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D.J. KNOWLTON 

DBA Systems 
Melbourne, Florida 

R. M. HOFFER 

Purdue University/Department of 
Forestry and Natural Resources 
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ABSTRACT 

Dual polarized X-Band Synthetic 
Aperture Radar (SAR) data were obtained 
for a test site in South Carolina contain­
ing a variety of forest and agricultural 
cover types, as well as water and urban 
areas. The optically correlated images 
were digitized with a scanning micro­
densitometer using a 40 ~m aperture. 
Digi tal registration of the two polari­
zations was more difficult than antici­
pated due to geometric variations in the 
imagery. However, a suc~essful registra­
tion was obtained, and a "degraded" 30 m 
resolution data set was generated in 
addition to the original 15 m resolution 
data set. 

Computer analysis indicated a statis­
tically significant look-angle effect in 
the radiometric characteristics of the 
data. Three different classification 
algorithms were tested: (1) GML, or 
Gaussian Maximum Likelihood; (2) 
Per-Field; and (3) SECHO or Supervised 
Extraction and Classification of Homoge­
neous Objects. The GML is a per-point 
classifier, whereas the latter two are 
contextual classifiers, in that the 
classification decision is based on both 
the mean and the variance of the spectral 
response over an area. Evaluation of the 
classification results, based on test data 
for the seven major cover types present in 
the study si te, indica ted a signif icant 
improvement in accuracy for the contextual 
algorithms as compared to the GML 
per-point algorithm, but overall perfor­
mance was only 65% for even the contextual 
algorithms. The effects of spatial reso­
lution and polarization of the radar 
signal, as well as the classification 
algorithm, are discussed in this paper. 

11 Thi::. work was supported by NASA Contract 
NAS9-15889. 

The results indicate the need for: 
(1) completely digital data proceSSing of 
SAR data (as compared to optical correla­
tion techniques for producing the SAR 
imagery); (2) evaluation of longer wave­
length SAR data for differentiating forest 
and other cover types and condi tion 
classes; and (3) improvements in contex­
tual algorithms and analysis techniques. 

I. INTRODUCTION 

Dual-polarized, X-band Synthetic 
Aperture Radar (SAR) imagery obtained over 
a test area near Camden, South Carolina 
had been used for an earlier study by 
Knowlton and Hoffer (1981). The objective 
of that study involved the determination, 
qualitatively, of the value of SAR imagery 
for identifying various forest cover 
types. During the analysis of the HH 
(Horizontal-Horizontal) and HV (Horizon­
tal-Vertical) polarized images, particular 
attention was given to the tonal and 
textural characteristics of the cover 
types involved. In general, the results 
of the study showed that: (1) certain 
forest cover features (e.g., deciduous 
versus coniferous) are more easily 
identified in one polarization than the 
other, but some features (e.g., mixed 
deciduous and tupelo) looked very similar 
in both polarizations; (2) overall tonal 
contrast between features was greater on 
the HH image; and (3) neither polarization 
was consistently better for identifying 
the various forest cover types being 
examined. 

Following the qualitative analysis of 
the SAR data, the current work was under­
taken to determine whether "standard" 
remote sensing computer classification 
procedures, developed primarily for multi­
spectral scanner (MSS) data, could be 
effectively applied to digitized SAR data, 
even though the energy-matter interactions 
are qui te different for data obtained in 
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the microwave portion of the electromag­
netic spectrum. The results of this quan­
ti tative analysis, which include the 
digitization, rectification, and classifi­
cation of the S~R data, are the subject of 
this paper. 

II. OBJECTIVES 

The overall objective of this inves­
tigation was to determine, quantitatively, 
the value of dual-polarized, X-band SAR 
imagery for identifying various forest 
cover types. Specific sub-objectives 
identified were to: 

(1) Define effective techniques to 
digitally register the two polarizations; 

(2) Determine if a statistically 
significant look-angle effect is present 
in the radiometric characteristics of the 
data; and 

(3) Examine the results of three 
different classification algorithms for 
identifying various forest and other cover 
types. 

