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AN EVALUATION OF THEMATIC MAPPER SIMULATOR 
DATA FOR MAPPING FOREST COVER 
M.E. DEAN. R.M. HOFFER 

Purdue University/Laboratory for 
Applications of Remote Sensing 
West Lafayette, Indiana 

ABSTRACT 

This study* evaluated computer-aided 
analysis techniques applied to Thematic 
Mapper Simulator (TMS) data for the pur­
pose of mapping forest cover types. Spe­
cifically, classification results obtained 
using a supervised set of training statis­
tics and various combinations of three and 
four channels subsets of the seven availa­
ble TMS channels are compared for three 
classification algorithms: L2, GML, and 
SECHO. In the analysis, the best three and 
four channel subsets were determined by 
mInImum transformed divergence criteria. 
A Karhunen-Loeve or Principal Component 
linear transformation was applied to the 
1979 TMS data set and supervised training 
statistics were generated for classifying 
the transformed data. 

Classification results from applying 
the same three classification algorithms 
on the transformed data are compared to 
results from the untransformed data sets. 
Results from the untransformed TMS data 
show a higher performance using the four 
simulated Landsat channels (CH2:0.52 
O.60fJm; CH3: 0.63 - 0.69fJm; CH4: 0.76-
0.90fJm; CHS: 1.00 -1 .30fJm) than from the 
best four channels selected by the minimum 
transformed divergence criteria. The con­
textual classifier known as SECHO (Super­
vised Extraction and Classification of 
Homogeneous Objects) performed signifi­
cantly better than either of the two per­
point classifiers for the untransformed 
data. Overall classification results of 
the K-L transformation increased for the 
L2 algorithm, but decreased for both the 
GML and SECHO algorithms. 

* This work was supported by NASA under 
Contract No. NAS9-lS889. 

I. INTRODUCTION 

Extensive research and experience in 
the processing of MSS data for purposes in 
accurately classifying forest cover has 
been obtained in a wide variety of geo­
graphical regions. The new Thematic Map­
per scanner system will have an increase 
in spectral and spatial resolution as well 
as an increase in the number of channels, 
which should theoretically allow better 
and more accurate classification of ground 
features, including forest cover types. 
Certain limitations may be encountered 
with this new system, however. Depending 
upon the particular scene characteristics, 
it is possible that higher interclass 
spectral variability may be introduced 
with the increase in spatial resolution, 
thus increasing the potential for spectral 
overlap and intraclass confusion. One 
problem with per-point classifiers, such 
as the GML (Gaussian Maximum Likelihood), 
commonly used in remote sensing applica­
tions, is that for spectral information 
alone, pixels within a particular cover 
class w. may deviate from the class condi­
tional ~df or probability density function 
P(X!wi)' enough that they will be misclas­
sified into another class. Preliminary 
work has shown that the increase in spa­
tial resolution of the TM scanner can 
cause a decrease in performance over the 
current Landsat MSS system(S). Results 
from the use of contextual classifiers, 
such as SECHO (Supervised Extraction and 
Classification of Homogeneous Objects) 
which utilize both spectral and spatial 
association characteristics of the scene 
in the classification procedure, have 
indicated a potential for increasing TM 
classification performance(S). 

In research dealing with computer 
classification of multispectral scanner 
data, consideration must be given to the 
trade-offs between classification accuracy 
and the cost of the analysis, such as with 
the computer time (CPU) required to ana-
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lyze the data. For instance, classifica­
tion time can be approximated by . N(N+l) 
where N equals the number of features used 
in the classification sequence(12). It 
has also been shown that the cost of com­
puter analysis (CPU time) increases dis­
proportionately in relation to increases 
in classification accuracy beyond a cer­
tain optimum number of channels involved 
in the classification sequence(l). In 
addition, other studies have shown that an 
increase in the dimensionality of the fea­
ture space used in classifying MSS data 
will eventually result in a decrease in 
classification performance for a finite 
set of training statistics, due to the 
Hughes phenomenon(7). 

It is obvious, therefore, that for 
scanner systems containing a large number 
of available wavebands (such as the The­
matic Mapper) , reduction of the feature 
space, while still retaining adequate 
classification performance, may be neces­
sary in order to provide the user with an 
economical and therefore applicable 
resource management tool. 

