooth motion to be perceived by the human visual
system. Therefore the consecutive frames in a video clip are highly correlated except for
instances in which a change of scene occurs. The presence of correlation structures
related to motion in the successive video frames can be exploited to achieve high
compression. In this case, a single frame, which is a two dimensional signal, can be
coded as a reference frame by an image compression algorithm, and future frames can be
predicted from the reference frame by a simple transformation such as tranglation [6, 7].
The video compression schemes that use this hybrid approach belong to the class of
Motion Estimation and Motion Compensation (MEMC) video compression algorithms.

Although it is possible to extend two-dimensional image compression algorithms to
video compression in three dimensional spaces [2], the hybrid MEMC techniques are
widely used for compression of video signals because of their simplicity and good
performance. For example, in emerging video compression standards such as H.261,
MPEG, and the grand alliance HDTV broadcasting, a hybrid MEMC agorithm based on
the concept of intraframe and interframe coding with Block-Based Discrete Cosine
Transform is being used [1]. In the intraframe mode of operation, spatial redundancy is
exploited by structuring a single frame into many small square blocks. These blocks are
then DCT transformed, quantized, and coded. In the interframe mode of operation, the
temporal redundancy between adjacent frames is exploited by using the MEMC algorithm

to generate a prediction of the current video frame from previous (arid in the case of
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MPEG possibly from future) frames. The difference between this prediction and the actual
frame is then DCT transformed, quantized, and coded. The block diagram of hybrid
motion-compensated transform-based coding algorithmisshown in Fig. 5.1.

. r) > Forward o . , N
'ﬁt i Transform Quantizer 1 }E%[é?ﬁg
Inverse
Quantizer
A
motion
estimation Inverse
Transform
(1)
motion_
compensation i
Motion Vectors f

Fig.5.1. Block diagram o hybrid mation-compensated predictive transfornn-based coding.

Finally, the intraframe and interframe information, as well as the motion vector,
synchronization, and other side information is structured into a sequence of compressed
bit streams for storage or transmission. Although a number of different techniques for
implementing the MEMC algorithm have been proposed in the literature, the Block-
Matching (BM) algorithm is the most widely used motion estimation technique in video
conlpression applications [6, 7].

The main disadvantage of a hybrid BM-MEMC video compression agorithm is the
fact that the processes of prediction and transform coding of the residuals are
independent. As a result, the residuals can not be efficiently represented with the
transform coefficients. More specificaly, a lower bit rates where only a few number of
transform coefficients are retained, the performance of the hybrid BM-MEMC video
conlpression algorithms is not satisfactory. In this chapter, it is shown that the processes
of prediction and residual coding can be unified by using a Quantized Segmented
Maiching Pursuit (QSOMP) MEMC algorithm. Experimental results show that this
unilied framework performs considerably better than the traditional hybrid BM-MEMC
algorithm. The organization of this chapter is as follows. Section 5.2 provides a brief
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overview of the BM agorithm. Section 5.3 introduces the QSOMP-MEMC algorithm.

Finally, section 5.4 presentsexperimental results and concluding remarks.

5.2 Block-MatchingM otion Estimation

Block-Matching (BM) is the most widely used motion estimation technique in video
cornpression algorithms. Its widespread use is due to its simplicity and relatively good
performance [7]. With the assumption of a smooth translational motion, the BM agorithm
searches for local correlation maximums between neighboring blocks in successive

frames, as depicted in Fig. 5.2.

Frame n-1

Fig. 5.2. Block-matching in the block-based motion estimation and compensation technique.

Let z(k,1,n) represent the pixel valuesin avideo sequence, where the variablesk, I, and
n represent the horizontal, vertical, and time dimensions, respectively. Given a block
B(i,j,n) = [z(i, j,n),...,z(it N=1, j* N-1)], of NxN pixels from the current frame
n, with the top left corner at (i, j), the best match for B should be searched for in frame n-
1. The search is usually limited to an (N+2m x N+2m) region called the search window. L et
x, y = B(kN, IN, n) denotethe block that is to be coded in frame n, then the set of blocks

in the search window is given by
{B(N-i,IN-jn-1); i,je [-m, .., m]} (3.1)

In the first step of BM algorithm, a match for the current block should be found in the
above set. BM agorithms usualy differ in search strategies and matching criteria. Search

strategies include the exhaustive search, three-step search, and cross search. The matching
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of blocks can be quantified by using different criteria such as Maximum Cross Correlation
(MCC), maximum Matching Pd Count (MPL), minimum Mean Absolute Difference
(MAD), and minimum Mean Square Error (MSE). The most widely used matching
criterion is MSE. In this case, an estimate for the motion vector components, or the

displacement vectors(i,, j,), iSobtained by
(i J) = ag ngijn |- BN - i, IN - j,n-1)| (3.2)
and the corresponding residual signal isgiven by

ek,[ = xk,l— $(kN— im, IN - j,, n- 1) (33)

Finally, in the second step of the algorithm the prediction error in (3.2) is transform
cocled and quantized. In the following section it is explained how these: two steps can be
unified by using a modified matching pursuit algorithm.

The above procedure resultsin asingle pixel accuracy motion estimation. It is possible
to considerably improve the performancecf thistype of motion estimation by using a sub-
pixel accuracy motion estimation algorithm [6, 7]. The sub-pixel accuracy motion
estimation can be carried out in two steps. In the first step the previous frame is
interpolated by afactor of two in both directions. The second step is similar to single-step
motion estimation. That is, in the second step a current block is matched to a block in the

previous interpol ated frame inside a search window.

5.3 Block-Matching M otion Estimation with M atching Pur suit

The residuals obtained in (3.3) by using the MB-MEMC agorithm usually consist of
high frequency components and can not be efficiently represented with asmall number of
DCT coefficients. Therefore, a rates below 64 Kbps, where only a few number of DCT
coefficients are alowed, the resulting decoded video suffers from severe blockiness
artifacts[1, 69]. In [69] matching pursuit with adictionary of Gabor functions was used to
encode the residuals. It was shown that a the cost of computational complexity, the
matching pursuit encoding of the residues produces better results, both in terms of PSNR

and subjectiveimage quality.
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In this algorithm, a different approach is taken by unifying the BM agorithm and the
residual coding into a QSOMP framework. It is argued that the set of blocksin the search
window of the previous frame can be considered as a good dictionary of atoms for the
expansion of the current block with the greedy QSOM P agorithm. This argument holds if
smooth transational motion is assumed, which is the case in the MB-MEMC algorithm.
The QSOMP-MEMC agorithmisshown in Fig. 5.3.

Start {

Given a current block x, ;, = B(kN, IN, n) in framen:

1. Interpolate the previousframe by a factor of 2 (usebilinear interpolation)
2.For i,je[-m,...m] {
Letg; ; =
}'.
3.Dejnetheblock dictionary Dy = {@ ;5 i, j€ [-m, ..., m]);

4. Dejne an auxiliary dictionary D, = {m Daubechies D2 atoms};
5. Iteration 7: use QOMP and D;

6. Stop if energy of residue < €;

7. Iteration 2 top: [

BN i, IN = j,n—1)
||$(kN_ i! IN - j! n- 1)",

Use QSOMP and D,
Stop if energy of residue < €

},.
End.}

Fig. 5.3. The QSOMP-MEMC agorithm.

In step one, the interpolation of the previous frame is performed for sub-pixel
accuracy. Theincrease in the computational complexity isjustified by the small size of the
dictionary. Furthermore, the computational complexity may be reduced by using a two
step sub-pixel accuracy algorithm [6, 7]. In this method, a single pixel accuracy
approximation is perfrmed over the nine nearest neighbors of the current block in the
previous frame, and then the approximationis refined by performing a sub-pixel accuracy
approximation on the neighborhood of the best match obtained by the single pixd
accuracy.

The reason for using an auxiliary dictionary in step 4 is the fact that after the first
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iteration, the residues usually consist of high frequency components, and the atoms in the
block dictionary are not adequate for representing the residues.

The experimental results showed that the motion vectors obtained with the QSOMP-
MEMC agorithm are usualy different than those obtained from the MB-MEMC
algorithm, and the residual energy of the QSOMP-MEMC algorithm, after the first
iteration, is upper bounded by the residual error in the MEMC algorithm given in equation
(3.3).

In general, the value of the inner product <(Pi1,h’ x, », @ the first iteration of the
QSOMP-MEMC algorithm should be transmitted to the decoder. However, this value can

be predicted from its corresponding block in the previous frame [6] as
(@ 0 %) = 0tcos(0)| BN — iy, IN — ji, n—1)| (3.4)

where ais a scaling factor representing the illumination change in successive frames, and
6 is the angle between the current and the matching block. Since the illumination is
relatively constant between successive frames, and the angle © is normally small, the

above equation reduces to
(@i, s %0 = |BKN =iy, IN - j,n-1)| (3.5)

The decoder in the QSOMP-MEMC algorithm should perform more computations
than the BM-MEMC decoder, because it needs to compute the required inner product
operations in order to reconstruct the encoded frame. The experimental results are

provided in section 5.4.

5.4 Experimental Resultsand Conclusons

Simulations were carried out on the Salesman and Claire video sequences. The test
sequences were al QCIF (144 x 176) and 100 frames long. A single frame of each
sequence is shown in Fig. 5.4. For the BM-MEMC algorithm, 6 and 12 DCT coefficients
were used, with an exhaustive search with the MSE as the matching criterion, and the
motion estimation was performed with sub-pixel accuracy using bilinear interpolation.

The performanceof the coding was measured by computingthefirst order entropy of quantized
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(a) video frame: salesman (QCIF) {a) video frame; Claire (QCIF)

Fig. 5.4. Frames from QCI Ftest video sequences. (a) Salesman. (b) Claire.

coefficients. The bit rates were computed as the average number of bits required to encode
a single block of data, and the block size was 8x8. The results for the MB-MEMC
algorithm with 6 and 12 DCT coefficientsare shown in Fig. 5.5.

For the QSOMP-MEMC algorithm an optimal scalar quantizer was used in a rate
distortion sense (seechapter4), and the approximations were performed with two step sub-
pixel accuracy. The bit rates and performance were measured in the same manner. The
results for the QSOMP-MEMC agorithm with 6 and 12 Daubechies orthonormal atoms
areshown in Fig. 5.5.

In both cases, the associated motion field information was not included in the bit rate
cornputations, because these rates are equal for both methods. In both cases, the prediction
of the current frame was based on the uncoded previous frame. In order to compare the
resultsfor low bit rate video coding applications, only the performance for 5 bits per block
to 30 bits per block was considered. The resultsillustratedin Fig. 5.5 indicate that at these
low bit rates the QSOMP-MEMC algorithm performs considerably better than the
traditional BM-MEMC agorithm. However, the decoder for the QSOMP-MEMC
algorithm is more complex, because it has to compute the required inner products to
reconstruct the encoded image. The experimental results, also showed that at higher bit
rates, there is no advantage in using the QSOMP-MEM C algorithm.
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Fig. 5.5. Rate-Distortion curves for QSOMP-MEMC and MB-MEMC algorithm. (&) Salesman
with 6 coefficients. (b) Salesman with 12 coefficients. (c) Claire with 6 coefficients. (d) Claire
with 12 coefficients.

However, due to the small size of the dictionary, the computation of the motion field in
QSOMP-MEMC is not very costly. Given asearch window of size MxM, and a block size
of NxN, and assuming that there are L one-dimensional atoms of length N in the
dictionary, the required number of multiply-accumulation operationsto search for an atom
in tihe dictionary can be obtained by L°M*N + LMN(M * 2N) . For L=6,M=9,and N =
8, 32400 operations have to be performed per atom.
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6. PRE-PROCESSING AND POST-PROCESSING OF IMAGESAND
IMAGE SEQUENCES

6.1 Introduction

Visua information is often subject to different kinds of degradations. These
degradations may be in the form of additive or multiplicative sensor :noise, blur due to
camera misfocus, blockiness or motion jerkiness dueto compression at lower bit rates with
block based motion compensated techniques, or errors due to faulty communication
channels. Therefore, pre-processing and post-processing units for digital image filtering
are an essential part of any integrated imaging or video system that uses an intensity image
as an input. These kinds of processing are normaly multiple criteria optimization
problems that may involve restoration, enhancement, or just a suitable representation of
the data. While for still images only spatial processing is required, for image sequences
both spatial and temporal processing are needed.

In modem multimedia communication systems, digital filters are often used for the
processing of data, voice, image, and video streams. In fact, they are an essential part of
pre or post-processing modules in these systems. In general, a digital filter for the
processing of visual information should be capable of satisfying one or more of the
following requirements:

* Restoring the original image from its noisy version (smoothing).

» Enhancing certain features (edges) of the degraded image (sharpening).

* Preserving the information bearing details of theimage (detail preservation).

* Feasibility of implementation in real time (computational efficiency).

Most of the traditional methods of image restoration and enhancement are linear and
assume an additive Gaussian noise model for the data [70, 71, 72]. These statistical
procedures are optimal under exact models of noise distribution, but are (generallyunstable

under small deviations from these models. Moreover, they can not fully exploit the non-




linearity of image formation models and the human visual system [73]. Mean filter is the
most well known linear filter. It achieves noise reduction by averaging over the
neighborhood of pixels. However, if the noise distribution is long-tailecl or impulsive, the
result is not satisfactory. Another disadvantage of the mean filter isthat it tends to blur the
edges, and often eliminatesfinedetailsof theimage. Therefore, the mean filter may not be
useful as a front end operator in image or video processing systems [72]. These
disadvantages have led some researchers to study the use of nonlinear filters as an
alternative[73]. Nonlinear filtering techniquesfor signal and image processing emerged as
early as 1958 [74] and have had a dynamic development in the last few decades.

Order Statistics (OS) filtersare one of the most important familiesof nonlinear image
filters [73, 75]. These filters have shown excellent robustness properties in the presence of
impulsive noise while preserving the important information bearing features of the image.
The majority of recent work in nonlinear order statistic filters has focused on smoothing
and preserving the detailsof digital images. Only afew authors have designed filters with
edge sharpening properties[76, 771.

In this chapter, the single and multi-stage implementations of a new robust nonlinear
filter based on the theory of Generalized Maximum Likelihood estimation and Order
Statistics (GMLOS) are presented [12]. This new class of filtersis not only capable of
smoothing the noise and preserving the details, but also has the ability to sharpen edges.
The GMLOS filter can be used in a variety of algorithmsfor the processing of visud
information [12, 13, 15]. Thischapter presents the theory, implementation,and application
of the GMLOSfilter to noise smoothing. The following chapter presents a novel algorithm
that uses the GMLOS filter for the conceament of errors due to packet loss in encoded
image and video streams|[15].