III. MATERIALS AND METHODS 

A. RADAR DATA 

The radar data was obtained using 
NASA's APQ-I02 side-looking radar, which 
is a fully focused synthetic aperture 
radar imaging system. The system was 
mounted on NASA's RB-57 aircraft, and the 
data were collected on June 30, 1980 from 
an al ti tude of 60,000 feet (18 km) mean 
sea level (MSL). 

A horizontally polarized pulse of 
energy of 9600 MHz ± ~1Hz (commonly known 
as X-band) was transmitted by the radar 
system, and the returning energy was 
recorded on separate holograms as 
horizontally (HH) and vertically (HV) 
polarized responses. These holograms were 
then processed through an optical 
correlator by Goodyear Aerospace Corpora­
tion in Arizona (under contract to NASA, 
JSC), and the resulting images recorded on 
high resolution positive film (see Figure 
1) • 

B. DIGITIZATION PROCESS 

To convert the radar imagery into a 
numerical format, the positive film 
imagery was digitized using a microdensi­
~ometer. Both the HH and HV polarization 
1mages were digitized by the Lockheed 
Corporation at JSC. Due to a distinct 

banding effect in the imag~ry, bnly a 
portion of the original 1magery, as 
indicated in Figure 1, was digitized. 

HB HV 

" IO miles 

Figure 1. HH and HV polarizations of 
the X-band SAR imagery show ing both the 
banding effects and tonal variations. 
Only the portion of the data left of the 
vertical black line was digitized. 

The parameters for digitizing the 
imagery were calculated using the 
specifications of the radar system and an 
appr oximate scale of the imagery. Based 
on the system characteristics, the ground 
resolution for both the across track and 
along track resolutions was slightly less 
than 15 m. This resolution performance 
was defined as the minimum allowable 
dimension for a ground resolution element. 
Using the positive film image scale of 
1:376,000, it was determined that an 
aperture setting of 40 pm on the micro­
densitometer would provide a digitized 
pixel with a ground spatial resolution of 
15 m, thereby approximating the ground 
resolution of the SAR system. 

The sampling interval and scan line 
spacing were also set at 40 pm to prevent 
any sidelap and overlap of adjacent 
pixels, thus providing independence 
between pixels. If there was any sidelap 
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and/or overlap of the pixels, the variance 
between adjacent pixels would have been 
reduced. This would not have allowed as 
effective a comparison among various 
classification algorithms, since the 
design of some algorithms are more 
sensi tive to a change in variance than 
others. 

C. DIGITAL REGISTRATION 

Since the HH and HV images were 
digi tized independently, the data had to 
be overlaid or digitally registered (i.e., 
share the same line and column coordi­
nates) before being combined onto a single 
LARSYS (1) data tape. Initial attempts to 
overlay the two data sets did not produce 
satisfactory results. Examination of the 
data indicated that a curvilinear orienta­
tion with more than one inflection point 
existed in the along track direction 
between the data sets. This type of 
orientation may have developed through a 
combination of variables such as 
radar-platform velocity deviations, 
electromagnetic path length fluctuations, 
and electronic equipment instabilities 
(Anuta et al., 1978; Tomiyasu, 1978; and 
Mauer et al., 1979). In addition, two 
separate antennas were used in the 
collection of the data which could have 
influenced the orientation between the 
polarizations. 

To compensate for the orientation 
differences, the data along the flight 
line were divided into discrete blocks. 
The data were initially divided into 
approximately two equal blocks. Over 30 
potential control points were located in 
each block, a second order biquadratic 
transformation was applied to each block, 
and RMS errors were calculated (see Anuta, 
1977, and Steel and Torrie, 1980). RI1S 
errors of less than 0.5 for both line and 
column coordinates were considered to give 
the accuracy needed for the image regis­
tration process (Smith, 1980). 