One such dimensionality reduction 
technique, the Karhunen-Loeve or Principal 
Component transformation, linearly trans­
forms the sometimes highly correlated MSS 
data into an uncorrelated N-dimensional 
feature space oriented in such a way that 
the maximum data variance or information 
content is accounted for in descending 
order on the new transformed axes(9). 
Classification of the transformed data 
using the first two or three components is 
often comparable to results obtained when 
using more channels of the untransformed 
data(8). 

II. OBJECTIVES 

As indicated by the above discussion, 
there exists a potential for reducing the 
dimensionality of TM data through techni­
ques such as the Principal Components 
Transformation or Feature Selection to 
define an appropriate subset of channels 
to use in the classification. However, it 
was not known how such reduction techni­
ques would impact the performance of 
different classification algorithms. 
Therefore, the objectives of this study 
were defined as follows: 

(1) To compare the effectiveness of 
two techniques (i.e., Feature Selection 
and Principal Components Transformation) 
that can be used to reduce the number of 
channels required for classifying Thematic 
Mapper Simulator data; and 

PINE 

HDWD 

TUPE 

CCUT 

PAST 

CROP 

SOIL 

WATER 

Table 1. Descriptions of the various cOller· 
classes in the Camden test site. 

.Q..E?scription 

Pine forest areas, primarily plantations of slash 
and loblolly of varying age. 

Bottomland hardi"o'Oods such as sweetgum. willow~ and 
bottomland oaks; mostly in dense old age stands. 

Water tupelo, primarily associated with narrow ox­
bow lakes and other areas of inundated seils. 

Areas subjected to ch'arcut forestry practices; 
clearcuts are in various stages of regrowth and may 
include windrowed slash. 

Pastures and old fields. 

Agricultural crops at various stages of development. 

Primarily areas of recently tilled agricultural 
fields, but nlay include some minespoil and recent 
clearcut areas. 

Water areas lnclude the Wateree River, small lakes and 
ponds, and turbid minespoil ponds. 

(2) To compare the effectiveness of 
different classification algorithms, i.e.: 

(i) L2 Minimum Euclidean Distance 

(ii) GML (Gaussian Maximum Likelihood) 

(iii) SECHO (Supervised Extraction and 
Classification of Homogeneous 
Objects 

on both types of data sets (i.e., an ori­
ginal untransformed data set classified 
using the best three and four channel sub­
sets determined by a common feature selec­
tion criterion and a data set transformed 
by a Principal Component Transformation 
using the first three and four components, 
respectively). 

III. MATERIALS AND METHODS 

A. DATA ACQUISITION 

Data for this study consisted of air­
craft multispectral scanner data obtained 
by NASA's NSOOl Thematic Mapper Simulator 
(TMS). The wavelength bands on this scan­
ner included three bands in the visible 
portion of the spectrum (CHl:0.45 
0.5211m; CH2:0.52 - 0.60\llll; CH3:0.63 
0.6911m), two bands in the near IR 
(CH4:0.76 - 0.9011m; CH5:l.00 - 1.3011m), 
one band in the middle IR (CH6:1.55 
1.751@) and one band in the thermal IR 
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region (CH7:10.40 - 12.50wm). The data 
were obtained on May 2, 1979 ove~ a study 
site in South Carolina near the city of 
Camden. The predominance of la~ge conti­
guous tracts of forest (primarily bottom­
land hardwoods), in addition to minimal 
topographic relief made this a good site 
for this study. This a~ea has also been 
designated by the U.S. Forest Service as 
one of two primary test sites for evaluat­
ing various remote sensing techniques for 
potential use in forest inventories. 
Table 1 provides a list of the designated 
cover classes in the Camden test site. 