The organization of this chapter is as follows. A summary of the previous work on
nonlinear filters is presented in Section 6.2. Section 6.3 is devoted to the theory,
implementation, and some applicationsof the GMLOSHilter. A brief comparative study of
different edge-enhancing nonlinear filters with the GMLOS filter is also provided in this
section. Finally, the experimental results and the concluding remarks are presented in
Section 6.4.
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6.2,Nonlinear Filters

Homomorphic filters are one of the oldest classes of digital nonlinear filters [73, 78].
They satisfy the generalized principle of superposition and have found applications in
seismic signal processing, digital speech processing, and ultrasonic imaging. Nonlinear
mean filterscan be considered to be special cases of homomorphic systems[79]. They can
be defined as a general nonlinear function of the weighted average of the: neighboring gray
values of apixel. They are better than median filtersin smoothing the additive Gaussian or
uniform noise. They are also better than mean filters in suppressing impulsive noise and
preserving edges. However, they are only capable of removing either positive or negative
spikes but not both at the same time.

Polynomial filters belong to the class of nonlinear filtersthat are based on the Volterra
series representation [80]. Although the classes of nonlinear systems that can be
represented by Volterra series are limited, a subclass of polynomial filters, known as
quadratic filters, has been used for image enhancement, edge detection, and nonlinear
interpolation of image sequences [73].

Morphological filters belong to the class of nonlinear filters that have originated from
shape analysis and set theory in mathematics [81, 82]. The opening and closing filters
[75], which are formed by various combinations of erosion and dilation operators in set
theory, have shown to be excellent in preserving details and edges. However, they can not
effectively suppress a high percentage of impulsive noise.

Many classes of nonlinear filters have been developed based on the theory of robust
statistics [83, 84]. Thesefiltersfall mainly into one of the three categories of M-jilters, R-
filters, and L-jilters. The M-estimators! were proposed by Huber [84] as a generalization
of maximum likelihood estimators. The M-estimators of location have been used as
nonlinear image processing filtersin STM [85] and adaptive mean filter [86]. R-estimators
have been proposed by Hodges and Lehmann [87]. They have been developed based on
the concept of rank estimate in statistical theory. Therefore, the output of an R-jilter is
determined by the relative ranks of the data instead of the actual values. Examples of R-

1.Tke terms filters and estimators have been used interchangeably in this chapter.
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filters include the Wilcoxon [88], LDW [73], and FMH filters [89]. The L-estimators [73,
84] are defined asfixed linear combinationsof order statistics. Some examplesaf thistype
of filters are the a-Trimmed Mean (a-TM) [73], MTM [85], and K-Nearest Neighbor
(KNN) filters[90].

L-filters and R-filters are related to filters based on order statistics[91]. Order statistics
filters are one of the most important families of nonlinear image filters, and have been
shown to posses excellent robustness propertiesin the presence of impulsive noise while
preserving the important information bearing features of theimage [75]. The median filter
is the most popular order statistics filter. It was first introduced by Tukey [92] as a
smoothing devicefor discretesignals. It isanonlinear techniquein which agiven pixel in
the image is replaced by the sample median of its neighbors. It does not posses the
drawbacks of mean filters and can effectively eliminate the impulsive noise while
preserving the edge information. However, it also preserves any monotonic degradation of
the edge and thereforeis not capable of enhancing blurred or ramp edges. In addition, it
often eliminates or disrupts fine details such as thin lines or small objectsin theimage. A
comprehensive analysis of median filter characteristicscan befound in [93, 94, 95].

More recently, there has been a growing interest in generalizing median filters by
using a combination of different order-statistics. Bovik, Huang, and Munson [96] have
used a weighted linear combination of order-statisticsof the input sequence. The weights
are chosen to minimize the output mean-squareerror. Thisfilter combines the properties
of both averaging and median filters. Bernstein [97] has introduced the concept of the
signal adaptive median filter. It uses a variable size window and is capable of
simiultaneously removing a combination of signal dependent additive and random
impulsive noise. Arce and Foster [98] have provided an extensive analysis of multi-stage
meclian filters. These filters are constructed by combining the output of basic subfilters
that are designed to preserveedges or linesin theimage. They have shown that multi-stage
meclian filters have the same impulse rejection properties as ordinary rnedian filters but
performs better in preserving details.

Some researches have tried to develop a unified theoretical framework for the analysis
and design of nonlinear filters. Longbotham and Bovik [99] have used the relationships
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between order-statistic and linear FIR filters to develop a firm theoretical foundation for
order-statistic filters. Coyle, Lin, and Gabbouj [100] showed that stack filters, which are
defined by a weak superposition property and an ordering property, contain all
compositions of the 2-D ranked order operations. Finally, Maragosand Schafer [101] have
explored the relationships between the morphological, order-statistic, and stack filters.

Most of the recent work in nonlinear filtering of digital images has focused on
smoothing the noise while preserving details. Only a few authors have designed filters
witlh edge sharpening properties [77]. Edges are one of the most important features of an
image in many image analysis and computer vision applications and have a great impact
on Inuman visual perception [71]. The Comparison and Selection (CS) filter [102], Lower-
Upper-Middle (LUM) filter [38], and Weighted Majority of m values with Minimum
Range (WMMR") filter [104] have been shown to be effective in smoothing the noise
while sharpening the edges.

6.3 The GMLOSFilter

It is assumed that members of the degraded input data set W={z;: i=1,...,n}, obey an
additive model

zi = x,-+vi (6'1)

where the original data x; and the noise process v, are statistically independent. In this
development, an approximate parametric model has been used for the data [84].
Parametric data analysis is one of the major approaches to the analysis of information in
statistical theory. In this approach, one has to make an assumption about the model
underlying the data set W. Such a model is usually the probability distribution p(z;9),
where 8 is aparameter vector of dimension m, taking valuesin the Cartesian product space
0 =0 X 6,X... X 0,. As an example, considering a uni-variate Gaussian model for the
data, the parameter vector can be defined as 8’ = [u 8] where i and 6 represent the mean
and standard deviation of the Gaussian distribution, respectively. The goal of parametric
analysis is to find an efficient and consistent estimate of 6. The estimation of
corresponds to the problem of location estimation, and the estimation of 6 corresponds to
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scale estimation. In this work, the main concernis the estimation of the location parameter
in which the model has the form p(z;0) = p,(z-8), where 0 is a real scalar (location
parameter). The objectiveis to estimate® from the contaminated data set W

The Maximum Likelihood Estimator (MLE) is the most widely used estimator for
parametric data analysis [84, 87]. For example, the MLE of a Gaussian modd is the
sample mean and the MLE of a Laplacian mode is the sample median. The major
problem in classical parametric dataanalysis viaMLE is thefact that the exact probability
distribution of the data must be known a priori. In practicethisis rarely the case, due to
thefollowing

» Theexistencedf grosserrorsor outliers.

» The presenceof truncation and rounding errors.

» The probability distribution model being only an approximation of the real model.
The most severe deviation from the underlying modd of the dataiscaused by the presence
of outliersin the observed data[84]. The precise definitionof an outlier set is given below.
Delinition 6.1 Let W be a data set with i.i.d members z, obeying the density p(zlx;9),
where ¢ isan unknown location parameter. Let ¢, be the MLE of ¢, computed solely from
W, and consider the set W° with members z; . Then the set W is said to be an outlier set

with respect to Wif the following inequality holds

[{min p(z|x:m); z€ W} —{minhp(z'|x';0m.)iz' € WO} >y (6.2)

where yisequal to G/, and W is the sample mean of the set W.

It is well known that even a small deviation from the assumed model may cause the
classical estimators, such as MLE, to produce unreliable results [84]. During the last few
decades, formal theories, known as robust statistics have been developed to cope with
these deviations from the underlying model. In fact, robust estimation is a branch of
estimation theory that deals with approximate parametric modelsfor data [83, 84]. In this
thesis, an approximate model has been used for the input data to construct the GMLOS
filter based on the concept of generalized maximum likelihood estimation, by taking
advantage of the order statisticsfor outlier detection.

Given a set of n mutually independent data points W={z;: i=1,....,n) within the
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processing window, it is assumed that afraction (1-¢) of them (the inlier set Wr) obey the
density p,(z18), and the remaining fraction € (the outlier set Wo) obey the density p,(zld),
where0 <g <0.5. Therefore the approximatemodel for the dataiis given by

p(z) = (1-¢€)p,(z|9) +ep,(z]9) (6.3)

Clearly, both W and We are subsetsof W The objective is to recover the expected value of
the inliers based only on the contaminated data. That is, the data set W should be
partitioned into 2 mutually exclusivesets We and W*, according to the following definition.
Definition 6.2 A partition { W/, W} of the set W, Wo=WW, is said to be valid if #W' > #Wo
(’#' denotes the cardinality of a set), where W? isan outlier set with respect to the inlier
set Wr according to the Definition 6.1.

In general, the mean of outliers can be quite different from that of inliers, and the
variance of outliersis much greater than that of the inliers, even though clustered outliers
are not uncommon [83]. Consequently, the likelihood associated with a single inlier
measured by its probability density function is much greater than the likelihood of an
outlier computed by the same type of density function. Thus a subset of L observations
consisting of only inliers is expected to have a greater likelihood than a subset of L
observations having both inliers and outliersor one having mostly outliers. Assuming that
the number of inliersisequal toL, then the optimuminlier set, W', can be chosen as the set
having the highest likelihood among all subsets of W with size L. Assuming that a
Gaussian distribution the members of the inlier set W/, after omitting some nonessential
terms, the negativelog likelihood expression is

Iwe = Y ©-z)° (6.4)
z;e Wi

if the membersof W'are known, then the value of 0 which minimizesJ(W:.0) is

LZ,‘E wi
and the new criterion function J,(W/) = ngin J(W!8) can be written as
2
rown = Y -1 X z) (6:6)

z,€ Wi Zie wl
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J,(W" should be minimized with respect to W’ over all subsets of W with size L. It may
appear that such a procedure may not be computationally feasible, since the number of
such subsets is n!/[L!(n-L)!]. However, for uni-variate data and with inliers obeying an
exponential family density function, the optimal subset of size L of candidate inliers can
be obtained by comparing only n-L+| contiguous subsets of the rank ordered data
according to the following definition and theorems.

Definition 6.3 A subset W' of the data set W={z,: i=1,...,n} is said to be contiguous if for
every pair of membersz; and z; of W/, wherez; < z; the existence of a member z, of W, with
7;<z,<z; impliesz, € WI.

Theorem 6.1 Given a subset W~e of W with size L, which is not contiguous, there always
exists a contiguous subset We of W with size L, suchthat J(W¢) | J(WNC).,

Proof: The proof is given in the Appendix.

The:following theorem follows directly from Theorem6.1 and equation (6.6).

Theorem 6.2 Let Wr={z,,z,,,....2,,,/ be the ordering of the data set {z;: i =1,....n}, such
that zy<zpy<...<Zyy, then WJL ;the global minimum of J,(W’), has the following

structure
W = {z¢M <i<M;+L-1} (6.7)

where M, 1S given by

. 2 1
ML = argmﬁlln{z Z(,')“ Z(Z‘Z(,‘)jz} (68)

and the index i runsfromM, to M, +L-1.

Therefore, the criterion function J can be refined as?

M+L-1 )
Jo.M) = Y (8-z() (6.9)

i=M
J has to be minimized with respect to both 0 and M, where the optimal values of 0 and M
correspond to the output of the filter and the starting point of the contiguous and ordered
inlier data set of length L, respectively. This optimization problem can be carried out in

2. For simplicity, the index L has been dropped in later devel opments.
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two steps.
 Step 1. assume the value of M is known, then 8,,, the optimal value of 8 can be found

from
8y = arg(min J(8,M)|M) (6.10)

this isthe well known least squarescriterionfunction [84], and hencefor | <M <n-L+1,

M+L-1

9., =1 z Z. 6.11)

M=7 (i) :
i=M

» Step 2: Assume8 isgiven, and defineh as
_ M+L-1 5
by = 2 (CIVEE N, (6.12)
i=M

Now (6.9) has to be minimized with respect to M. b,, will be computed for i=1,...,n-L+I
and.the M for which iy has the minimum value will be found. This optimization could also
be carried out recursively in two smple steps.

 Step /: Compute 8, and b, by using equations (6.6) and (6.7).

 Step 2: Compute 8,,,, and b,,,, from8 and by, recursively as

Oys 1= Oy +1i(z(M+L)_z(M)) (6.13)
Now; definec as
M+L+1
Cy = z (6.14)
i=M
then
2 2
Cu+r = S+ (Zreny— Zomy) (6.15)
and
by, = CM+1—(L912W+1) (6.16)

Equations (6.13), (6.15), and (6.16) can be used for M=1,..., n-L to find the optimal value
of the parameter M, where the length of thefilter L can take any value between 1 and n.
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It is straightforward to construct a weighted GMLOS filter by assuming unequa
weights for the members of the inlier set. The rationale for introducing the weighting
factors into the error criterion is to emphasize the contribution of those: samples that are
considered to be morereliable. In this case, the criterion function in (6.9) can be written as

M+L-1 )
Jem = > (8-az,) (6.17)

i=M
and the output of the Weighted GMLOS (WGML OS) filter can be computed as

1 M+L-1!
i=M
where
M+L-1
S = o, (6.19)
i=M

and. ®; represents the weight associated with the ith sample of theinlier set. Assuming that
the members of the inlier set are degraded with a zero mean and uncorrelated additive

noise process with variance 8 * , then

_ L
3,

and 9,, represents the Best Linear Unbiased Estimator (BLUE) of the location parameter 8.

(6.20)

i

6.3.1Propertiesof the GM L OSFilter

Among the various propertiesof the GMLOSfilter, particular attention will be paid to
the ones that are crucia to the processing of digital images. Although the following
properties of the GMLOS filter hold even if unequal weights are used, for simplicity
throughout this section equal weights are assumed for all membersaof the inlier set W' (i.e.
o,=1for al i in [M, M+L-1]), throughout this section.

Definition 64 A filter T operating on an input sequence (z.i=1/,....n}, is said to be

location equivariant if
T(z;+c,....z,+¢) = T(z;,....2,) +¢,Vee R (6.21)

where R denotes the set of real numbers.
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Property 6.1 The GMLOS filter is|ocation equivariant.

Proof: This property is implicit in the notion of a location estimator. Clearly, adding a
constant to all the samples of an order set does not change the rank of its elements.
Therefore, the optimizing value of M as obtained from (6.13), (6.15), and (6.16) will not
change. From equations (6.11) and (6.17)

M+L-1 1 M+L-1 M+L-1
T(z, +c,..5,tc)=1 ¥ ot =7| 2 ot X ©
i=M S i=M i= /
M+L-1
c(M+L-1-M+1
=i ) z(,)+( L :
i=M

Definition 6.5 A filter T operating on an input sequence {z;:i=1,...,n}, is said to be scale

equivariant if
T(czy,....c2,) = cT(z4,...,2,), VcE R (6.22)

Property 2 The GMLOS filter is scale equivariant.

Proof: Clearly, if ¢=0, multiplying samples of an order set by ¢ does not change the
ranks of its elements and (6.18) follows from (6.10). If ¢ < O, the ranks of the order set
would be reversed. However, the optimum value of M would not be changed. Thisis true
because the objective function as given in (6.11) remains unchanged since
(811 - 2y)° = (=8, T 2,5)°. Similarly, (6.18) follows from (6.11). O
Definition 6.6 The breakdown point of an estimator may be defined as the smallest
percentage of gross errors (or equivalently 100e, where € is defined in (6.3)), that may
cause the estimator to take on arbitrary large values [ 105].