The Rf.1S error values indicated that 
the overlay was still not sufficiently 
accurate, so each block was again divided 
in half, forming a total of four blocks. 
At least 30 control points were located in 
each of the four blocks. The biquadratic 
transformation was applied to each of the 

(1) LARSYS is a remote sensing data­
processing system dc\cloped at Purdue 
University's Laborat_ry for Applications 
of Remote Sensing ~::I.S). For complete 
documenta ti on of LP,RSYS see Phil 1 ips 
(1973) • 

blocks and RMS errors were calculated. 
The results for the three norther~ blocks 
showed RMS errors of less than 0.5, there­
by indicating that each of these blocks 
could be overlayed using their associated 
transformations. Al though the fourth 
block had RMS errors of 0.64 to 0.86, 
rather than less than 0.5, it was decided 
to attempt to overlay the data using the 
derived transformation rather than to 
divide the block into smaller units. 
However, after the data was overlaid, it 
was determined through visual examination 
that the registration of the fourth block 
was extremely poor, so this area had to be 
deleted from further analysis. 

D. SPATIAL RESOLUTION DEGRADATION 

After the registration process, a 
second SAR data set was produced having a 
reduced spatial resolution of 30 m. The 
purpose of this was two-fold: (1) to 
simulate the spatial resolution of the 
Thematic Mapper, and (2) to reduce the 
amount of speckle associated with the SAR 
data. The spatial resolution was degraded 
by averaging pairs of neighboring pixels 
together. Since the original data set had 
a spatial resolution of approximately 
15 m, by averaging cells of four pixels, a 
degraded data set having a spatial resolu­
tion of 30 m was produced. The steps and 
considerations used to degrade the spatial 
resolution were similar to those described 
by Latty (1981). 

E. CLASSIFICATION ALGORITH~1S 

Three classification algorithms were 
used in the investigation, one being a 
"pixel-by-pixel" classifier and the other 
two classifiers being "textural" classi­
fiers. The purpose of all three classi­
fiers is the same: to assign each resolu­
tion element, or pixel, to a given class, 
based on the statistical characterization 
of that pixel. The major difference 
between these two groups of classifiers is 
that the pixel-by-pixel classifier assigns 
the pixel to a given class based on the 
spectral information of that pixel alone, 
whereas textural classifiers use the data 
f rom spatially adjacent pixels to aid in 
the classification of each pixel. 

The pixel-by-pixel classifier used 
was the Gaussian Maximum Likelihood (GI1L) 
classifier. This particular classifier is 
widely used in remote sensing applica­
tions. Rather than go into detail about 
this particular classifier, the authors 
suggest the following references: Swain 
(1973), and Swain and Davis (1978). 

1983 Machine Processing of Remotely Sensed Data Symposium 
I21 



The two textural classifiers used in 
this study were the f>linimum Distance 
(PER-FIELD) classifier and the Supervised 
Extraction of Homogeneous Objects (SECHO) 
classi f ier. These two classif iers are 
similar in that they classify groups of 
pixels into the various spectral classes 
based on both their spectral and spatial 
information. However, they are distinctly 
different in their approach to classifying 
the data, and especially in partioning the 
area to be classified. In using the 
per-field classifier, the analyst must 
def ine each specif ic block or area to be 
classified, whereas with the SECHO classi­
fier, the analyst simply defines the 
entire segment of the Laridsat data to be 
classified, and the algorithm defines the 
boundaries of the various forest stands or 
agricul tural fields (1. e., "homogeneous 
objects") to be classified. The following 
references are suggested for more informa­
tion concerning the two textural classi­
fiers: PER-FIELD - Duda and Hart (1973), 
Phillips (1973), and Wacker and Landgrebe 
(1971); SECHO - Kettig (1975), Kettig and 
Landgrebe (1976) , and Scholz et al. 
(1977) • 

F. STATISTICAL ANALYSIS 

To fully examine and to make 
inferences about the classification 
results, a statistical analysis was 
performed to determine if Significant 
differences existed between the classi­
fiers for a given data set and between 
da ta sets for a given classifier. The 
results of the classifications were given 
in terms of overall percent correct 
classification (PCC) performance and 
individual class PCC performance, based on 
test pixels. 