B. TRAINING AND TEST FIELD SELECTION 

Training statistics were generated 
for the cover classes listed in Table 1 
using a supervised approach(l) . The 
"optimum" three and four channel subsets 
of the available seven channels were 
selected using a minimum transformed 
divergence c~iteria(12). Certain limita­
tions associated with using such featu~e 
selection c~ite~ia include the fact that 
in the calculation of the transfo~med 
divergence, often class ~ 2rio~i p~obabil­
ities a~e unknown and a~e the~efore 
assumed to be equal, even though this is 
seldom the case. Fu~the~, the~e is no 
di~ect relationship between t~ansfo~med 
dive~gence and the probability of e~ro~, 
although a lowe~ bound can be determined 
for the dive~gence between two classes of 
equal ~ p~io~i p~obability as follows: 

( 1) 

Thus, it is possible that those 
classes with highe~ a prio~i probabilities 
may be disc~iminated against in favor of 
those classes of lower a p~io~i p~obabili­
ties and hence ~esult In a lower overall 
classification performance. 

Test fields of known cover types were 
selected through the use of a test grid of 
dimensions 50 lines by 50 columns. Test 
blocks, 25 by 25 pixels, were located in 
the southwest quad~ant of each grid inter­
section and the largest possible field of 
every cover type p~esent within that test 
block was selected and included in the 
test data set. By selecting test fields 
using this method it was assumed that the 
reSUlting test data set would be ~ep~esen­
tative of the relative proportions of the 
various cove~ types present in the study 
area. 

C. PRINCIPAL COMPONENTS 

Due to the gene~ally high degree of 
interband cor~elation between spectral 
bands of MSS data, the intrinsic dimen­
sionality of the data, i.e., the dimen­
sionality requi~ed to adequately describe 
the data, is often leg's than the original 
number of channels(9). One method for 
reducing the dimensionality of a particu­
lar data set by eliminating this interband 
correlation is to apply a common linear 
transformation known as the Ka~hunen-Loeve 
o~ Principal Component transformation to 
the data(6). The Karhunen-Lo€ve transfor­
mation calculates the eigenvecto~s associ­
ated with a sample covariance matrix of 
the data and thereby incorporates actual 
spectral va~iability inherent in the data 
in the transformation process. In 
essence, it rotates the sometimes highly 
correlated features in N dimensions to a 
more favorable orientation in the feature 
space, ordered such that the maximum 
amount of variance is accounted for in 
descending magnitude along the o~dered 
components (6) . Thus, the redundancy of 
information caused by correlation between 
bands is eliminated and a maximum amount 
of information content is concentrated 
onto a fewer number of axes. Figure 1 
shows the information content associated 
with the various transformed components 
fo~ the 1979 K-L t~ansformed data set. 

g 
'" g 

.!!! 

~ 

51.5 85.3 978 99.3 99.7 999 100.0 Cumulative Total 
. Variance (%) 

Fig. 1. Information con­
tent or percent of total 
source variance accounted 
for by the ordered compo­
nents of the 1979 K-L 
transformed data. 

Ordered Components 

The loadings or coefficients of the 
eigenvectors have been used in the past to 
describe the relative contributions of 
each original channel to the transformed 
channels and thus be used as another fea­
ture selection criterion. Caution must be 
observed using this approach, however, 
since this is primarily a heuristic 
approach which can only give indications 
as to the original value or contribution 
of each channel for a specific component. 
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Further, a high degree of interband 
covariance, and corresponding high corre­
lation, may be reflected in the resulting 
coefficients of the two channels for a 
particular eigenvector; if both were to 
have relatively high coefficients, this 
may actually reflect their interband cor­
relation rather than a significant and 
unique contribution from both. 

Depending upon the eigenvalue associ­
ated with the ordered eigenvectors, i.e, 
the proportion of the total variance 
explained by a particular eigenvector and 
thus its overall importance, it may be 
possible to use two or three of the "sig­
nificant" eigenvectors in order to deter­
mine the best two original channels. For 
instance, if two relatively uncorrelated 
channels were to both have relatively high 
corresponding coefficients for one of the 
first eigenvectors, i.e., the eigenvectors 
containing a significant amount of the 
total data source variance, then one could 
assume that they are each contributing a 
relatively significant amount of unique 
information. However, since the eigenvec­
tors represent a linear combination of the 
original channel set, any uncoupling of 
these coefficients in order to determine 
their respective "contribution" to that 
eigenvector is heuristic and highly specu­
lative. 