For example, if only oneof the samplesin the data set tends to infinity, the mean of the
samples will also approaches to infinity. Thisimplies that the mean filter has a breakdown
point of 0% and henceit is not robust. In the other hand, the median filter isrobust and has
a breakdown point of 50%. Obvioudly, the upper bound for the breakdown point is 50%,
since beyond 50% differentiating between the good data (set of inliers) and the gross

errors (set of outliers) is not possible.
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Property 6.3 The GMLOS filter hasa breakdown pointd 50%, F L = | n/2 |.

Proof: Recall the distribution function for the approximate model given in (6.3). It will
now be shown that the response of the GMLOS filter given by (6.11) is finite, even if ¢
approaches infinity, aslong as ¢ isless than 0.5. In other words, suppose that the input data
set W={z,:i=1,...,n) has | .n/2 ] data points that can take arbitrarily large values, then the
estimated value of 6 given by this method isfinite.

Consider the worst case when the outlier set is consist of impulses. In this case
P,(z|9) = d(z-+), where ¢ is afixed and positive number, and &() is the usual delta
function. Assuming a Gaussian density for p,(z16), the objective function given by (6.9)
can be written as
J,0.M) if p>p

16M) = {Jxe,M) if n<B

where J,and J, are given by

p
5,0.M) = j (1-€)(8 - 2)°p,(2)dz
M

B ]
5,0,M) = j(l _&)(6-2)p,(2)dz + j £(8 - 2)°8(z — 0)dz

M M

applying the sifting property of deltafunctionsto J,(6, M) yields

ﬁ 2 2
LOM) = J(l—e)(e—z) py(2)dz + (8 - 0)

M

where the parameter M is related to the parameter B by

B
J.p(z)dz = 0.5

M
Now, let (8,, M) = arg %’igz J,(6, M) and (8,, M,) = arg I;Q,iél J,(6, M) . Then from
the expressions for J,(6,M) and J,(6,M) given above, and the Gaussian assumption for
p.(z18), it isclear that aslong as € < 0.5, J,(6,M) is finite and J,(6,M) < J,(6,M), even if
0 -» oo. Thisimplies that the output of the GMLOSfilter isfinite with a breakdown point
of 50%. 0
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Ideal step and ramp edges are frequently present in synthetic and real images. Their
definitions are given below.
Delinition 67 An ideal one dimensional (I1-D) step edge with height h consists of two
adjacent constant segments that differ in magnitude by an integer h (seeFig. 6.1(a)).
Definition 6.8 A ramp edge of degree d consistsof two unequal constant segments S, and
S, with sizesM and N, which are separated by a monotonic sequence S, of length 4, where
0 < d < min(M,N). The monotonic sequence S, is bounded by the constant segments S, and
S,. A 1-D ramp edge of degreed = 2 is shownin Fig. 6.1(b).

50 50

20 20

Fig.6.1. Ideal step and ramp edges. (a) |-D ideal step edge, #=30. (b) I-D ramp edge, d=2.

Property 6.4 The GMLOS filter preservesthe shape of an ideal 1-D step edge®.

Proof: Assume a monotonically non-decreasing ideal step edge of height h and length N
that consists of two constant segments S, and S,, with values g and g+h, respectively.
Consider a 1-D processing window W of size n asillustrated in Fig. 6.2. If all members of
the set W belong to only one of the constant segments S, or S, (i.e. if Wisentirely in a
homogeneous region), then the L members of the inlier set W”also belong to that constant
segment (since W/ c W by definition). Therefore, without loss of generality assuming that
all membersof Wibeongto S,, then the output of the GMLOS filter as given by (6.11) can
be computed as

6M=%2 Z(i)=%z g =8

;e WI e Wi
which leads to the correct classification (value) of the data at the center of the processing

window.

3. For simplicity the proofs of properties 6.4 and 6.5 are given for 1-D edges. The extension to 2-D edges
is straight forward.
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When the members of the set Whbelong to both S, and S, (i.e. when W falls somewhere
across the two segments), it has to be shown that the GML OS correctly classifiesthe edge.
Without loss of generality, assumethat the center cell of the processing window is an edge
pixel that belongsto S,, asdepictedin Fig. 6.2.

-—— n ——P
<L=n/2+_1_>]

00 [@e®O[0] - OO
-— N -
S, S,
| - |

Fig. 6.2. A 1-D monotonicaly non-decreasing sep edge (the membears d the set Ware shown
ing de the square boxes).

Since the length of the window is an odd number, and from the monotonicity of the
edge sequence, it follows that the majority of the pixelsin the set Ware membersaf S,.
According to Theorem 6.1, the set of inliers, W/, is a contiguous set of size L such that
JOW) < JWH), where W is any subset of W with size L. Due to the contiguity
requirements, and the above observations, and from (6.13), (6.15) and (6.16), it follows
that the inlier set W' is a minimizer of (6.6) if and only if al its members belong to only
one of the segments (e.g. S, in this case). This means that the GMLOS filter correctly
classifies the edge. This result also could have been concluded from Property 6.2, since
the members of theset S, in Wwould have been classified as an outlier set with respect to
theset S,.

O

Property 6.5 The response of the GMLOS filter to a ramp edge (or blurred step edge),
approaches an ideal step edge by repetitive filtering of the data, if the degree of the ramp,
d, and the size of the processing window, n, satisfy d/2 < n.

Proof: Consider a monotonicaly non-decreasing ramp edge of degree d and length N.
According to dgjinition 6.7, aramp consistsof threedistinct segmentsS,,S,, and S,. S, and
S, are constant segments of different magnitudes, g and g+h, respectively. S, is a
monotonic sequence of size d that is bounded from below by S, and from above by S..

Consider a 1-D processing window Wof size n asshown in Fig. 6.3. If all membersof the
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set W belong to only one of the constant segments S, or S,, then as shown in the proof of
Property 6.4, the output of the GMLOS filter is equal to g or g+h, respectively. The
members of the set Wcan not entirely belongto the set S, since by assumptiond < #/2. It
can be assumed, without loss of generality, that the center of the processing window is at

the first pixel of the monotonically increasing sequenceS,, as depicted in Fig. 6.3.

- 1 —P
¢ L=n/2+1 |
e

o0  009e0O - OO
- >
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Fig. 6.3. A I-D monotonically non-decreasing ramp edge (the members of the st Ware shown
ingdethe square boxes).

According to Theorem 6.1, the set of inliers WA is a contiguous set with size L, such
that JW?) < JW*), where W4 is any subset of W with size L. Due to the contiguity
requirements, and the above assumption, and from (6.13), (6.15) and (6.16), It can be
concluded that theinlier set W isaminimizer of (6.6) if and only if all its membersbelong
to only one segment (e.g. S, in this case), except for one member at the center of the
processing window, which belongsto the set S,. Thereforethe output of the GMLOSfilter

can. be written as

8, = % Y oz = (L—l)gz(g+Ag) - g+éig
25 € Wi
since Ag « L, after afew passes of the filter over the data the output of the GMLOS filter
approaches the mean value of the set S,. Similarly, by repetitive application o the
GMLOS filter, the membersof theset S, which are closer in magnitude to the members of
S,, will tend to the mean value of the set S, and the rest of the membersaof S, will tend to
the mean value of the set S,. Therefore, the response of the GMLOS filter to a ramp will
approach a step edge by repetitivefiltering of the data

O
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6.3.2 GMLOSfor Noise Smoothing and Edge Enhancement

The GMLOS filter has the desired properties of a nonlinear digital filter and can be
used for 2-D spatial filtering of digital images. A single-stage 2-D spatial filter operates on
the neighborhood of each pixel in the corrupted input image to estimate its value. This
neighborhood is called a processing window. Only windows with a support of size n have
been considered, where nisan odd integer. The most popular 2-D processing windowsfor

image processing applications are shown in Fig. 6.4.

(a) (b) (©) (d)
Fig. 6.4. Examplesof 2-D processing windows (shaded areas correspond to support of the

window). (@) Square window (n= 25). (b) Circular window (n=21). (c) Crosswindow (n=9). (d)
X-shaped window (n=9).

Let W, = {z: i=l,...,n} bethe set of pixels within the support of the processing window,
where the subscript p correspondsto the location of the center pixel in the window. Then a

2-D filter can be defined as an operator T that maps the input datainto the output y, as
y, = T(W),) (6.23)

This value isthen assigned to the center pixel of the window asillustrated in Fig. 6.5.
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Fig. 6.5. Spatial 2-D filtering with a 3x3 square window.

Properties 6.1 and 6.2 of the GML OSfilter are usually desired in 2-D nonlinear spatial
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filtering, because the operator T may not satisfy the superposition and proportionality
principles in a 2-D nonlinear filter. Property 6.3 is also plays an important rule in 2-D
spatial filtering. In many applications the existence of outliers (impulsive or salt-and-
pepper noise) is almost unavoidable. They frequently occur at the acquisition time, during
the image formation process (due to the existence of long-tailed noise processes), or
during transmission over communication channels. Edge preservationis another important
property of filters in image processing applications, because human visual perception is
very sensitiveto thisfeature [79]. Step edges are rarely found in natural images and most
of the edges in these types of pictures have a smooth and monotonic transition from one
surface to another (ramp edges). However, in many image analysis and computer vision
applications, where edges are being used as the primary features for segmentation and
classification, step edges are more desirable. Therefore, the edge enhancement property is
an essentia attribute of a preprocessing unit in image analysis systems. The majority of
the most frequently used filters, such as the median filter and its extensions, do not posses
this property. Actualy, the median filter tends to preserve any monotonic degradation of
the edge, and therefore is not capable of enhancing blurred or ramp edges. This is
illustrated in Fig. 6.6.

_—f

(a) (b)

M/H_f

(c) (d)

Fig.6.6. () an 1-D ided step edge, (b) blurred edge (ramp edge), (c)responsed the 1-D median
filter o’) superimposad on (b) after 2 passes, (d) responsed the 1-D GMLOSHilter C**)
Superimposed on (b) after 2 passes.
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A magjor drawback in single-stage2-D spatia filtering is the fact that these filters tend
to distort or obliterate some of the fine details of the image [98, 73, 12]. For example, a
feature of size !/ < L in a homogeneous background will be eliminated when filtered by a
single-stage GML OSfilter (SS-GMLOS) that has a square window support. To over come
this problem in applicationsin which the preservation of fine detailsis the major issue of

concern, a multi-stagefiltering schemeis proposed in [89].
6.3.3The Multi-Stage GMLOSFilter

A single-stage filter with a relatively large window size, usualy destroys the fine
details of the image [73]. Moreover, the rank ordering processin order statistic filters may
disrupts the structural and spatial information of the data. A uni-directional multi-stage
filtering scheme was used in [89] to overcome someof these problems. In thisalgorithm, a
few subfilterswith different supports are used to filter the data. The output of the subfilters
are then combined to produce the final estimate. These uni-directional subfilters are
designed to preserve the image features in different directions. Therefore, by including
sufficient number of subfilters, afeature oriented in any direction can be preserved [98].
The uni-directional subfiltersfor the Multi-Stage GMLOSfilter (MS-GMLOS) are shown
in Fig. 6.7.

mE——

W, W w, W

ne

Fig. 6.7. The uni-directiond window supportsfor the MSGMLOSilter.

The output of the unidirectional multi-stage GMLOS filter is determined by selecting
the output of the subfilter for which the output varianceis minimum. That is

Yus-cuLos = arg min (yy ) (6.24)
Ly

where yy, correspondsto theoutput of the horizontal (W,,), north-east (W), vertical (W,),
and north-west (W,,,) uni-directional subfilters, and the 8:“, ’s represent their variances. The
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uni-directional filtering algorithmisillustrated in Fig. 6.8.

[ | W
Y }
| ynz
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Fig. 6.8, Multi-stagefiltering with Four uni-directiona subfilters.

In a bidirectional multi-stagefiltering scheme, the subwindows span two line segments
in orthogonal directions. Two examples of such subfilters were shown in Fig. 6.4 (the
Cross and X-shaped windows). The output of the bidirectional MS-GMLOS filter is also
determined by selecting the output of the subfilter for which the output variance is
minimum. Thefiltering operationissimilar to the one shown in Fig 6.8, with the exception
of having only two directional filters, correspondingto W,,.,,, and W,.,.

Although multi-stage filters have superior performancein preserving the fine detail s of
an image, they are not as effectiveastheir single-stage counterpartsin attenuating noise or
enhancing edges. Within the class of multi-stagefilters, bidirectional subfilters have better
smoothing properties, but uni-directional subfilters are more successful in preserving fine
details of the image. In section 6.4, these facts are verified by experimental results on real

images.
6.3.4GMLOSand Other Nonlinear Edge Enhancing Filters

As mentioned earlier, only afew researchershave designed nonlinear filters with edge
sharpening properties. Edges are one of the most important features of an image in many
computer vision and image understanding applications, and have great impact on human
visual perception [71, 75]. The Comparison and Selection (CYS) filter, Weighted Mgjority
of m vaues with Minimum Range (WMMR") filter, and Lower-Upper-Middle (LUM)




- 96 -

filter have been shown to be effective in smoothing noise while sharpening edges [77].
Thesefiltersand some of their important characteristics are summarized in the following.

The output of the Comparison and Selection (CS) filter [102] with parameter K is given
by

Yes = {Zm A= Zw+nr2) 625)
Z(n-k+1) Otherwise

where [i isthe sample mean of theinputset W, and 1< k< (n+1)/2. Clearly if k=(n+1)/
2, then the output of the CS filter is identical to that of the median filter. In general, by
selecting different valuesfor the tunable parameter k, different levels of enhancement can
be achieved with the CS filter. This filter has good sharpening properties but tends to
distort or obliterate fine details of the signal and is not as effective as other nonlinear edge
sharpeners in smoothing noise [77].