The PCC performances for individual 
cover types were computed by the following 
equation: 

where, 

PCC. 
I 

the total number of test pixels 
correctly Classified for the ith 
cover class, 

P.' = the total number of test pixels 
I for the ith cover class. 

The overall PCC performances are 
computed by the following relationship: 

PCC 
n Pi 
L 

i=l P{ 

whel:e, 

n = number of cover classes. 

The PER-FIELD classifier also allows 
the class PCC and overall PCC performances 
to be calculated in terms of the number of 
fields correctly Classified. The PCC's 
are calculated in a fashion similar to 
that described above, except that the test 
fields are used in the calculations rather 
than the individual test pi xel s. The two 
performances allow the analyst to compare 
pixel versus field performances and deter­
mine the influence of field size (i. €. , 

the number of pixels per field) on the 
classification results. However, the 
following discussion of the classification 
results is given only in terms of the 
number of test pixels, rather than test 
fields, correctly Classified. This is 
done to allow for clarity in the 
discussion between classifiers. 

Statistically significant differences 
for the various combinations of data sets 
and classifiers were determined using the 
Newman-Keuls multiple range test. An 
alpha (a) level of 0.05 was used for all 
possible combinations of tests. 

IV. RESULTS AND DISCUSSION 

A. LOOK-ANGLE EFFECT 

Even though only a portion of the 
enti re swath width of the SAR data had 
been digitized, there still appeared to be 
a distinct tonal variation across even 
this portion of the flight line. This was 
particularly evident on the HV image. A 
statistical evaluation was conducted to 
determine if the SAR training data should 
be separated into spectral classes 
according to the location of the 
individual fields across the flight line. 
The flight line was first divided into six 
discrete strips. Fields of the dominant 
forest cover class, which was the hardwood 
class, were identified within each strip 
and their means and standard deviations 
calCUlated. Figure 2 illustrates the mean 
+ 1 standard deviation for each of the six 
strips, for both the HH and HV channels. 
From this figure it can be seen that on 
the HH polarization, al though the means 
are somewhat different from one strip to 
the next, there doesn't seem to be an 
obvious trend across the data set; 
however, on the HV polarized data, except 
for strip No.6, the means show a definite 
increase from left to right across the 
imagery. 
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Figure 2. Plots of the mean ± 1 
standard deviation of each strip across 
the flight swath, for both the HH and HV 
polarizations of the 15 meter SAR data. 

To determine the signif icance of the 
tonal variation an analysis of variance 
was performed on the data. The strip 
means of the HV image were found to be 
significantly different but those of the 
HH image were not. It was therefore 
decided that the training and test data 
sets would need to be stratified as a 
function of location across the flight 
line. However, several cover types had 
relatively limited numbers of training or 
test fields, so some of the six strips 
would not have ~ad sufficient training 
and/or test da ta for the various cover 
types. Therefore, the data was 
sub-divided only into column coordinates 
that represented either the left or right 
portion of the flight line. Table 1 lists 
the cover classes and r.umber of pixels for 
both the training ano test data sets used 
in the computer-aided classification of 
both the 15 m and 30 m data sets. Table 2 
shows the means and star,clard deviations, 
by cover type, for both the 15 m and 30 m 

data sets, and for the lefta'rid right 
sides of the flight lines. 

Table 
pixels and 
each cover 
analysis of 

1. The number of training 
test pixels associated with 
class for the quantitative 

the SAR data • 

tjQ. Qt Ttaiain9 2i6~1~ ~IQ Qt 'l'efoiJ;; E;i,li!.il~ 
!:Q~~' Clw~~ .se.£....l..5. .s.AlLl..Q liAJLl.S. .s.AlLl..Q 
PINE 845 251 840 249 
HOlVD 3332 935 3131 840 
RGHD 3027 849 1490 4':2 
PAST 714 218 1239 350 
CROP 2001 594 2250 690 
SOIL 1704 466 139B 414 
IfATR 547 166 552 161 

TOTAL 12170 3479 10900 31 S6 

Table 2. Means and Standa rd Dev ia-
tions for each cover class for both the 
left and right portions (i. e., spectral 
classes) of the 1980 SAR data sets. 