D. FEATURE SELECTION 

As mentioned in the previous section, 
feature selection techniques are primarily 
concerned with finding the optimum feature 
set which will adequately describe the 
intrinsic dimensionality of the data. 
Feature selection is of particular inter­
est for purposes of minimizing computa­
tional time required to analyze data sets 
having significant dimensionality, i.e., 
large numbers of wavebands. Feature 
selection techniques for various pattern 
recognition applications have primarily 
been related to calculating bounds on the 
probability of error (and thus the proba­
bility of correct recognition = l-PF,(14).) 
Divergence as a measure of separaoility 
increases for decreasing PE and lower 
bounds can be determined, as stated previ­
ously, although the direct relationship 
between the divergence and P

E 
is not well 

understood(12,14). Transformed divergence 
(TD) as a measure of probability of cor­
rect recognition tends to be a more ambi­
guous measure than other feature selection 
criterion, thus allowing a wide range of 
overlap in P (probability of correct 
classificationr for a given TD value(14) . 
Other less ambiguous measures of P

E include the Chernoff and Bhattacharyya 
bounds(14), although the computational 

complexities of these measurements res­
tricts their practical use(3,13). 

A minimum Transformed Divergence mea­
sure, TD(min), used in this study selected 
bands I, 3, and 6 and bands 2, 4, 5, and 7 
as the optimum three'and four channel sub­
sets, respectively. 

E. CLASSIFICATION ALGORITHMS 

The first classifier used in this 
study was the L2 or Minimum Euclidean Dis­
tance classifier. This is a relatively 
fast and therefore economical classifier 
which calculates the Euclidean or 
"straight-line" distance from a pixel to 
be classified to each of the mean vectors 
associated with the various cover classes, 
and then assigns the pixel to the "near­
est" cover class: 

N 
1: (X. - M .. )2 

i=l 1 1J 

where: N 

M .. 
1J 

#channels 

data value 
in channel i 

mean for 
in channel i 

( '" <.) 

of pixel 

class j 

The L2 classifier does not take into 
account the spectral variation within each 
class and subsequently may not, depending 
upon the user's objectives, sufficiently 
minimize the probability of error. 

The GML or Gaussian Maximum Likeli­
hood algorithm is also a per-point classi­
fier commonly used in remote sensing 
applications which calculates discriminant 
functions for each class from the associ­
ated class mean vectors and variance-co­
variance matrices. The GML algorithm is 
based upon the Bayes optimal strategy 
which produces results having the minimum 
probability of error over the entire data 
set for the given spectral information 
(12) . 

Decide X [Wi if and only if 

g. (X) >g . (X) for all ilj 
1 - J 

where: gi (X) 

p(Xlw. ) 
1 

p(xlw.) p(w.) 
1 1 

probability density 
function of X 
given X belongs 
to class w. 

1 

~ priori probability 
of class w. 

1 

( 3) 
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Due to the spectral variability of 
each cover class, there may be significant 
spectral overlap between the classes which 
could subsequently result in a relative 
high probability of error and misclassifi­
cation. 

The third algorithm, SECHO, is a con­
textual or per-field algorithm which first 
divides the scene to be classified into 
homogeneous fields and then classifies 
these fields using an extension of the GML 
algorithm(4). SECHO incorporates the fact 
that since cover classes are more likely 
to Occur in homogeneous areas larger than 
one pixel in size (30m by 30m in this 
case), adjacent pixels are highly corre­
lated, with the degree of correlation 
diminishing with an increasing distance 
between the pixels(4). Thus SECHO assigns 
an analyst-specified threshold value, 
below which adjacent pixels will be 
grouped into a homogeneous field. Statis­
tics for these fields are calculated and 
compared to the original cover class sta­
tistics and a "homogeneous field" is clas­
sified as a unit into that class which it 
most closely-re5embles(4). 

L2 

GML 

SECHO 

fable 2. Comparison of the overall 
classification performances between the 
untransformed TMS and K-L transformed data 
sets for all three classifiers. 

Untransformed TMS' 
(Channels 1,3,6) 

K-L Transformed Data 

~'-llJ'<C"".n~,3L 

65.2a 

78.4 a 

86.8a 

79.4 b 

82.4b 

86.5a 

Data Subset: "Best 4" Channels or 1st 4 Compon~.nts 

Classifier 
Untransformed TMS 

( Chan.~.~~l 
K-L Transformed Data 
L~()ln2.0nen t s ....J.....2..,2,.41. 