The output of the Weighted Majority of samples with Minimum Range (WMMR)
filter [104] is obtained by averaging the weighted sum of all subsetsof W with cardinality
(n+1)/2 that possess the minimum range property

Ywmmr = average [ > @, Z(k)] (6.26)
YW e\ Zgo € Wi
where W '™ denotes a set with the minimum range property as defined below. Let 7,,=z,,..y
20 - Zon DEthe range of the elementsin WR for 1 <M < (n-1)/2+1, and r,,,= min {r,, 1L <M
< (n-1)/2+1} be the minimum range of the input set W Then any subset of W with
cardinality (n+1)/2 is said to possess the minimum range property if all of its members
have arange less than or equa to r,,,.. In (6.24), the ®,’s represent the filter weights, and a
useful choice of weightsfor edge enhancement [25] is

(6.27)

® 1 f k=m-1)/4+M
*= 1o otherwise

The WMMR filter with this choice of weights simply computes the sample median of the
w'mn>S, and is referred to as the WMMR-MED filter. A good choice of weights for noise

smoothing isthe equal normalized weights. The resulting filter is called the WMMR-AVE
filter. This filter also distorts or obliterates the fine details of the image, and its edge
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enhancement property is poorly controlled. However, its noise suppression characteristics
are better than CS and LUM filters[77].
The output of the Lower-Upper-Middle(LUM) filter [103] with parametersk and / is

given by

Zw i Zanm <Zw
Z0 if Zo<Zmsnm <l

Yoom = | Za-rsy  H<Zay2) <Zgo1+1) (6.28)
Zn-k+1y 1 Zaoke ) <Z(m+1y/2)

Zin+1ys2) Otherwise

where 11 k5(<(n+1)/2 and t; = (z(4y* 2(,-y~1,)/2. The parametersk and / can be
considered as tuning parametersthat alow the LUM filter to have different characteristics.
The output of thisfilter is bounded by the ranked ordered valesz,, and z,..,,to remove the
outliers. If k=1 = (n+1)22, the LUM filter acts as a median filter. In the case where
I = (n+1)22 and k is varied, the LUM filter acts as an smoothing filter. When k=1 and [ is
varied, the LUM filter acts asasharpener. Finaly, when 11 k<1< (n*1)/2, sharpening
and outlier rejection can be achieved simultaneously. This filter may also distort or
obliterate the fine details of the image but is better than the WMMR-MED and CS filters
in preserving the details [77]. The optimal values of the tunable parametersk and . for this
filter should be obtained through trial and error in different applications.

In genera, the CS and LUM filters share a common philosophy because they both
select samples that are away from the median, as their outputs. Therefore, different levels
of enhancement can be achieved by selecting different values of the tunable parameter k
for the CS filter, and the parameters k and / for the LUM filter. However, these tunable
parameters are obtained heuristically or by trial and error in different applications. The
WMMR and GMLOS filters al so share acommon philosophy. They first partition the data
into inlier and outlier sets before computing their outputs as a weighted sum of the
members of theinlier set. For thesefiltersdifferent levelsof enhancement can be achieved
by choosing appropriate weights and filter length in different applications. While the
WMMR filter selectsitsinlier set and weights by using a heuristic approach, the inlier set
and weights in GMLOS are obtained with a recursive maximum likelihood algorithm,
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which isZ, norm optimal (seeequations6.9-6.11). The major characteristicsof thesefilters
are explained in more detail in thefollowing.

+ Selection of the inlier set - The WMMR filter selectsitsinlier set(s) by finding al
subsets of the ordered input data with cardinality (n+1)/2 that have an I, norm less
than or equal to the minimum range. For digital images this algorithm may often
select multipleinlier setswith the required minimum range. For example, consider a
1-D ramp edge W={1,1,1,3,3,3,5,5,5} of degreed=3. This set has a minimum range
of 2, and there are four subsets W*'={1,1,1,3,3], W*={1,1,3,3,3}, W"={3,3,3,5,5)
and W" =(3,3,5,5,5}, corresponding to this minimum range. In these cases the
WMMR filter uses a heuristic algorithm to compute the output. WMMR-MED
averagesthe mediansof theinlier sets, and WMMR-AVE averagesthe sample mean
of theinlier sets. In contrast, the members of the inlier set in the GMLOS filter are
recursively chosen based on the theory of maximum likelihood, leading to a
recursive optimal |, norm solution. For the above example, the GMLOS filter selects
a unique inlier set W*'={1,1,3,3,3], which has the highest likelihood of being an
inlier set. The output is then computed by selecting the weightsthat yield the BLUE
estimate of the location parameter 6, as was explained earlier in thissection. The CS
and LUM filtersdo not explicitly partition the data into inlier/outlier sets, however,
they can be thought of as having an inlier set with only one member (the output of
the filter). In these agorithmsthe output isobtained by some heuristic choice of the
tunable parametersk and |.

» Edge enhancement property - The edge enhancement properties of the LUM, CS,
and WMMR-MED filters are studied in [77]. They are shown to be effective in
enhancing blurred edges in presence of impulsive noise. Although the edge
enhancement propertiesof the LUM and CSfilters are very similar, in some cases it
has been shown that the CS and WMMR-MED filters are somewhat |ess effective
than the LUM filter in enhancing the edges [77]. In general, the GMLOS filter has
better edge enhancement properties than the WMMR filter and produces edges that
are more localized. The edge localization enhancement properties of the WMMR
filter are poor whenever it can not select a unique inlier set. In the above example,
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both WMMR-MED and WMMR-AVE produce a value of 3 for the middle pixel,
and hence no enhancement is achieved. However, the GMLOS filter is capable of
enhancing this ramp edge by producingavaluecloseto 2 in the first iteration, and a
value close to 1 in the second iteration (these values are truncated to 2 and 1
respectively).

Noise smoothing property - The CS and LUM filters have similar smoothing
properties. However, the LUM filter can have potentially better smoothing
characteristics than the CSfilter, becauseit has an additional tunable parameter. The
WMMR-MED filter has better smoothing properties than the CS and LUM filters
[82]. The GMLOS and WMMR filters have comparabl e noise smoothing properties.
Detail preservation property - As mentioned earlier, the single-stage 2-D spatial
filters have a tendency to distort fine details of the image (specifically when a large
size square window is used). The LUM filter has better detail preservation properties
[77] than the CS, WMMR and GMLOSfilters. The price to be paid is the selection
of two tunable parameters through trial and error in different applications.
Moreover, aset of parametersthat may perform well in one region of the image that
has fine details may not perform as well in other regions with different spatia
characteristics. In general, when the preservation of fine details is of prime
importance, a multi-stage filtering scheme should be used. While it is possible to
adopt an I, norm optimal decision rulefor computing the output of the MS-GMLOS
filter, a heuristic algorithm should be used to implement multi-stage WWMR, CS,
and LUM filters.

Filter weights - The CS and LUM filters do not use weights in computing their
outputs. In the case of the WMMR filters, it is not tractable to compute the optimal
valuesdf thefilter weights, becausethisfilter usesthel norm to select theinlier set.
As aresult, only WMMR-MED and WMMR-AVE filters are used in practice. On
the other hand, the GMLOS filter has a tractable solution based on a recursive
maximum likelihood agorithm for computing the inlier set and filter weights that

are [, norm optimal.
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6.4 GMLOSfor Pre-Processing and Post Processingof |magesand I mage Sequences

Block-based transforms have been extensively used in image and video coding
applications [72, 6, 106]. Recently, the Block-Based Discrete Cosine. Transform (BB-
DCT) has been adopted by emerging image and video compression standards including
JPEG, H.261, MPEG, and the grand aliance HDTV broadcasting [1]. In a block-based
image compression Algorithm, such as JPEG, the pictureis first divided into many small
square blocks that are transformed, quantized, and coded into a sequence of bit streams
along with other side information. In a block-based video coding system, such as H.261
and MPEG, a hybrid approach based on the concept of intraframe and interframe coding
is being used. In the intraframe mode of operation, spatial redundancy is exploited by
structuring a single frame into many small sguare blocks (e.g. 8x8) that are then
transformed, quantized, and coded. In the interframe mode of operation, temporal
redundancy is exploited by using motion compensation to generate a prediction of the
current video framefrom previous (and in the case of MPEG possibly from future) frames.
The difference between this prediction and the actual frame is then transformed,
guantized, and coded along with motion vector information. Finaly, the intraframe and
interframe information, as well as the synchronization and other side information are
structured into a sequence of compressed bit streamsfor storage or transmission.

The above mentioned standards belong to the class of lossy data compression and
usually introduce visible distortions in the form of blockiness and/or motion jerkiness to
the original data. The amount of distortion is afunction of the coding parameters (e.g.,
quantization step sizes and range of motion vectors), the data rate used, the buffer control
algorithm, and the particular source video sequence. In addition to Gaussian and impulsive
sensor noise, blockiness, and motion artifacts, the encoded bit streams are vulnerable to
transmission or media impairments that may cause loss of block(s) of data or loss of
syr~chronizationSome of these impairments can be reduced by performing a set of pre-
processing and post-processing algorithmson the encoded or decoded data [10], as shown

in Fig. 6.9.
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Fig. 6.9. A generic block diagram for pre-processing and post-processingagorithmsin
modem interactive communication systems.

Pre-processing refers to spatial and temporal image processing algorithms (e.g., noise
smoothing, scaling, etc.) that are applied to the data signal prior to compression. Similarly,
post-processing algorithms refer to signal or image processing functions that are applied
to data after compression.

The removal of additive Gaussian and impulsive noise can be achieved by the GMLOS
filtersintroduced in the previous section. In this section anove algorithm is introduced for
reduction of blocking effects in block-based transform coded images and video frames.
The effects of temporal filtering in reduction of motion artifacts is also discussed. The

concealment of errors due to transmission impairmentsis the subject of the next chapter.
6.4.1 De-blocking of Encoded Imagesand Video Frames

At lower bit rates, the coarse quantization of transform coefficients in block-based
imiige and video compression algorithms usually resultsin visible distortions in the form
of blockiness, asillustratedin Fig. 6.10.

In recent years, a variety of post-processing algorithms have been proposed to remove
the blocking effects. The most intuitive solution is to use a low-pass filter to smooth out
the boundary effects [10, 107]. Although the low-passfilter can smooth the boundaries of
the blocks, it also eliminates the high frequency information corresponding to the interior of
the blocks, and thus blurs the real edges.
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(a) original Lena (b) Lena @ 0. {¢) Lena @ 0.25 bpp

Fig. 6.10. The blocking effects in block-based transform coding dgorithms & lower bit rates. (a)
Origina Lena. (b) Encoded with JPEG & 0.5bits/pixel. (¢) Encoded with JPEG at 0.25 hits/
pixd. The visbledistortionsin form o blockinessis noticegblein (c).

At the cost of computational complexity, better results have been achieved by iterative
algorithms such as Projection Onto Convex Sets (POCS) [108, 109], and edge-based
spatially adaptive filtering [110]. More recently, wavelet-based post-processing techniques
have gained popularity. In [111], a wavelet-based algorithm that uses soft-thresholding of
the wavelet coefficients [112] is used to remove the blockiness.

Our approach to de-blocking is motivated by the following facts:

* In a block-based image coding algorithm, the locations of the block boundaries are
known. Therefore, the smoothing operation should be restricted to regions around
the block boundaries.

» The detail images in the wavelet-based MRA of ablocky image contain vertical and
horizontal artifacts in the vertical and horizontal high-pass images, respectively.
These artifacts are usually located at the block boundaries, as shown in Fig. 6.11.
Therefore, most of these artifacts can be removed by proper filtering and
thresholding.

» The block boundariesin the approximation image of the wavelet based MRA should
be smoothed with afiltering scheme that does not smear the true edges of the image.

» The de-blocking algorithm should be computationally efficient.
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(a) original vertical high-pass

{(c) original horiz. high-pass (d) original horiz. high-pass

Fig. 6.11. Vertical and horizontal artifacts in wavelet-based M RA of blocky images. (a) The
vertical high-passimage of original Lenaof Fig. 6.10(a). (b) The vertical high-passimage of
blocky Lenaof Fig. 6.10(c). (c) The horizontal high-passimageof original Lenaof Fig. 6.10(a).
(d) The horizontal high-passimage of blocky Lenaof Fig. 6.10(a). Figs. (b) and (d) are
enhanced for display purposes. The results are shown for level 1, with an orthonormal MRA, and
based on D4 compactly supported wavelets.

In this algorithm the blocky image is first decomposed into approxiimation and detail
subspaces with J-level biorthogonal or orthonormal MRA analysis (in practice, a 2-level
decomposition is sufficient). In the next step, the low-pass approximatiion image and the
high-pass detail images are processed independently.

Although a low-pass filter can be used to smooth the boundaries of the blocks in the
approximation image, it also eliminates some of the high frequency information and thus
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blurs the edges. In order to overcome this problem, Spatially Variant Filters (SVF)can be
used [10], Since the location of the block boundaries are known, it is intuitive to smooth
the signal along these boundaries, while preserving the pixels that are located well within
these blocks. Moreover, different kernels can be used for the pixels along the block
boundaries, where the shape and size of the kernel depends on the location of each pixel,
asshown in Fig. 6.12(a). In this method a corner pixel is processed with atwo dimensional
kernel, while pixels along the boundaries are filtered with one dimensiona (vertical or
horizontal) kernels. In addition, the size of the kernel (one or two dimensional) can vary
depending on the distance between the pixel under consideration and the block boundaries
based on the local statistics of the image [10]. Linear low-pass SV Ffilters may blur edges
that are close to the block boundaries. To overcome this problem, a variable length

GMLOS filter is used to smooth out the boundaries while preserving the true edges.
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(2) (b)

Fig. 6.12. Examples of variable size kernels (window supports) for an SVEF filter. (a) SVF
window support for filtering the approximation image. (b) 1-D horizontal and vertical support
for filtering of block edgesin the vertical detail and horizontal detail images, respectively.

As shown earlier (see Fig. 6.11), the detail images in wavelet-based MRA of a blocky
image contain vertical and horizontal artifacts in the vertical and horizontal high-pass
images, These artifacts are located exactly at the boundary of blocks. In addition, our

experimental studies have shown that the wavelet coefficients associated with these
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artifactsare much smaller than those corresponding to the true edges of the image, and are
mostly clustered around zero. In this algorithm, the pixels a the vertical boundaries of
blocks in the vertical high-pass image are filtered with a 1-D horizontal GMLOS filter.
Similarly, the horizontal boundariesin the horizontal high-passimage are filtered witha 1-
D verticad GMLOS filter. The window support for these 1-D filters is shown in Fig
6.12(b). This filtering scheme is performed prior to thresholding the wavelet coefficients
in order to strengthen the value of the coefficientsfor possible rea edges at the boundary.
The wavelet coefficients in detail images should then be thresholded for elimination of
false boundary edges. A soft thresholding algorithm similar to [112] can be used to
achieve this task. Finally, the filtered and thresholded approximation and detail images are
used to reconstruct the image at the original resolution. This algorithm is simple and
cornputationally efficient. It successfully de-blocks the encoded images and its
performance is comparable to the more sophisticated and computationaly expensive

iterativeagorithms. Experimental results are provided in section 6.5.
6.4.2 Temporal Filtering of Image Sequences

Theframe rate of the video signal at the output of a decoder operating at low bit rates
is usually less than 30 frames per second [6, 1]. For example, an H.261 codec (coderl
decoder) operating at 384 kbits/s operates & a rate of about 10-15 frames per second. In
order to generate a standard 30 frames video signal, some tempora processing has to be
performed at the output of the decoder. The most simple approach is to repeat the decoded
frames to compensate for the missing frames that the encoder did not transmit. This
creates motion jerkinessthat is commonly noticed when the codec compresses the video
signal a a rate of 15 frames per second or lower [1]. The motion artifacts are aso
noticeable a the boundary of the blocks due to possible inaccuracies of motion vectorsin
a block-based motion compensation agorithm [6].