15 0 30 0 
HB ctV ae ov Cover r" 3S; r s"t g. ~I-, 1: rei'>- ." ,-.~t f e i ~ ~, cb- ;,,-r <:"':J t 

SOIL 6.4 13 .a 6.8 16.6 5,: 1]. ~ S.7 17.;) 
2.7 6.2 3.J 10.7 I.> '-, ~ . --: d.7 

(nOp 22.1 14.5 26.9 la.l :1.9 1:.4 26.3 19.J 
11.4 9., 17.3 14 ... '7.6 0.' 1::.3 11.1 

OiDHO 42.4. 40.7 44 .0 52.5 .0." H.l -+4.0 3L2 
21. 7 21.6 n.6 33.1 15.0 1-1.1 21.5 25.2.. 

RGHD )J .4 H.9 37 .2 56.3 )).4. 34 .4 36.9 56.3 
16.6 16.6 22.9 JL2 :1.0 11.0 iLS 13 .5 

FHIE 10.4 14 .4 19.4 39.1 10.3 1406 20.u 33.2 
5.J 6.9 11.8 23.1 ~ .2 4.7 a.2 H.l 

?AST'" 13.4 42.2 14.0 43.1 
6.3 24.6 >.5 16.7 

::.\7R 3.8 4.J 6.2 6.9 -1.5 5.C 6.' 7.5 
1.3 2.0 3.8 2.' 2.6 3.0 3.0 ':'.9 

*~he 9ast:ure class only had representatIve f lelds on the clgnt. pocO.on 0' tn. tllght 3 .... at."1. 

B. CLASSIFICATION 

As previously indicatea, both the 
15 m and 30 m SAR data sets were 
classified using three different 
classifiers one pixel-by-pixel (the 
Gaussian Maximum Likel ihood) classifier, 
and two textural (Per-Field and SECHO) 
classifiers. The overall PCC performances 
for both data sets and all three 
classifiers are compared in Figure 3, and 
the results of the statistical comparisons 
betvleer. the results are shown in Table 3. 
The overall PCC performances between the 
two date sets- were fouDo to be 
significantly different for the GML and 
PER-FIELD classifiers, and were not 
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signif icantly 
classifier. 

GML 

differ~nt for the SECHO 

mn 15 m SAR Data 

II 30m SAR Data 

PER-FIELD SECHO 

Classifier 

Figure 3. The overall classification 
performances for three classifiers using 
the SAR 15 m and 30 m data. 

Table 3. Statistical comparison 
between the overall classifications of the 
SAR 15 m and 30 m data sets, for each 
classification algorithm.* 

Data Set 
~lgssifier SAR 15 m SAR 30 m 

GML 35.7
a 

45.9
b 

PER-FIELD 68.4b 63.3 a 

SECHO 64.3
a 65.8 a 

*Different superscripts indicate signifi­
cantly different classification perform­
ances between the data sets, based on a 
Newman-Keuls comparison with a = 0.05. 

For the GML classifier, these results 
show that overall PCC performance tends to 
increase by degrading the spatial resolu­
tion. This is because the spectral 
variability associated with each cover 
class is reduced. Table 2, introduced 
earlier, shows the means and standard 
deviations for each cover class for both 
the SAR 15 m and SAR 30 m data sets. The 
means of the various cover classes do not 
change very much between the two data 
sets. However, the standard deviations 

for each class are Significantly reduced 
on the SAR 30m da ta set, except for the 
WATR (water) class. The WATR class has a 
very low standard deviatiol1 on the SAR 
15 m, but by averaging small blocks of 4 
pixels to create the 30 m spatial 
resolution data set, an amount of vctria­
tion was introduced by the non-water 
border pixels. This variation caused the 
standard deviation to increase for the 
WATR class in the 30 m data set. Except 
for the water class, however, the smaller 
standard deviations found in the other 
cover type classes in the 30 m data 
resulted in a reduction in the amount of 
overlap between the spectral distribu­
tions, thereby reducing the probability of 
misclassification. 