1 

L2 

GI·IL 

SECHO 

81. 8a 

88.l b 

90.0 b 

84.8b 

85.2a 

87. Sa 

Significantly different overall classification performances between data 
sets for each classifier is indicated by a different s:lperscript (bas€d 
upon a Newman-Keuls comparison with a ::: 0.10). 

III. RESULTS AND DISCUSSION 

The K-L or Principal Components 
transformation was applied to the 1979 TMS 
data and then both the untransformed and 
transformed data sets were classified 
using both three and four channels (i.e., 
wavelength bands or transformed compo­
nents) of data. The data were classified 
with the L2, GML, and SECHO classifiers, 
and in each case the results were evalu­
ated using exactly the same test data set. 
The results are shown in Table 2. As this 
table shows, the results are mixed. The 
K-L transformed data using the first three 
components performed signficantly better 
overall than the untransformed TMS data 
set using the "best three" channels (1, 3, 
and 6), as selected by TD(min), for both 
the L2 and GML algorithms. With four com­
ponents versus the "best four" channels 
(2,4,5, and 7), however, onlytheL2 
performance increased significantly, while 
both the GML and SECHO algorithms 
decreased in performance with the trans­
formation. Although not shown here, other 
three and four channel subsets of the ori­
ginal TMS data provided even better 
results than either the subsets of chan­
nels selected by TD(min) or the K-L compo­
nents. In general, therefore, the K-L 
transformation provided a better three­
channel feature set than that selected by 
TD(min) , but not a better four-channel 
feature set in all cases. In addition, 
both the K-L transformation and TD(min) 
failed to provide the "optimum" three- and 
four-channel feature set for this particu­
lar data set. 

The limitations of the TD separabil­
ity as a feature selection criterion were 
previously discussed (i.e., the assump­
tions of equal class ~ E!iori probabili­
ties and the degree of ambiguity associ­
ated with these measurements). One 
possible explanation for the failure of 
the K-L transformation to provide a dis­
tinct improvement in classification per­
formance in all cases might be that some 
of the variance or information content of 
some of the less frequent cover classes, 
such as tupelo and crop, is being over­
whelmed by the spectral variance or infor­
mation content associated with the larger 
hardwood class. Since hardwood comprises 
the majority of the surface features in 
the test site, its input into the calcula­
tion of the transformation matrix was sig­
nificant -- enough, perhaps, so as to 
"direct" the transformation in its favor 
and cause the spectral variability associ­
ated with the less frequent cover types to 
become reduced with the transformation. 
Certain algorithms such as the GML and 
~ECHO may be more sensitive to this than 
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others. Therefore, in such cases, a K-L 
transformation may actually produce 
slightly worse results than with the ori­
ginal data. Other studies have shown the 
sensitivity of principal component analy­
sis (peA) for various cover features and 
how the more highly correlated the origi­
nal data (which vary for different cover 
types), the higher the percentage of vari­
ance or information content that will be 
explained by a fewer number of compo­
nents(2). Therefore, it might be better 
in certain cases for the analyst to define 
a supervised sample of data from which the 
transformation matrix can be calculated. 
This way, each of the features could be 
given the desired representation in the 
sample covariance matrix; the degree to 
which they would direct the transformation 
would then be related to their natural 
spectral variability. 

Table 2 also shows that for both the 
untransformed and the transformed data 
sets, four channels (either wavelength 
bands or components) enable better classi­
fication accuracies to be achieved than 
three channels in every instance, provided 
the classifier is the same (i.e., for the 
L2 classifier, four channels result in 
higher classification accuracy than three 
channels, etc.). However, Table 2 also 
indicates that distinct differences be-

tween the classifiers were found. There­
fore, a comparison was conducted to evalu­
ate the statistical significance of these 
differences between the three classifica­
tion algorithms, the results of which are 
show~ in Table 3. 