Temporal interpolation and filtering can be effectively used to reduce some of these
artifacts. Under this approach, two consecutive decoded frames are used to create the

missing frame. Moreover, the consecutive frames can be filtered in the temporal direction
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to reduce some of the motion artifacts at the boundary of the blocks [10]. Although
temporal interpolation at the output of the codec may improve the quality of the video
signal by producing smoother motion, it also introduces additional delay and costs [10].
The increase in delay is due to the fact that the post-processor has to wait for two
consecutive frames (which are, in general, two or more frames apart) before it begins
displaying the output video. The extra cost is due to the additional franne buffer that will
be needed to support this process. It has been shown that [10] bilinear interpolation is the
optimal choice (in the cost-performance sense) for post-temporal interpolation. The

bilinear temporal interpolationisillustrated in Fig. 6.13.

FrameNumber: k

(k+D)

I-d(l>d)

k+d k+l 3
X -d Xij +(-d) Xij

Fig. 6.13. Post-temporal bilinear interpolation of video frames. The value of the pixel at the
interpolation Site (iyf) is afunction of the distance d and the pixel values of its closest neighbors.

The performance of the post-temporal interpolation was found to be highly scene
dependent. When the inter-frame motion is small, post-temporal filtering consistently
improves the PSNR. However, as the motion content of the scene increases, bilinear
interpolation is not as effective. In this case, it is possible to reduce some of the artifacts
with uni-directional multistage GMLOSfiltering of the consecutive frames in the temporal
direction. Thefiltering schemeisidentical to the oneintroduced in section 6.3.3, with the
exception that each subfilter has a support across the consecutive frames in the temporal

direction. Experimental results are presented in section 6.5.
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6.5 Experimental Resultsand Conclusons

6.5.1 Noise Removal and Edge Enhancement

The simulations were carried out on various test images with different types of
degradations, such as Gaussian, impulsive, and linear blur, aslisted in Table 6.1.

Table6.1
Thedestription d test images.
Corrupted Original Description of degradations

Image Tmage Gaussian | Impulsive Blur
TI-1 (Fig. 6.14(b)) Peppers(Fig. 6.14(a): 512x512x8) None 10% 3x3 mean filter
TI-2 (Fig. 6.15(b)) Eingtein (Fig. 6.15(a): 512x512x8) (0,200) 10% None
TI-3 (Fig. 6.16(b}) Stream (Fig. 6.16(a): 512x512x8) None 10% None
TI-4 (Fig. 6.17(c)) Rods (Fig. 6.17(a): 256x256x8) None None 3x3 mean filter

TI-1, which does not contain fine levels of detail, is shown in Fig. 6.14(b). It was
created by blurring the original Peppers with a 3x3 mean filter (linear blur), followed by
randomly replacing 10% of the pixels with gray scale values of £200. A 3x3 square
window was used for all single-stage filters. This type of processing window normally
achieves the highest level of noise attenuation, but it has a tendency to obliterate fine
details of the image [76, 98]). For multi-stage filtering, 5x5 bidirectional processing
windows were used. These filters have been shown to have better noise attenuation
properties than uni-directional multi-stagefilters, but are not as good a preserving the
details [12, 98].

TI-1 was filtered with the Weighted Single-Stage (WSS-GMLOS) and Weighted
Multi-Stage GMLOS (WM S-GMLOS) filters. The results are shown in Figs. 6.14(c), and
(d), respectively. Both of the GMLOS filters appear to be successful in editing the
impulses and enhancing the edges. The corresponding Mean-Absolute-.Error (MAE) and
Mean-Squared-Error (MSE) for these filters is listed in Table 6.2. The MAE and MSE
measures, are the most frequently used measuresof error in image processing applications
[71]. For comparison, the MAE and M SE for the nonlinear filtersof section 6.3.4, median,
and multistage median filtersare alsolisted in Table6.2¢.

4. No algorithm were found in the literature for multi-stage LUM, CS, or WMMR filters.
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(a) original Peppers (b) TI-1 (impulsive noise & blur)

(c) WSS-GMLOS (d) WMS-GMLOS

Fig. 6.14. Theresult of GMLOS filtersfor TI-1. (a) Origina Peppers. (b) Noisy test image 1 (TI-
1). (c) Weighted single-stageGMLOS filter. (d) Weighted multi-stage GMLOS filter.

Table6.2
MSE and MAE for test image 1 (T1-1).
WSS- Cs WMMR- | WMMR- LUM I
11 No GMLOS k=4 AVE MED k=2, I=5 GMLOS Median
Filtering 3x3 3x3 3x3 3x3 3x3
Square Square Square Square Square | Bidirectional  Bidirectional
MSE | 2318.63 | 242.21 258.27 248.96 257.47 256.25 248.96 . 263.05
MAE 17.11 5.40 5.81 5.57 5.68 5.70 5.55
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The second test image TI-2, which has more fine details than TI-1, is shown in Fig.
6.15(b). It was created by adding Gaussian noise (zero mean, and variance of 100) to the
original Einstein, followed by randomly replacing 10% of the pixelswith gray scale values
of +200. A 3x3 square window was used for al the single-stage filters, and 5x5
bidirectional processing windows were used for multi-stagefilters. T1-2: was filtered with
WSS-GMLOS and WMS-GMLOS filters. The results are shown in Figs. 6.15(c), and (d),
respectively. Both of the GMLOS filters appear to be successful in editing the noise while
preserving the significant details of the image. The corresponding MAE and MSE for
thesefiltersislisted in Table 6.3.

TI-3, which has the finest level of detailsamong thetest imagesof Table 6.1, is shown
in 'Fg. 6.16(b). It was created by randomly replacing 10% of the pixelsin the original
Stream image, with gray scale valuesof +£200. A 3x3 X-shaped window was used for al
the single-stage filters, because X-shaped filters are more suitable for detail preservation
than the sguare windows. For multi-stage filtering, 5x5 uni-directional processing
windows were used, because they are more effective in preserving the details than
bidirectional filters. TI-3 was filtered with WSS-GMLOS and WMS-GMLOS filters. The
results are shown in Figs. 6.16(c), and (d), respectively. Both of the GMLOS filters appear
to be successful in editing the noise. However, WMS-GMLOS performed better than
WSS-GMLOS, interms of preserving details.

TI-4 was used to demonstrate the edge enhancement properties of the nonlinear
sharpeners of Section 6.34. It wascreated by filteringthe original Connection Rods image,
with a 3x3 mean filter (linear blur). Thisimage was then filtered by single-stage median,
GMLOS, CS, WMMR-AVE, WMMR-MED, and LUM filters. The filtered images and
their corresponding gradient based edge maps are shown in Fig. 6.17. A subjective
eveluation of Fig. 6.17 revea sthat the SS-GML OS has produced an edge map that is more
localized, and has more amount of detail than the other nonlinear sharpeners.

For processing Tl-1, TI-2, and TI-3, dl possible valuesfor the tunable parameter(s) of
CS and LUM filters were used, and the tunable parameter(s) that produced the minimum
MSE/MAE was chosen. For TI-4, the tunable parametersfor which the edge maps had

more detail were chosen.
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(a) original Einstein

(c) WSS-GMLOS

(b) TI-2 (impulsive & Gaussian noise)

{d) WMS-GMLOS

Fg;.6.15. The result of GMLOSfiltersfor TI-2. (a) Original Einstein. (b) Noisy test image 2 (T1I-
2). (c) Weighted single-stage GM L OSfilter. (d) Weighted multi-stageGM L OS filter.

Table6.3
MSE and MAE for test image 2 (T1-2).

WSS- CS WMMR- WMMR- LUM WMS- MS-

T1-2 No GMMS k=4 AVE MED k=3,1=5 GMLOS Median
Filtering 3x3 3x3 3x3 3x3 3x3 5x5 5x5

Square Square Square Square Square | Bidirectional | Bidirectional

MSE | 2084.82 | 136.83 128.27 156.42 168.89 140.38 125.32 127.67

MAE 20.00 8.63 7.72 8.55 8.84 8.42 7.12 7.15




(a) original Stream

(¢) WSS-GMLOS
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(b) TI-3 (impulsive noise)

(d) WMS-GMLOS

Fig. 6.16. Theresult of GMLOSfiltersfor TI-3. (a) Original Stream. (b) Noisy test image 3 (TI-
3). (c)Weighted single-stage GML OSfilter. (d) Weighted multi-stage GMLOSfilter.

Table6.4
MSE and MAE for test image 3 (T1-3).

WSS CS WMMR- WMMR- LUM WMS- MS-
TL3 No GMLOS k=4 AVE MED k=3;1=5 GMILOS Median

’ Filtering 3x3 3x3 3x3 3x3 3x3 5x%5 5x5

X-shaped X-shaped X-shaped X-shaped ' | X-shaped | uni-directional . |.:uni-directional

MSE | 1858.19 150.97 154.80 186.44 204.37 218.01 150.25 209.86

MAE 12.16 7.15 7.26 8.22 8.16 8.60 4.20 4.25
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(a) original rods

(¢) blurred rods (linear)

(e) median filter

(g) SS-GMLOS (h) edge map of SS-GMLOS

Fig. 6.17. Edge enhancement with nonlinear filters. (a) Original rods (256x256x8). (b) The edge
map of (a). (c) Blurred rod (linear blur). (d) The edge map of (c). () Median filter. (f) The edge
map of (e).




(i) CS (k=2)

(k) WMMR-AVE

(m) WMMR-MED

(o) LUM (k=1,1=2) (p) edge map of LUM

Fig. 6.17. Continued: (g) SS-GMLOS filter. (h) The edge map of (g). (i) CSfilter (k=2). (j) The
edge map of (i). (k) WMMR-AVE. filter (1) The edge map of (k). (m) WMMR-MED filter. (n)
The edge map of (m). (o) LUM filter (k=1, [=2). (p) The edge map of (o).




6.5.2 De-blocking of Block-Based Transformed Coded | mages

The proposed de-blocking algorithm of section 6.4.1 was tested on various blocky
images. The test image Lenais used here, because of its wide-spread use in the literature.
The original zoomed Lenais shown in Fig. 6.10(a). The JPEG compressed Lena a 0.25
bits/pixel isshownin Fig. 6.18(a), and its zoomed version in Fig. 6.18(b). A 2-level MRA
was performed on thisimage by using DaubechiesD4 wavelets. The high-passvertical and
horizontal detail images are shown in Figs. 6.18(c), and (d), respectively. The
corresponding GMLOS filtered and soft-thresholded detail images are shown in Figs.
6.18(e), and (f), respectively. Finaly, the reconstructed de-blocked image and its zoomed
version are shown in Figs. 6.18(g), and (h), respectively. The subjectivequality of the de-
blocked imageisgood, and it hasaPSNR of 30.52 dB. The obtained results are comparable
to those reported in [109], as listed in Table 6.5, however the proposed algorithm is
cornputationally efficient, because it is not iterative.

Tale6.5
De-blocking resultsfor Lenatest image (PSNR in dB).

Bit Rate JPEG( PS\R Method in [46) | Our algorithm
0.15 26.57 27.58 2745
0.24 29.35 30.43 30.40

6.5.3 De-blockingand Temporal Filteringof Video Frames

In thisexperiment the mobile-calendar and table-tennis Common Intermediate Format
(CIF) [6] image sequences were used. The sequences where 100 frames long. These
sequences were compressed at 384 Kbps with an H.261 software codec. The decoded
frame rate was 15 frames per second. The decoded frames were first de-blocked, and then
bilinear interpolation was used to interpol ate the missing frames. The interpolated frames
were then filtered with a uni-directional multi-stage GMLOS filter, where each sub-filter
had a support of length three (i.e. the pixels from the previous and the next frame were
used). The de-blocked frame 50 of both sequencesis shown Fig. 6.19. On average, the
post-temporal filtering and interpolation improved the PSNR by up to 2 dB. The results
are shownin Fig. 6.19.




(a) Lena, JPEG @0.25bpp {h) zoom on (a)

vertical detail of (a)[ll (d) MRA: horiz. detail of (a)

(e} filtered/thresholded (b) (f) filtered/thresholded (d)

(g) de-blocked Lena

Fig. 6.18. De-blocking with GMLOS and wavelet based MRA (Daubechies D4, J= 2). (a) JPEG
encoded Lena at 0.25 bits/pixel. (b) Zoomed version of (a). (c) Vertical high-pass image of (a) at
resolution J= 1. (d) Horizontal high-passimage of (a) at resolution J=I.(e) (c) processed with
GMLOS and soft-thresholding. (f) (d) processed with GMLOS and soft-thresholding. (g) The
de-blocked image, PSNR = 30.52 dB. (h) Zoomed version of (g). Figs. (c) and (d) were
enhanced for viewing purposes.
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Fig. 6.19. Average PSNRs for post-tempora filtering and de-blocking. H.261 encoded at 384
Kbps, and decoded at 15 frames per second. (a) De-blocked frame 50 of mobile-calendar (CIF:
2868x352). (b) Average PSNR performance for mobile-calendar with no post-temporal filtering,

bilinear interpolation, and bilinear interpolation with MS-GMLOS temporal filtering. (c) De-
blocked frame 50 of table-tennis sequences (CIF: 288x352). (d) Average PSNR performance for

table-tennis with no post-temporal filtering, bilinear interpolation, and bilinear interpolation
with MS-GML OS temporal filtering.




In this chapter anew class df robust nonlinear filters based on the theory o generalized
maximum likelihood estimation and order statistics were introduced. It was shown that
thisclass of filtersisnot only capable of attenuating noise and preserving details, but also
has the ability to sharpen edges. The simulation results on real images have confirmed
these claims. In general, when the image does not contain fine levels of detail and some
degree of edge enhancement isdesired, it is advantageousto use the single-stage GMLOS
filter. However, when the goal is to preserve the fine details, the unidirectional multi-stage
GMLOS is a better choice. Comparativeexperimental studies on real images showed that
the weighted single-stage GMLOS filter has better edge enhancement and noise
smoothing properties than other nonlinear edge sharpeners, and the weighted multi-stage
GMLOS filter is better than other single and multi-stage nonlinear filters in preserving
details. Moreover, while most of the other filters use heuristic algorithms to obtain their
outputs, the GMLOS filter uses a recursive and computationally efficient algorithm which
is [, norm optimal.

