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ABSTRACT

Nonsupervised classification by
clustering has been shown to be a very
important tool in the analysis of
satellite remote sensing data. However,
clustering algorithms which wuse Euclidean
distance as a measure of similarity are
highly sensitive to scaling differences
among the variables which participate in
the clustering process. Since the Landsat
MSS spectral bands have different ranges
and different calibration functions, this
scaling sensitivity is likely to have a
significant impact on the results of
clustering Landsat M3SS data, as 1is
demonstrated by the experiments described
in this paper. A rescaling strategy for
Landsat MSS data is recommended which
seems to give appropriate relative weights
to the four spectral bands.

I. INTRODUCTION

Since the first digital analyses of
the Landsat MSS data were conducted soon
after the launch of the Landsat-1
satellite in July 1972, a great deal of
research has been carried out to develop,
test, and utilize numerical analysis
techniques that could be applied

effectively to this type of multispectral
Scanner data. It was soon recognized that
the supervised method of developing the
statistics for training a classifier was
not an adequate means of defining the
natural multispectral groupings present in
a Landsat MSS data set. The supervised
approach did not allow a satisfactory
definition of an important type of
spectral training classes which represent

a large percentage of the total Landsat
scene, i.e., the T'"spectral mixture
classes."?2 Therefore, to overcome this
limitation of the supervised approach,

data analysts have been

using regularly a
nonsupervised procedure

to determine the
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inherent structure of the Landsat MSS data
by defining the training statistical
parameters through the use of clustering
algorithms. However, analysts need to be

aware that those clustering algorithms
which use Euclidean distance as a measure
of similarity wmay not yield meaningful

results when the feature

isotropic. Because the
digital data for bands 4,

from 0 to 127 (7 bits) while those for
band 7 range from 0 to 63 (6 bits), the
resulting four-dimensional feature sSpace
is not isotropic.

space 1s not
Landsat MSS
5 and 6 range

II. CLUSTERING ALGORITHMS

The spectral response of every
Landsat MSS spatial resolution element can
be represented by a vector (data point) in
a four-dimensional space, and a set of
Landsat MSS data can be visualized as a
distribution of points in this space. A
clustering algorithm can be used to find a
natural grouping of the vectors in a data
set which possess strong internal
similarities, thus describing the
intrinsic structure of the data set.

There are several types of clustering
algorithms, and according to Blashfield et
al.,4 there may exist as many clustering
software packages as there are users.

The clustering function most commonly
used at LARS (*CLUSTER) is a variant of
the ISODATA algorithm.’ *CLUSTER has been
described in detail elsewhere.9,12,13,14
The measure of similarity wused in the
®¥CLUSTER function 1is Euclidean distance,
which implies that the cluster classes
defined by this function are invariant to
rigid-body motions of the data points,
i.e., translations or rotations, but the
function is highly sensitive to
transformations that distort the distance
relationships among data points, such as
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differential rescaling of the feature
space axes.

IIT. CALIBRATING LANDSAT MSS DATA

The importance of calibrating the
Landsat MSS data to aid in 1labeling
spectral training classes generated by a
clustering function has_ been demonstrated
and reported elsewhere.ls Calibration of
the Landsat MSS data involves changing the
scaling of the four-dimensional feature
space axes from the original range of
0-127 for bands 4, 5 and 6 and 0-63 for
band 7 to "in-band radiance”™ values which
are expressed in terms of mWatts/cm“-sr.
This rescaling procedure alters the
distance relationships among the data
points and thus affects the performance of
a clustering function which uses Euclidean
distance as a measure of similarity.
Figures 1 and 2 illustrate graphically the
effect of calibrating the Landsat MSS
data. Figure 1 shows four data points (A,
B, C, and D) plotted for an uncalibrated,
two-dimensional (bands 6 and 7) feature
space. A clustering function which uses
the Euclidean distance measure would group
points A and B into Cluster 1 and points C
and D into Cluster 2. Calibration of the
Landsat MSS data would change the scaling
of the two-dimensional feature space axes
as illustrated in Figure 2. As a
consequence, the relative inter-point
distances are considerably changed, and a
clustering function which uses the
Euclidean distance measure would group
points A and C into Cluster 1 and points B
and D into Cluster 2. It is evident from
these 1illustrations that such a simple
change of scale in the feature space can
yield completely different cluster
classes,

To 1illustrate the effect that a
simple change of scale can have on the
performance of clustering real data, a set
of Landsat MSS data (Scene ID: 2034-16200)
collected over Matagorda Bay, Texas, on
February 25, 1975, was clustered using the
¥CLUSTER function. A total of 10,201 data
points (pixels) calibrated into 1in-band
radiance values were clustered into 18
classes based on all four bands. The
resulting cluster map is shown in Figure

3.

The uncalibrated data from"fﬁe same
area were clustered into - 18 classes,
yielding the cluster map shown in Figure

For reference a black-and-white
reproduction of a color infrared
photograph covering the Austwell, Texas,
7-1/2 minute topographic quadrangle area
is shown in Figure 5.