This table shows that in every case, 
except for four channels of transformed 
data, the GML performed significantly bet­
ter than the L2 algorithm. In addition, 
in every case, SECHO performed better than 
either the GML or L2 per-point classifi­
ers. However, detailed analysis of these 
results showed that these statements can­
not be applied to all individual cover 
class performances; e.g., certain cover 
classes such as clearcut, crop and water; 
all performed better with the L2 classi­
fier than for either the GML or SECHO 
algorithms. This may be due to relatively 
small variances in these three cover 
classes in comparison with the other cover 
types present; GML and SECHO would tend to 
classify pixels into those cover types 
with larger variances in order to reduce 
overall PE (probability of error) even 
though the linear distance to the class 
means may be closer to a class of smaller 
variance. Further, all of the cover 
classes performed as well using the GML 
algorithm as with SECHO except for the 
hardwood category. Since hardwood com-

Table 3. Comparison of the overall and average class 
performances for three algorithms (L2, GML and SECHO) based on 
four data sets. 

Classification Performance (%) by Cl ass ifier 
L2 GML SECHO 

Data Set Descri~tion Overa 111 Average Overa 11 Average Overall Average 

3 Channels (1,3,6) Untransformed 65.2a 56.4 78.4b 70.4 86.8c 73.3 

1st 3 Components, K-L Transformed 79.4a 74.4 82.4b 72.9 86.5c 75.1 

4 Channels (2,4,5,7) Untransformed 81. 8a 76.2 88.1b 78.5 90.0c 78.6 

1st 4 Components, K-L Transformed 84.8a 71.6 85.2a 74.5 87.8b 73.4 

1 

Different superscripts indicate significantly different overall classification performances between classi­
fiers (based upon a Newman-Keuls comparison with a = 0.10). 
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prises the greatest proportion of the test 
data, this was the primary reason for the 
greater overall performance of SECHO over 
GML. However, as the generally similar 
average class performances indicate, GML 
usually performed as well as SECHO, (the 
the major exception to this being the 
three-channel untransformed data). One 
distinct advantage of the SECHO classifier 
over the GML is the smaller amount of CPU 
time required to classify the data (as is 
shown in Table 4) and in the more 
interpretable classification maps obtained 
from SECHO: i.e., more uniform (homogene­
ous) fields of the various cover types are 
obtained than with the GML per-point 
algorithm. 

Table 4. Classification time required for the L2, 
GML and SECHO algorithms to classify 10,000 pixels using 
four channels and 27 spectral classes. 

Classifier 
L2 GML SECHO 

CPU (seconds) 28.9 82.6 51.6 

Thus, from a practical standpoint, 
although the GML can perform as well as 
SECHO, the SECHO algorithm can provide an 
optimum trade-off between classification 
accuracy and cost of the analysis, as well 
as a more effective map output product. 

IV. SUMMARY AND CONCLUSIONS 

The results of this study can be sum­
marized as follows: 

* Transformed Divergence (TD) is an 
effective method for identifying various 
subset combinations of wavelength bands, 
thereby allowing the dimensionality of the 
data set used in the classification to be 
reduced, but the "Best n" subset should 
not be expected to always provide the 
optimum classification performance for 
both individual cover types and overall 
performance. 

* Linear transformations, such as 
the Karhunen-Loeve (or Principal Compo­
nent) transformation will condense the 
amount of data variability into a rela­
tively small set of channels, as was 
shown in Figure 1. However, depending 
upon the relative proportions and spectral 
variability of the cover class samples 

which go into the calculation of the 
transformation matrix, the resulting 
separability of these classes in the 
transformed space may be less than in the 
original space and subsequently result in 
lower class and overall performances. 

* A four-channel "optimum" subset of 
the total seven Thematic Mapper channels 
gave significantly better results than 
when using only three channels and, in 
general, enabled adequate class and over­
all performances to be achieved. 

* Contextual classifiers such as 
SECHO, can obtain the same or better 
results than per-point classifiers such as 
the L2 and GML. 

* The L2 classifier required the 
least amount of CPU time, with SECHO and 
the GML algorithms requiring sequentially 
greater amounts of CPU time for classifi­
cation. 

* The SECHO algorithm provided an 
optimum combination of classification per­
formance, minimal CPU classification time, 
and output map product. 
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