When prior knowledge about the degradation processis available, tunable nonlinear
filters such as CS and LUM filtersgive the designer some degree or degrees of freedom to
optimize the performance of the filter. However, the optimal value of the tunable
parameters may vary drastically for different types of degradations. Therefore in many
practical applications such as satellite or deep spaceimaging and image sequence filtering,
where complete knowledge of the degradation process is not available, or user interrupts
are not alowed, non-tunable filters such as GMLOS might be more desirable. A few
applications of the GMLOSfilter in the pre-processingand post-processing of images and
image sequences were also presented. It was shown that when used in asuitable algorithm,

this filter can greatly improvethe quality of the decoded images.
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7. ERROR CONCEALMENT OF IMAGE AND VIDEO STREAMS OVER
THE ATM NETWORKS

7.1 Introduction

In addition to the coding artifactsthat usually introduce visible distortionsin the forms
of blockiness, ringing, and motion jerkiness, encoded hit streams are vulnerable to
transmission or mediaimpairmentsthat may result in loss of block(s) of data or total loss
of synchronization in the modem packet-switched broadband communication networks or
wireless communication systems. The effect of cell losson picturequality mainly depends
on the image or video compression al gorithm and the packeti zati on technique used for the
transmission of visua information. Block-Based Discrete Cosine Transform (BB-DCT)
has been adopted by emerging image and video compression standards including JPEG,
H.261, MPEG, and the grand alliance HDTV broadcasting [1]. Asynchronous Transfer
Mode (ATM) has recently been accepted as the switching protocol standard for the
implementation of the Broadband Integrated Services Digital Networks (B-1SDN) [113]
and is provisioned to be the switching protocol standard of future broadband multimedia
cornmunication systems. Two major drawbacksof ATM networksare the jitter delay and
cell loss due to channel congestion or buffer overflow which are important issues of
concern in image and video communications. In the latter case, isolated or contiguous
blocks of spatial or temporal data may be lost, resulting in severe degradations in the
subjective quality of the decoded image or video streams.

In ATM networks, simple error recovery techniques such as automatic retransmission
request (ARQ) may not be effective. ARQ will further aggravate the channel congestion
and cause the system to drop more cells. During recent years, many error concealment and
correction techniques have been proposed to make the information loss of the decoded bit
streams subjectively imperceptible. These techniques include block interleaving and

forward error correction [114, 115], deinterleaving and scrambling [116], layered coding
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and prioritizing of cells [117, 118, 119], and spatial and temporal post-processing error
concealment [120, 121, 122, 123, 124, 125]. These algorithms use one or more of the
following classes of techniques:

» Error correction techniques: in this class of techniques, corrupted or missing
information is detected and replaced by its exact value using the redundant
information that has been inserted into the compressed data stream.

 Error reduction techniques: in this class of techniques, the data stream is either
interleaved, prioritized, or sent in layers to reduce the impact of cell loss on the
perceived quality of the decoded image.

* post-processing concealment techniques: in this class o techniques, corrupted or
missing information is estimated by using the uncorrupted information available in
the data stream.

Error correction techniques that require the insertion of extra information into the
cornpressed bit stream do not aways offer a feasible solution for the cell loss problem
because of the limited bandwidth available. For example, the optional double error
correction code of H.261 (BCH (511,493,2)) requires 18 parity bits for each 493 hits of
information. If we were to have a 10 error correction BCH code, the number of parity
bits should be increased to 90 bits, and the number of information bits decreased to 421.
Moreover, in packet based networks such as ATM, the amount of overhead is much
higher because of the demand for an FEC with high correction capability in the event of
cell loss due to channel congestion or buffer overflow.

Likewise, error reduction techniques that require layered transmisson or cell
prioritization do not offer afeasible solution for the cell loss problem. This is mainly due
to the fact that low error rate transport channelsfor high priority data are costly, and the
safe delivery of high priority information is not always guaranteed in these systems.

The post-processing techniques that use the available uncorrupted data to approximate
the value of missing information have gained popularity in recent years because of their
effectiveness, low overhead, and low computational complexity. While for still images
only spatial reconstructionis required, for video, both spatial and temporal reconstruction
should be performed at the decoder to approximate the missing information, asdepictedin




Fig. 7.1.
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Fig. 7.1. Block diagram of post-processing error concedment scheme.

It is important to note that in post-processing techniques the location of the lost
information must be known a priori to the decoder. Since most of the encoders, including
the existing image and video standards, only provide adifferential addressfor data blocks,
the location information must be provided to the decoder by the cell packing algorithm.
In thischapter, anovel post-processingtechniquefor error concealment in block-based
image and video coding systems over ATM networks is presented. The encoded bit
streams are packed into ATM cells using a simple error reduction technique such that in
the event of cell loss the location of the missing block is known to the decoder, and to
guarantee safe transmission of important synchronization and header information. The
post-processing in spatial domain is achieved by using the WSS-GMLOSfilter [12, 13] in
amulti-directional recursive nonlinear filtering scheme[11] with variable size kernels, and
the lost temporal informations are reconstructed with GMLOS filtering of the motion

vector (MV) components o the neighboring macroblocks.

7.2ATM and ATM Cdl Packing

ATM is alow-delay, high-bandwidth switching and multiplexing technology for both
public and private networks and is provisioned to become the preferred transport
technology for future broadband communication networks [113, 126]. This is mainly
because of its high flexibility in handling multimedia data under constant or variable bit
rate channel requirements. An ATM network can support a variety of applications, ranging
from video on demand to videoconferencing, that may have different requirements in
tenns of bit rate, end-to-end delay, jitter delay, and quality of service. Although most
aspects of ATM are well defined to form a standard for this new technology, the




methodol ogy for image and video transmission is still an open issuefor further research.

An ATM network organizesdata into fixed-size packets called cells. An ATM cell has
afixed length of 53 byteswhich consistsof 5 bytes of header and 48 bytes of payload. The
header contains the necessary informationfor routing, payload type, cell loss priority, and
cyclic redundancy check for error correction. The payload consistsof an adaptation layer
and the encoded hit stream, which may contain voice, image, video, or data. The
adaptation layer specifies how the datais packed into the payload and can be designed to
meet the desired requirementsaof different applications.

Besides jitter delay which is an important issue of concern in video transmission, an
ATM based network may encounter threetypes of errors; Type I: bit errorsin the payload,
which may corrupt the data, Type1t bit errorsin the header information: which may cause
cell loss, and Type 11t cell loss due to channel congestion or buffer overflow. These errors
may result in severe visual distortionsin the decoded images and video framesin theform
of missing block(s) of data. The effects of cell defect on picture quality in conjunction
with current image and video compression techniques have been studied in [127], and in
[114, 115, 116, 117, 118, 119] a variety of prioritizing/interleaving techniques have been
preposed to reduce the effect of ATM cell loss. Unfortunately, none of these techniques
address the question of how thelocation of the missing datacan be detected at the decoder.
The information regarding the location of lost information is crucial to the effective
coricealmentof errors by post-processing techniques.

In block-based compression techniques, the image is first partitioned into blocks of
fixed or variablesizes. In variable block size algorithmssuch as the one introduced in this
thesis, the image is segmented into blocks of NxN for N = 4, 8, 16, and 32. In the fixed
block-based algorithms such as JPEG, H.261, and MPEG [1] the image is segmented into
square blocks of 8x8 or 16x16. These blocks are then separately coded and grouped into
Macroblocks (MBs), Group of Blocks (GOBs), and dlices dong with the proper
synchronization and header information to form the encoded hit stream prior to
transmission. As an example, the Common I ntermediate Format (CIF) frame structure and

the bit stream hierarchy for the H.261 video compression standard isillustratedin Fig. 7.2.




GOB 1 GOB 2

GOB 3 J. GOB 4
= = !
= "_ =
GOB11 0 GOB 12 I\
4
A\
B Lk .
Y |¥ = i \
- P v
g - ¥ \
sl
(@)
[Picture Header] GOB dta [ e @ o | GoB data | oy
T T T e e
GOB Header MBdata eee | MBawa | gioek Layer
e
MB Header | Block data | @ @ @ [ Block data | Blodk Layer
[Fic ] e
[vic ] TCOEFF |e e TCOEFF | EOB | P
(b)
GOB: Group of blocks FLC: Fixed Length Code
MB: Macroblocks VLC: VariableLength Code
Y: L uminance blockg 8x8) TCOEFF: Transform Coefficients
C, and C,: Chrominance blockg 4x4) EOB:  End Of Block:

Fig. 7.2. (a) H.261 CIF frame structure (luminance 288x352). (b) H.261 encoded video multiplex
bit stream hierarchy.




An empirical study of differentimage and video compression techniques revealsthat it
is possible to pack more than one block of image or video data into an ATM cell. For
example the JPEG baseline algorithm allocates an average of 4 bytes to each sgquare block
of 8x8in a512x512 gray scale image that has been encoded at 0.5 bits per pixel (bpp), and
the H.261 algorithm allocates an average of 3.5 bytes to each MB for a CIF video clip
encoded at a bit rate of 320 Kilo bits per second (Kbps).

In this approach to ATM cell packing, it is proposed to insert the important
synchronization and header information into high priority cells and then pack an integral
number of blocks or MBs into normal cells by a proper interleaving mechanism[116, 127,
128, 129, 10]. A simple interleaving technique is to insert every n' encoded MB of
alternate odd/even rowsinto acell until it isfilled. Moreover, we can encode and transmit
the even and odd fields of aframe independently. If an integral number of MBs do not fit
into anorma ATM cell, fill bits can be used after the cell end marker to pack that cell, as
shown in Fig. 7.3. The interleaving step size n is also packed into high priority cells along
with header information for guaranteed safe delivery to the decoder.

ool faal mB#i MB#i+n coe

AA: Absolute Address ME: Macroblock End
MB: Macroblocks CE: Cdl End

Fig. 7.3. Packing of norma ATM cells with interleaved MBs.

Although this ATM cell packing technique may require extra overhead and buffer size and
result in extradelay, it offersthe following major advantages: h

* It guarantees the safe arrival of the synchronization and header information.

« It localizes the loss of MBs within aframe.

« It forces the lost MBs to be isolated within aframe.
The first advantage preventsthe loss of entire frame(s) during transmission while the last
two are essential for the effective reconstruction of missing information via post-
processing techniques. A detailed study of theinterleaving mechanism, buffer constraints,
and delay analysis is the subject of our future research. Error concealment with post-

processing techniquesis presented in following sections.




7.3 Spatial Error Concealment with Post-Processing Techniques

Once the location of alost block is known to the decoder, post-processing techniques
can.be used in the transform or pixel domain to conceal the errors. Let M denote a missing
block of size NxN, %; ; the estimated value of the missing pixelsin M, and x; ; the value
of uncorrupted pixels in the neighboring blocks. The missing block M can have up to eight
NxN neighbors BX, k={n, s, e, w, ne, nw, se, sw) , where the values of k correspond to the
blocks at the north, south, east, west, north-east, north-west, south-east, and south-west of
M, respectively. A variety of post-processing techniques could be used to approximate the
missing information by using the available uncorrupted data in the neighboring blocks as

explained in the following subsections.
7.3.1Error Concealment with Replacement Techniques

In this class of techniques the missing block M in the decoded image or intracoded
video frame is replaced by one of its available neighboring blocks in the same frame
[130]. For video frames the missing block can also be replaced with the block of the
previous frame which has the same physical location. This technique works reasonably
well if the two adjacent blocks are highly correlated. But if M belongs to aregion in the
image across the edges or close to the boundary of different objects, the performance of
this method is severely degraded and it produces visible distortion in that region.
Moreover, when alost block is replaced by an uncorrelated block from the previous video
frame that has a relatively high contrast with the surrounding area, visually distracting
flashes can appear in the decoded image sequence.

7.3.2Error Concealment with Least Squar e Techniques

In this class of techniques the single-pixel wide boundary pixels of the four nearest
neighbors adjacent to M are used to impose smoothing constraints on the reconstructed
values inside the missing block [120, 122, 123, 11, 128]. A number of different cost
functions can be used to impose smoothness constraints, but an appropriate cost function for
smoothness measure in image processing applications is the sum of the weighted square

differences between each lost pixel and itsfour nearest neighbors, as shown in Fig. 7.4.




Fig. 7.4. An 8x8 missing block and the single-pixel wide boundaries of its 4.-nearestneighbors
(shaded area) used to compute weights in the least squares techniques.

Let x be a vector of length N2 composed of the samples in M arranged in a

lexicographic order, and ; ;, ®; ;, ®;;, and ; , the weighting coefficients, then the cost
function J(x) is given by
- 1 nooa A 2 S a A 2
J(x) = > Z [ ; (X =%, )"+ ; (X ;%) (7.1)
(,jeM
w A ~ 2 e N A 2
+ @ (X =% ) o (X =X, ,)"]

where Xis s = Xiigj-w $ = {-1,1}, for pixels at boundaries of M adjacent to its
neighbors. This cost function must be minimized recursively for the pixels at the
boundaries of M toward its center such that the boundary information from adjacent
blocks can be propagated into the interior of the missing block.

The above cost function is the well known least squares cost function and can be

written in matrix form as
J(x) = %x'Qx —x'b+c *(12)
where

4
Q=Y 10n0n+Sn—0n—0n] (7.3)

m=1

4
b = m; [S,—QnS,1b, (7.4)




and

4
c = m;bi,, Subon (1.5)

The matrices Q, are lower and upper diagonal matrices with zero entries along the main
diagonal such that Q, = ta and Q, = Q. Thematrices S,, are diagonal matrices with
entries o)," ; for the north, south, west, and east directions along the main diagonal. The
vectors b, contain the vaues from the adjacent border pixels of M and zeros
corresponding to the lost pixels. The proper choice of weighting coefficients guarantees

the positive definiteness of Q [120] and the optimal least square solution is given by
X, = Q7'b (7.6)

Alternatively, instead of the above matrix inversion approach, we can use an iterative
gradient descent algorithm to find the optimal solution. If we let g, = Q%,-b be the I*

iteration of the gradient vector of J(x), then an iterative solution for %, . can be obtained

opt

via the steepest descent algorithm [49] by

Xiv1 = X —— & (7.7

It is important to note that in this method in order to guarantee that the estimated pixe
valuesfall within the dynamic range of the original image, they should be truncated to the
allowed minimum and maximum values after each iteration.

It is possible to reduce the computational complexity of the least squares concealment
of the lost pixels by computing asingle weighting coefficientin the north, south, west, and
east directions [123]. In this technique the four weighting coefficients are obtained by
minimizing the squared errors between the single-pixel wide boundaries of the missing

block and itsfour nearest neighbors, and the reconstructed block is given by
M =&B"+0B’+0"'B"+0 B (7.8)

where ®”, ®°, ®*, and ®° are the weighting coefficients corresporiding to the four

neighboring blocks. If al the weighting coefficients are set to 0.25, the reconstructed
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block is simply the average of itsfour nearest neighbors.