Again referring to Table 3, compari­
son of the results of the two data sets 
for both the PER-FIELD and SECHO classi­
fiers shows that the overall results are 
very similar, with the PCC performance of 
the SAR 15 m data set being slightly 
higher than the SAR 30 m data set for the 
PER-FIELD classifier. These two textural 
classifiers performed much better than the 
GML classifier given either data set. 
This suggests that the incorporgtion of 
both spectral gnd spatigl information will 
significantly increase the overall PCC 
performance for the SAR data sets. These 
results also indicate that if spatial 
resolution has been degraded, the overall 
PCC performances may not increase when 
using textural classifiers. This is 
attributed to the fact that the PER-FIELD 
and SECHO classifiers were designed to 
incorporate texture into the classif ica­
tion process, and by removing the texture 
within the scene (e.g., spatial degrada­
tion), the major advantage of the textural 
classifiers is eliminated resulting in the 
lack of improvement in classification 
performance for the higher spatial resolu­
tion data. 

Figure 4 shows the PCC performances, 
by cover class, for the three classifiers 
being tested using both the SAR 15 m and 
SAR 30 m data. Both the PER-FIELD and 
SECHO classifiers have relatively high PCC 
performances for the HDWD (hardwood) class 
for both spatial resolution data sets. 
The CROP and RGHD (regenerating hardwood) 
cover classes show similar, but not as 
dramatic, differences between the textural 
and the GML per-pixel classifiers. Since 
both the PER-FIELD and SECHO classifiers 
utilize the spectral variances of the 
different cover types in the classifica­
tion, and all three of these cover types 
have relatively high spectral variances, 
the textural classifiers are more 
effective than the GML classifier. How­
ever, the RGHD and CROP cover classes 
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generally have 
performances with 
because of the 
vegetation classes 
distributions. 

relatively low PCC 
all three classifiers 
confusion with other 
having similar spectral 
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Figure 4. Classification perfor-
mances by cover class for the three 
classifiers, and for both the SAR 15 m and 
30 m data sets. 

The cover classes PINE, PAST, SOIL, 
and WATR have an irregular pattern of PCC 
performances. PAS'l' and PINE have very 
poor PCC performances at the 15 m spatial 
resolution for all three classifiers. 
This is due to the fact that on this 
particular data set, these two cover types 
have very similar spectral distributions, 
thus causing considerable confusion. By 
spatially degrading l~e 15 m data set, the 
PCC performance for PINE increased 
significantly for all three classifiers, 

whereas the PCC performance for- 'ch'e PAST 
class decreased for both the GML and 
PER-FIELD classifiers and increased for 
the SECHO classifier. 

Using the GML classifier, SOIL has a 
much higher PCC performance with the 30 m 
data. However, SOIL has a much higher PCC 
performance for the PER-FIELD and SECHO 
classifiers using the 15 m data. By 
degrading the resolution the amount of 
pixel-to-pixel variation was reduced 
within the bare soil fields. This enabled 
the GML classifier to discriminate the 
SOIL class from the WATR class. However, 
by reducing the amount of varlance 
associated with the spectral classes for 
SOIL, the PER-FIELD and SECHO classifiers 
did not perform as well as with the 15 m 
data set because the spectral response and 
the pixel-to-pixel variation between the 
SOIL and WATR classes were very simila r, 
and therefore the classifiers could not 
discriminate between the spectral 
distr ibutions. The WATR class had high 
PCC performances for both the GML and 
PER-FIELD classifiers using the 15 m data 
set. This was primarily due to the low 
probability of error associated with the 
SOIL class as compared to the distribu­
tions of the SOIL and WATR classes using 
the 30 m data, which had a higher 
probability of error. 