Least sguare concealment techniques are computationally efficient and perform well
when the neighboring blocks of the lost cells are strongly correlatecl. However, their
performance is degraded when the missing block falls across the boundaries of objects or

where multiple edges or details are present in the region.
7.3.3 Error Concealment with Bayesian Techniques

In this class of techniques, the decompressed image is modeled as a Markov Random
Field (MRF) or Gauss Markov Random Field (GMRF) [131] stochastic process, and
concealment is achieved by using aMaximum A-Posteriori (MAP) estimator [132]. Let X
and Z be discrete parameter MRFs representing the decoded N, X N, image and the
decoded image with missing blocks of data, respectively. Let x; and z; be the
lexicographic ordering of the i" block in X and Z. If thereare m blocksof N x Nin X and Z
then each image can be represented by vectorsx and z as x = [x] x5 ... x ], and

2=1[2 2. zx].Tandzarerelated by
z=Tx (7.9)

where T is a transformation matrix of size (N,N, - nN ?) X N,N, that is constructed by
removing N? consecutive rows of an identity matrix, and » is the total number of missing
blocks. Letf (x|z) denote the conditional probability density function of x given z, then
the MAP estimate of x can be computed as

X, = arg max=L(x|z) (7.10)
where L(x|z) = Inf (x|z) isthelog-likelihoodfunction given by Baye's rule as
L(x|2) = Inf(x)+ InP(z = Tx|x) - Inf(z) (7.11)

the third term in the above equation is independent of x, and the probability of Z = Tx
given x isequal to one when z = Tx and zero otherwise, thusthe MAP estimate of x can be
obtained by

Xpap = arg x|rpi=nn[—lnf(x)] (7.12)




- 129 -

Since the original image X is modeled as an MREF, the probability density function of x can
be defined as[131]

7 = pexp( 3 Vo)) (7.13)

ceC

where P is a normalizing constant known as the partition function, V.(x) is a potential
function defined over a collection of connected points c called cliques, and C is the set of
al cliques over which the potential function is defined. Using the probability density
function in (7.13) the MAP estimate of x can be computed by
= arg min, L;CVC(x)] (7.14)
The above optimization problem can be solved by means of iterative algorithms such
as :simulated annealing [131], conjugate gradient [133], or iterative conditional modes
[134]. Although Bayesian techniques have been successfully used for image segmentation
and restoration {131], their utilization for error conceament does not offer a clear
advantage. Their performance is highly correlated to the choice of potential function and
they are computationally expensive. Moreover, on average they do not yield better results
than the least square or polynomial interpolation techniques in terms of subjective quality

of the concealed images.
7.3.4 Error Concealment with Polynomial I nterpolation

In this class of techniques polynomial interpolation agorithms such as spline based
interpolation [135] or wavelet based interpolation [136] can be used to approximate the
values of the pixelsin M. Interpolation with higher order polynomials is computationally
expensive and on average does not show a significant improvement over the binomial
interpolation. In bilinear interpolation every pixel in M is reconstructed by using the
values in the single-pixel wide boundary pixels of the four nearest neighbors adjacent to

M. The bilinear interpolation can be written as
%= M =ppx; oy +1yx; y]+(1 - M- Ma)x_; j+ Moxy |l (7.15)

where u, = d, / N, W, = d, / N, and A is a weighting factor which determines the
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contributions of the neighboring blockson either side of M as shown in Fig. 7.5.

kel
S

4,

Fig. 7.5. Thefour closest pixds used in Bilinear interpolation.

In general, this method is computationally ssmple and resultsin good reconstruction when
the missing block belongs to a relatively homogenous surface or smoothly varying
regions. However, its performanceis not as good around comer edges or for regions with

multiple objects.
7.3.5 Error Concealment with Edge-Based Techniques

In this class of techniques the gradient information [124, 137] or the binary pattern
[32] in the neighboring blocks is used to exploit the local geometrical structure of the
image by hypothesizing single or multiple edges passing through the missing block.
Finally, the reconstruction is achieved by interpolation along the edges. In [137] the
magnitude and angular direction of the gradient for each pixel in the surrounding
neighbors of a missing block is computed with a Sobel operator. Then each pixd is
classified into one of eight quantized edge directions22.5%,i=0, 1, ..., 7. Then by using a
threshold value, a voting mechanism is employed to determine the direction of possible
edges that might pass through the missing block. If the algorithm detects an edge through
the missing block, it tries to align the interpolation in the direction of the edge using the
linear weighted sum of pixels or Projection Onto Convex Sets (POCS). If multiple edges
are detected, the algorithm interpolatesthe missing block along each direction separately.
These multiple images are then mixed together according to some heuristic rule. This
method performs well when the missing block can be characterized by a single dominant

edge direction or when the surrounding pixels of the missing block contain highly




correlated edge information. However, its performanceis not as good in regions that are
textured or have multiple edges. In addition, the gradient edge operatorsare very sensitive
to noise and may produce false edges, thus causing classification errors. Moreover, this
algorithm is computationally expensive, especialy when the POCS agorithm is used for
spatial interpolation.

In [138] a two-pixel wide binary pattern around the missing block is converted to a
binary pattern viathresholding. This binary pattern is then used along with some heuristic
rules to hypothesize straight edges through the missing block. This method works better
than the former technique when corner or multiple edges are present and is
cornputationally simpler. However, its performancedegrades when the size of the missing
block is greater than 8x8, because some of the heuristic rules used for hypothesizing

straight edgesfail to hold for larger blocks of missing data.
7.3.6 Error Concealment with Multi-Directional Recursive Nonlinear Filtering

The magjority of post-processing error concealment techniques are based on the
assumption of statistical correlation of neighboring MBs, but most of them fail to
explicitly exploit the spatial structure of the missing information. Therefore, if the missing
block and its neighbors belong to a homogeneousregion, then any of the above methods
will produce a good approximationfor the lost information. However, if the missing block
lies on the border of different objects or multiple edges, most of these methods produce
faulty estimates. Only in the edge based techniques, structural properties of the
neighboring blocksare used to interpolate a ong hypothetical edges that may pass through
the missing block, thus reconstructing the missing information. However, these techniques
are either computationally expensive or fail to produce reliable estimates in textured
regions or when multiple edges are present, as was explained in the previous subsection.
In general, agood interpolation scheme must have the following properties:

» The interpolation should exploit the correlation structureof neighboring blocks.

* Theinterpolation should be multi-directional.

* The interpolation scheme should be robust.

» Theinterpolation scheme should be computationally efficient.
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In this novel approach, a multi-directional recursive nonlinear filtering (MRNF)
scheme with variable filter kernelsis used to achieve the above requirements[11, 15]. The
reconstruction is started from all directions at the boundaries of the missing block M, and
the values of the missing pixels are recursively estimated toward the center of the block.
Tht: multi-directional filter kernels or processing windows are chosen to exploit the
structural correlation of the missing block with its neighbors while the robust nonlinear
WSS-GMLOSfilter [12, 13] exploits the statistical correlation of the neighboring MBs.

The support of the processing windowsis chosen accordingto the local statistics of the
neighboring pixels within a 3x3 sguare window based on a bimodal distribution
assumption similar to [139]. Two possible filter kernels for multi-directional filtering of
the neighboring blocks are shown in Fig. 7.6. The darker squares correspond to the
available pixel(s) at the oppositeside of the missing MBs and are used to exploit the cross

correlation of the interpolatingMBs on opposite sides of M.

W §

+ B %

Fig. 7.6. Examples of processing windows or filter kernels for multi-directional recursive
nonlinear filtering of the missing blocks. The darker shades correspond to pixelson the opposite
sides of the missing block.

Once the processing window W for amissing pixel at the boundary of M is selected,
the WSS-GML OSfilter can be used to estimate the value of the missing pixel. Let x be a
vector of length n composed of the samples in W arranged in lexicographic order, and
xp = {x:1 = I,...,n) be the rank ordered vector of samples in x arranged in an

ascending order, then the missing pixel can be estimated as




e
F=o ) 0 (7.16)
iew
where W'is the inlier set for W, m, is the weight associated with the i* sample of W’ and
§ = Z(’)i' We assume that the members of the inlier set are degraded with a zero mean

and uncorrelated additive noise process with variance &7 , such that
W, = — (7.17)

After reconstruction of the boundary pixels in M with multi-directional WSS-GMLOS
filters, the estimation process is continued recursively toward the center of the missing

block until all the samplesin M are reconstructed. The flowchart of our MRNF algorithm

set the filtering direction, to
al directions at boundaries

isshown in Fig. 7.7.

disable filtering from
direction corresponding to
missing aeighbors

select aprocessing window
based on local statistics

v

reconstruct the boundary
pixels with WGMLOS

v

move toward center of the
missing block by 1 pixel

Fig.7.7. Theflowchart of MRNF error concealment algorithm.

The MRNF technique is a computationaly efficient algorithm that is capable of




exploiting both geometrical and statistical structure of the missing pixels with their
immediate neighborsin each direction for effective concealment of errors due to cell 1oss.
Moreover, the robustness of the WSS-GMLOS filter could eliminate the effect of false

edge pixelsin the processof interpolation.

7.4 Concealment of Temporal I nformation

In block-based motion compensated video compression techniques a hybrid approach
based on the concept of intraframe and interframe coding is being used. In the intraframe
mode of operation, spatial redundancy is exploited by segmenting a single frame into
many small blocks that are then transformed, quantized, and encoded similar to a ill
image. In the interframe mode of operation, tempora redundancy is exploited by using
motion compensation to generate a prediction of the current video frame from previous
and possibly from future frames. The difference between this prediction and the actua
frame is then transformed, quantized, and coded along with motion vector information.
Finaly, theintraframe and interframeinformation as well as the synchronization and other
sideinformation is structuredinto a sequencedf bit streamsfor storage or transmission.In
this class of video compression techniques a single lost block may affect the subjective
quality of more than one block in the future frames, even if no temporal information is
lost, as illustrated by an error propagation tree in Fig. 7.8. clearly, the loss of temporal
information will further degrade the quality of the decoded bit stream. Therefore, both

spatial and temporal reconstruction algorithms are needed in video error conceal ment.

Frame number: i i+1 i+2 +3

Fig. 7.8. An example of block error propagation into the future frames in motion compensated
video compression.

The errorsin the intraframe coded frames can be concealed by using the spatial error
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concealment techniques of the previous subsection. In the interframe mode of operation,
the encoded bit stream normally contains predicted and bi-directionaly interpolated
frames. When temporal informationis lost, the decoder has to generate an estimate for the
prediction direction (forward, backward, or interpolative) and the missing motion vectors.
The experimental results on different test sequences demonstrated that the components of
the adjacent motion vectors have intraframe correlations that range between 0.1 to 0.45.
Moreover, the interframe correlation between the neighboring motion vectors in temporal
direction was much higher in scenes with little motion but considerably smaller in scenes
with rapid motion. These correlations suggest that both intraframe and interframe motion
vectors could be used to estimate the lost motion vector components.

The simplest temporal reconstructionalgorithmis the temporal replacement technique
[118, 125]. In this method temporal information from the previousframeis used to replace
the lost temporal information. This techniqueworkswell in areas with no motion or small
motion but fails when moving objects with moderate or high motion are present at the
scene. It is possibleto achieve a better temporal concealment by using a least squares cost
function based on a smooth movement assumption across the successiveframes [118, 120,
123, 129, 140]. In this class of techniques, the average or weighted average of motion
vectorsin the surrounding or possibly previousframe MBs are used to reconstruct the lost
temporal information. These techniqueswork well in areas with no motion, small motion,
or moderate motion but fail when multiple moving objectsor high motion is present at the
scene. In [141] the median filter is used to reconstruct the lost motion vector information.
This agorithm performs better than the least squares techniques a the boundaries of
moving objects where motion vectors may point in different directions, however its
performance is inferior to that of the least squares techniques in regions with small and
moderate motion components. A few tempora concealment techniques based on motion
cornpensation a the encoder or recelver are also investigated in [125], but these method
are either computationally expensive or the overhead information associated with them
may not fit into the availablechannel bandwidth. A Bayesian approach to the recovery of
the motion vector isalso proposedin [132]. This method iscomputationally expensiveand
its performance is highly sensitive to the potential function used for the Bayesian




estimation.

Our experimental results showed that the replacement of lost motion vectors with the
output of the GMLOS filter operating on the motion vectors in the neighboring MBs
within the current frame yield better subjective image quality than the averaging or
Bayesian techniques. This is partly due to the fact that near the boundaries between two
objects the corresponding motion vectors may point in different directions, in which case
averaging or Bayesian techniques may produce an unreliable estimate for the missing
motion vector components. In addition, our algorithm performs better than median based
techniques in areas with small or moderate motion vector components. The use of the
motion vector components of the previous frame along with the GMLOS filter for
reconstructing the missing temporal information of the current frame was also studied.
However, this technique produces unreliableestimates for motion vector components near
the boundaries of multiple objects and results in visua distortions in the form of high
corntrast discontinuities along the edges across different objects. The experimental results

of using this method on real images and video clips are provided in thefollowing section.

7.5 Experimental Resultsand Conclusions

The simulations were carried out on various test images and video sequences. The il
images were grayscale 512x512, and 8 bits per pixel (bpp). The video sequences were in
CIF (luminance 288x352) format [1], with luminance frame size of 288x352, and 100
frames long. Some of the test imagesare shown in Fig. 7.9. JPEG and QTMP compression
algorithms were used for still images. For the video sequences H.261 at a bit rate of 320
Kbps, and MPEG at 1.5 Mbps with an interframeinterval of 1 to 10 franneswere used [1].
The ATM cdll loss was simulated with an even/odd interleaving scheme and arandom loss
pattern. The performance of the algorithm was only studied for the luminance component
of the test video sequences because the human visual system is less sensitive to errors in
the chrominance components. The experimental results confirmed that when a
reconstructed video clip is viewed at a full frame rate (30 frames per second), the
lurninance errors are clearly visible, while the chrominance errors are virtualy

imperceptible.
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L : - S— . . .
(a) still image: peppers (512x512x8) (b) still image: Einstein (512x512x8)

(d) video frame: mobile calendar(288x

Fig. 7.9. Test images. some of the still images and video sequences used in our simulations. The
still images are 512x512x8 and the video sequences are CIF with luminance:; of size 288x352.
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The peak signal-to-noise ratio (PSNR) is not always a reliable measure of perceived
quality, thus the performance of the algorithm was measured with both PSNR and
subjectiveimage quality.

The test image Peppersof Fig. 7.9(a) wasencoded at 0.5 bpp (PSNR = 36.15 dB) with
the QTMP compression algorithm and packed into ATM cells. The reconstructed image
with 10% block loss and no error concealment is shown in Fig. 7.10(a). The test image
Einstein of Fig. 7.9 (b) was encoded at 0.5 bpp (PSNR = 29.84 dB) with the JPEG
algorithm and packed into ATM cells. The reconstructed images with 5% block loss and
25% block loss and no error concealment are shown in Fig. 7.10(b) and Fig. 7.10(c),
respectively. In addition to annoying visua artifacts in the form of missing blocks, the
PSNR of the reconstructed images dropped by as much as 15 dB. MNIRF-GMLOS error
cornicealment was used to conceal the errorsin these test images, and the results are shown
in Figs. 7.10(b), (d), and (f). The PSNR values for bilinear interpolation (BLI),
constrained least squares (CLS), Bayesian interpolation (Bl), and MNRF-GMLOS
concealment algorithm for the test images are listed in Table 7.1.

PSNR (in dB) for differethago;?éll concedl ment techniques.
Image Corrupted Spatial Error Concealment Techniques
(% block loss) Image BLI CLS BI MRNF
peppers (10%) 20.17 34.83 34.85 34.68 34.94
Einstein (5%) 22.37 29.25 29.12 29.15 29.78
Einstein (25%) 13.75 27.69 27.25 27.02 28.65

The proposed algorithm was also tested on the salesman, mobile calendar, flower
gal-den, and table tennis image sequences. One hundred frames of each image sequence
wereencoded by using aH.261 encoder at 320 Kbps and an MPEG encoder at a bit rate of
1.5 Mbps. The encoded bit streams were then packed into ATM cells. The H.261
intracoded frame 128 of the sdlesman sequence (PSNR = 38.83dB) is shown in Fig. 7.11(a),
and the same frame with 5% MB lossand PSNR of 16.20 dB isshown in Fig 7.11(b).
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£

(a) QTNMP@0.5 bpp, block loss: 10% (b) MRNF-GMLOS, PSNR=34.94dB

(d) MRNF-GMILOS, PSNR=29.78dB

NEERE
Ly

P (f)y MRNF-GMLOS, PSNR=28.65dB

Fig. 7.10. Concealment of still images: (a) Peppers encoded with QTMP, and 10% block loss,
PSNR = 20.17 dB. (b) Concealed peppers with MRNF-GMLOS, PSNR = 34,94 dB. (c) Einstein
encoded with JPEG and 5% block loss, PSNR = 22.37 dB. (d) Concealed Einstein with MRNF-
GIMLOS, PSNR = 29.78 dB. (c) Einstein encoded with JPEG and 5% block loss, PSNR = 13.75

dB. (d) Concealed Einstein with MRNF-GMLOS, PSNR = 28.65 dB.
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(a) frame 128: CIF, H.261@320 Khps (b) MB loss: 5%, PSNR=16.20 dB

(¢) CLS concealment, PSNR=34.75 dB (d) CLS concealment, zoomed

(¢) BLI conccalment, PSNR=36.49 d§ (f) BLI concealment, zoomed

(g) MRNF concealment, PSNR=37.21 thy MIRNF concealment. zoomed

Fig. 7.11. Spatial concealment of video frames: salesman frame 128, H.261 at 320 Kbps, (a)
Intracoded, PSNR = 38.83 dB, (b) 5% of the MBs are lost, PSNR = 16.20 dB. (c) Concealed with
constrained least squares (CLI), PSNR =34.75dB. (d) Zoomed version of (c). () Concealed with

bilinear interpolation (BLI), PSNR = 36.49 dB. (f) Zoomed version of (€). (g) Concealed with
MRNF-GMLOS, PSNR = 37.21 dB. (h) Zoomed version o (g).




The reconstructed versions of corrupted frame 128 when concealed with the CLS,
BLI, and MRNF-GMLOS techniques are shown in Figs. 7.11(c), (€), and (g), respectively.
In order to evaluate the subjective quality of the concealed frames, their zoomed versions
are dsoincluded in Fig. 7.11. The PSNRs of the concealed salesman frame 128 for these
techniques and the Bl concealment technique arelisted in Table7.2. The H.261 intercoded
frame 130 of the same sequence (PSNR = 36.95 dB) that was predicted from frame 128
with no errorsis shown in Fig. 7.12(a). The reconstructed frame 130 with no concealment
and 5% loss of spatial and MV information is shown in Fig. 7.12(b). The concealed
motion vectors with inter/intra frame GMLOS filtering of neighboring motion vectors and
the reconstructed frame 130 with the MNRF-GMLOS spatio-temporal conceal ment
algorithm is shown in Figs. 7.12(c) and (d), respectively. The difference or error image of
frame 130 when lost temporal information is concealed by averaging is shown in Fig.
7.12(e). Findly, the error image of frame 130 when GMLOS is used for tempora
concealment isshown in Fig. 7.12(f). The PSNRs of the concealed salesman frame 130for
various spatio-temporal concealment techniques are listed in Table 7.2. Except for the
proposed algorithm, the temporal information for frame 130 was concealed by simply

averaging (AVE) the available motion vectorsin the neighboring macroblocks.

Table7.2
PSNR (indB) for different concedment techniques acting on salesman test sequence.
FrameNo., Type | Corrupted Spatio-Temporal Error Concealment Techniques
(% MB loss) Frame |l g | AVE | CLSAVE | BI-AVE | MRNF-GMLOS
128, intracoded(5%) 16.20 36.49 34.75 35.36 37.21
130, intercoded 14.65 34.76 34.09 34.49 35.17

To evaluate the performance of the ATM cell packing and spatio-,temporal MRNF-
GMLOS agorithms for various cell loss rates, the average PSNR of 100 video frames of
the four test image sequences were computed at various cell loss rates. The video clips
were encoded with a MPEG software codec a a bit rate of 1.5 Mbps. The results for the
MRNF-GMLOS and CLS-AVE concealment algorithmsare shown in Fig. 7.13.




(b} reconstructed from 128, no concealment

(d) reconstructed with MNRF-GMLOS

¢) error: concealment of MVs by averagingf (f) error: concealinent of MVs by GMLOS

Fig. 7.12. Spatio-temporal concealment of video frames: salesman frame 130, H.261 at 320 Kbps,
(@) Intercoded using frame 128 with no errors, PSNR = 36.95 dB. (b) Reconstructed frame 130, no
concealment with lost spatial and MV information. (c) Concealed MVs with inter/intra frame
GMLOS filtering of neighboring MVs. (d) Reconstructed frame 130 with the MNRF-GMLOS
spatio-temporal concealment algorithm, PSNR = 35.17 dB. (€) Error image when motion vectors
are concealed by simple averaging. (f) Error image when the motion vectors are concealed by
GMLOSfiltering.
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Fig. 7.13. Spatio-temporal concealmentcoding gain vs. cell lossrate: MPEG ;a1.5 Mbps, PSNR
averaged over the 100 framesof the test image sequences, conceal ed with MRNF-GMLOS and
CLS-AVE dgorithms. (a) Salesman sequence. (b) Mobile calendar sequence. (c) Flower garden

sequence. (d) Table tennissequence.

The above graphs support the conclusion that even under extreme channel congestion
conditions, spatio-temporal post-processing concealment techniques can remarkably
improve the quality of the decoded video streams. These techniques are specifically
effective when the sequence does not contain large or complicated motion components.
For example, as the cell loss rate increases the improvement in the concealed salesman

sequence is greater than the other sequences that contain more complicated motion




cornponents.

The simulation results for still images, which are shown in Fig. 7.10 and Table 7.1,
reveal that for small and isolated block loss patterns, the subjective and quantitative
quality of the decoded images concealed with spatial error concealment is excellent.
Moreover, most of the post-processing techniques have comparable performances under
these conditions. The results of the spatio-temporal concealment of image sequences,
which are shown in Figs. 7.11, 7.12, 7.13, and Table 7.2, reved that these techniques can
greatly improve the quality of the decoded video streams in presence of cell loss. It is
noteworthy that the performance of intraframe spatial concealment is a function of the
sequence content, with errors being mostly noticeable across boundaries of the objects,
diagonal lines, comer edges, and highly detailed regions. The performance of interframe
temporal concealment is also a function of scene contents, and degrades considerably in
scenes with high and complicated motion components. The subjectiveeval uationsshowed
that in most cases, when both spatial and temporal information are lost, the quality of the
concealed sequences is good to acceptable, and as the cell loss rate increases only a few
blatantly errant blocks may appear in the reconstructed video streams.

In this chapter a novel approach for error concealment of ill images and image
sequences in multimediacommunication systemswas presented. The experimental results
dernonstrated that the MRNF algorithm with WSS-GMLOS filter for spatial
reconstruction, and the GMLOS filter for temporal reconstruction can effectively conceal
the missing spatial and temporal information. In addition, the concealment algorithm is
cornputationally efficient and can be implemented in real time with general purpose
processors. Our ATM cell packing algorithm is simple and guaranteesthe safe delivery of
important header, synchronization, and block loss location information. Moreover, the
incorporated interleaving algorithmfor cell packing mostly resultsin the loss of isolated
blocks of data. This isan important factor in the effective concealment of errors via post-

processing techniques.
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8. CONCLUSIONSAND FUTURE WORK

8.1 Conclusons

Signal expansion with adapted bases is a new field of interest in signal and image
processing. In this thesis it was shown that the greedy Segmented Orthogonal Matching
Pursuit (SOMP) is an adaptive signal expansion technique that can effectively exploit the
sparse structure of signals. It was shown that the SOMP algorithm performs better than the
original matching pursuit algorithm in terms of sparsity of representation and speed of
convergence.

It was shown that the SOMP algorithm can be used for lossy image compression at
low bit rates. Experimental results confirm that this technique is able to compress natural
images at low bit rates, and its performance is better than the wavelet based algorithm at
very low hit rates, and it is comparable to the best available compression techniques at
higher bit rates. It was argued that the computational complexity of the compression
algorithm can be justified due to the increasing computational power of digital computers
in recent years. It was aso shown that this projection based expansion technique can be
used to unify the processes of separate prediction and residua coding into a unified
framework for video compression applications. Moreover, it was shown that thisalgorithm
performs better than the traditional hybrid block-matching MEMC algorithms at lower bit
rates.

For the pre-processing and post-processing of visual information, a new robust
nonlinear filter (GMLOS) was introduced. It was shown that this new filter can effectively
improve the quality of degraded images and image sequences. It was also shown that this
filter isan 1,-optimal order statistic filter and some of its properties were proved. A novel
algorithm based on wavelet decomposition, variable size kernel GMLOS filters, and soft
thresholding for removing blocking effects in block-based transform coding techniques

was introduced. It was shown that this algorithmis easy to implement and can effectively




remove blocking effects.

A simple agorithm for the packing of visual information into ATM cells was
introduced. It was shown that this algorithm is well suited to effective error concealment
with post-processing techniques. Finally, a novel error concealment technique was
introduced based on the Multi-directional Recursive Nonlinear Filtering (MRNF) of lost
information with the GMLOS filter was introduced. Experimental results confirmed that

this new technique can effectively conceal errors at low to moderate cell |oss rates.

8.2 Future Work

The performance of the SOMP signal expansion algorithm can be improved in a
nurnber of ways. For example, it would be interesting to consider a more flexible
representation by alowing arbitrary segments, using dynamic programming techniques.
Flexible segmentation can be particularly attractive for speech compression applications.
The optimal quantization and coding of SOMP coefficients is also an interesting problem
for future research. In particular, study on the distribution of the coefficients in the TF-
plane can be used for the design of optimal quantizers. Another interesting problemis the
design of optimal dictionaries by utilizing techniques from vector quantization literature.
The design of adaptive orthogona matching pursuit filter banksis also another interesting
topic for future research. It is also possible to use the results of Chapters4 and 5 to design
a QSOMP video codec for low bit rate applications. Finally, theoretical study of the
SOMP algorithm and its relation to the KL transform can be an interesting research topic.

The GMLOS filter can be improved and extended in a number of ways. It would be
interesting to let the filter length vary according to local statistics of the processing
window. It isalso possibleto explore a Bayesian cost function to improve the performance
of thefilter. The algorithm can also be used for design of nonlinear filter banks.

The cell packing algorithm should be studied in more detail, and its delay
characteristics should be analyzed under different network interface scenarios. Finaly,
with the increasing demand for progressive video communication, it would be interesting

to extend the error concealment algorithm to a multiresolution framework.
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APPENDIX: PROOF OF THEOREM S

Proof of Theorem 3.3

Assuming the atom Oy is selected by the OMP agorithm &t iteration p < N, then there
exists two possihilities:

1. (r(p)x, (p,{,) = 0, forp<N.

2. {rPx, (pyp) #0,forp<N.
If statement 1 is true, then the algorithm has converged in less than N iteration. If
statement 2 is true, it has to be shown that the set of orthogonalized atoms {9, }, where
0 £k < N, form an orthogonal basisfor 3

Clearly, rPx is orthogonal to {¢,} for 0<p<k. Since (r'x, (pyp) #0, by
assumption the atoms in the set {¢, } should be linearly independent. In finite
dimensional spaces this implies that the set {9} for 0<k<N form a basis for #
Therefore, the orthogonalized set of atoms {9,} obtained from this set, form an
orthogonal basis for 3L This means that the OMP converges in less than or equal to N

iterations.

O

* Proof of Theorem 6.1

Let {z:i=l,...,n} betheset of input data pointswithin the processingwindow W and let
WVe = {zye: kK =1,...,L) be any non-contiguous subset of W with size L, L < n. Let the
members of WNC be ordered, such that

Ine() <ZTne3) <Anc@) < - <Iycw+1) (A.1)

Note the absence of zy,, in the above list. Since W is not contiguous (Definition 6.3),
there must exist a member, say Zycw, Such that zycay€ W, Znce) € WV, and

Ine(y < ZInce) < ZIncw+1y- It has been assumed, without loss of generaity, that




Zyey < Zncy < Incey- Two subsets W/ and Wi/, which are less contiguous than Wre,
can be constructed by adding the member z,q,, and deleting one of the two extreme
values, Zycq) OF Znce.ry- By 1€SS contiguous it is meant that if there exist m members in Wxe
that are not in W, but have values within the extremes 2, and zy¢q.1,, then Wt or We+! have
only (m-1) such numbers.

These sets can be described as Wii={zyy,:i=l,...,.L ), Wi={zy:i=2,....L+1}, and W2
={Zncp:i=1,3,4,...,.L+1) . The superscript i in the subset Wi means zy, is not present in that

subset. Now, the objective function in (6.6)can be written as

. L+1 1 (&t ?
J,' = Jl(W) = kZ[ Zch(k)—Zch(i) _Z kzl ZNCk) ~ 2l
Now, it will be proven that either J,,, <J,or J, < J,. Let
- L+1
Z = z ZNC(k)
k=1
then

1.,. _
I-Jpa = ZZNC(L+1)_Z2NC(2)+Z[(Z_ZNC(L+1))2_(Z_ZNC(z)]'Z]

1 _
2nc+ 1y~ Lince) t+ z[(ZNC(Z) = Zycw+ 122 = Zycy = Zncw+ 1))

1 27
(Zycw+1)— ZNC(Z))I:(ZNC(L+ nt ZNC(Z))(l + Zj - f}

(Znew + 1y + Incy) Z
J:=Jre1= 2(Znc+ 1y~ Enc)) - )2 - - (A.2)
1 ~
L( +L,)
there are only two possibilities

* Casel

(Zyean tovc@) z (A.3)

2 - 1 )
141
L( +L)

¢ Case 2:

(Zyeeny ¥ 2ve@) <_ 2 (A4)




If (A.3) istrue, then (J,-J, )20, since (Zyc +1) - Znceay) > 0- If (A4) is true, then

similar to (A.2), thefollowing expression can be derived

(Znca) + Zne) z
I == 2(zneqy = Iney) ( )2 - 1
Lil+-

b4 _ (ZNC(l) + ZNC(z)) S (ZNC(L+ 1) + ZNC(Z)) _ (zNC(l) + ZNC(z))

(1,1 2 2 2
(1)

By definition, (Zyce) - Zne(ry) 20, and by (A.4)

hernce, It can be concludethat (J,-J;) 20.
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