The SECHO classifier performed poorly 
for the WATR class using either the SAR 
15 m or 30 m data sets, with the 15 m data 
having the better PCC performance for the 
two data sets. This was attributed to the 
fact that the moving window, which was a 
three by three pixel cell, obliterated the 
major water feature - the Wateree River. 
Depending on where the window was located, 
adjacent border pixels would have been 
included in the window, and would then 
influence the calculated homogeneity 
value. Due to the speckling nature 
throughout both sets of SAR data, these 
mixed vlater and "other" cells apparently 
resembled other features and were 
classified accordingly by the SECHO 
classifier. 

V. SUHM.ARY AND CONCLUSIONS 

This investigation has provided some 
very val uable insights regarding the 
quantitative analysis of dual-polarized, 
X-band SAR data. Additional data sources 
such as SAR have consiclerable potential 
for a variety of applications, but it is 
important to recognize that SAR do.ta also 
have some distinct limitations. The 
quantitative analysis of the digitized SAR 
data provided results which suggest that 
speci21 preprocessing procedures and clDs-
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sification algorithms are required in 
order to effectively utilize 
computer-aided analysis techniques. The 
findings of this study can be summarized 
as follows: 

1. The HH and HV polarized data sets 
had independent geometric distor­
tions which required special pre­
processing techniques to achieve 
satisfactory digital registra­
tion. 

2. A distinct tonal variation 
related to range angle was 
quantitatively documented for the 
HV polarization, but not for the 
HH polarization. 

3. Utilization by the classification 
algorithm of both the spectral 
and spatial information content 
of the SAR data resulted in a 
distinct and significant increase 
in overall classification 
performance. Both the PER-FIELD 
and SEeHO textural classifiers 
had much higher classification 
performances than the GML 
pixel-by-pixel classifier. These 
improvements were approximately 
20% for the 30 m SAR data and 30% 
for the 15 m data set. 

4. Overall percent classif ica tion 
performance of the GML pixel-by­
pixel classifier increased for 
the dual-polarized X-band SAR 
data by degrading the spatial 
resolution. 

5. Degrading the spatial resolution 
may not necessarily result in an 
increase in overall percent 
classification performance for 
textural (e.g., the PER-FIELD and 
SECHO) classifiers. 

6. 

7. 

8. 

Pine and hardwood cover classes 
could be reliably differentiated 
on the X-band SAR data sets. 

Pine and pasture cover classes, 
and bare soil and water cover 
classes were consistently 
confused with each other on the 
SAR data. 

The various threshold parameters 
utilized in the SECHO classifier 
(Le., window size, homogeneity, 
and annexation) are data 
dependent and are strongly 
influenced by the size, shape, 
and textural characteristics of 
the cover types being classified. 

VI. RECOMMENDATIONS 

In addition to meeting the stated 
objectives, this investigation has also 
indicated several areas in which further 
research is needed. These include the 
following: 

1. The banding effect and tonal var­
iation related to range angle, which were 
inherent in the data, had a definite 
impact on our abili ty to fully assess the 
information content of the data in a 
quantitative fashion. Research is needed 
to determine the cause of these effects, 
whether it be due to the system itself or 
to interactions between the system, 
possible topographic effects, and/or the 
characteristics of the cover types 
invol ved. 

2. Although the X-band SAR data 
could be used to separate some cover types 
with a relatively high degree of 
reliability, other cover types could not 
be adequately separated even those that 
are physically very different. It is 
recommended that the value of multiple 
frequencies (Le., short and long 
wavelengths) as well as multiple polariza­
tions and look angles be assessed to 
determine what forest classes and 
characteristics can be reliably separated. 
In addition, further research is needed to 
examine how the dielectric and physiog­
nomic properties of forest vegetation 
influence the radar signal. 

3. Classifiers which incorporate 
texture (e.g., SECHO) must be more fully 
examined to determine the effect of 
speckle on the classifier itself and how 
it can be effectively used to discriminate 
the cover classes of interest. 

1. 

2. 

3. 
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