A comparison of the cluster maps
presented in Figures 3 and 4 shows clearly
the different cluster results obtained
from the calibrated (Figure 3) and
uncalibrated (Figure 4) data sets. Note
that clustering the calibrated data
yielded only one spectral class of water
along Guadalupe Bay, in contrast to the
three spectral classes of water obtained
from the uncalibrated data set. On the
other hand, clustering the calibrated data
produced the differentiation of two man-
made features labeled by the numbers 1
(concrete parking lot) and 2 (settling
pond), whereas the wuncalibrated data did
not permit the separation of these two
different spectral classes.

These differences in results are not

unexpected since, in calibrating the
Landsat MSS data, one is essentially
applying a different linear transformation
to each one of the four axes and, 1in the

process, changing the (Euclidean) distance
relationships among all data points. The
authors have verified that rescaling the
four Landsat feature space axes by
applying the same 1linear transformation
(multiplying all values by a constant
greater than unity) to each of the four
axes does not distort the feature space as
perceived by the *CLUSTER algorithm, and
therefore the resulting cluster classes
correspond exactly to the cluster classes
obtained from clustering the original non-
rescaled data. This is discussed further
in the next section.

IV. THE EFFECTS OF OTHER
RESCALING ALTERNATIVES

Rescaling the Landsat MSS data based
on the internal calibration reference
values given above has roughly the effect
of multiplying the band 7 data by a factor

* The data were calibrated using the following internal calibration reference values (in

mWatts/cmz—sr.):

Band 4 Band 5 Band 6 Band 7
Minimum Radiance 0.10 0.07 0.07 0.14
Maximum Radiance 2.10 1.56 1.40 4,15
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of four and the other three bands by
factors of one and a half or two. Under
the Euclidean distance measure, this could
cause the clustering program to emphasize
information in band 7 to the detriment of
information in the other three bands,
This effect can be seen by comparing the
results of the experiments described below
with the results of clustering the
calibrated data.

The following experiments were
motivated by the notion that the data in
the four Landsat MSS bands could be made
more commensurate simply by equalizing
their ranges. To do this, one would
either have to expand (multiply by a
factor of two) the digital values of band
T or compress the range of bands U4, 5 and
6 by a factor of two, leaving the original
band 7 unaltered.

Several rescaling transformations
were applied to the Landsat MSS data,
including:

1) expansion of band 7 (original scaling
of 0-63) by a factor of two, leaving
bands 4, 5 and 6 unaltered.

2) compression of bands 4, 5 and 6 by a
factor of two, leaving Dband 7
unaltered,

3) expansion of all four bands by the
same factor (multiplied by 2, 3,
h,..),

4) compression of all four bands by the
same factor (dividing by two).

Of these four transformations, only
the third did not produce cluster classes
different from those obtained from
clustering the original (untransformed)
data. Transformations 1, 2 and U4 changed
the internal structure of the data
distribution considerably. The results of
applying the clustering algorithm to data
sets that have undergone a linear
compression in bands 4, 5 and 6 show that
compressing these bands linearly causes a
great deal of the information content
(spectral separability) in the data set to
be lost.

Only the first transformation, i.e.,
expanding the range of band 7 by a factor
of two and leaving bands 4, 5 and 6
unaltered, caused the clustering algorithm
to define spectral classes that more
accurately represented the ground cover
types in the scene. Figure 6 shows the
result of clustering a Landsat MSS data
set which has undergone a linear expansion

of band 7 with bands 4, 5 and 6 left
unaltered.

A comparison of the cluster maps
shown in Figures 4 and 6 with the
reference photography (Figure 5) indicates
that the spectral cluster classes obtained
from the "expanded" data set (Figure §)
represent more accurately the ground cover
types in the scene. Note that features

"1"  and "2 in Figure 4 have been
clustered 1into the same spectral class
although the reference infrared

photography (Figure 5) shows that these
two features are definitely different
cover types. Feature 2 is a turbid pond,
whereas feature 1 is a large factory.*
These results show the limitations of the
clustering algorithm when applied to
original Landsat MSS data. On the other
hand, note that features 1 and 2 in Figure
6 have been clustered into two different
spectral classes which accurately
represent the two different ground cover
types present in the scene.

The spectral separability of these
two distinct cluster classes (features 1
and 2) as measured by the Transformed
DivergencelO,ll indicates that the classes
are completely separable; they have a
pairwise transformed divergence value of
2000. These results show that the
clustering algorithm was unable to
distinguish these two spectrally very
different classes when applied to the
original (unexpanded) data set, whereas
these two features were accurately
differentiated by the same clustering
algorithm applied to the expanded data.

¥ The turbid water and the factory with
associated parking lots have similar
spectral responses in bands 4, 5 and 6,
and very different spectral responses in

band 7. However, in the original
(untransformed) data set, band 7 has a
range of 0-63 gray levels, i.e., one

half the range of bands 4, 5 and 6, and
consequently spectral differences in
band 7 contribute (weigh) only half as
much as those in bands 4, 5 and 6. if
the analyst desires to apply
differential weighting factors to each
spectral band of the data to be
clustered, this can be done by
appropriately expanding or compressing
the ranges of the different spectral
bands. '
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V. CONCLUSIONS AND RECOMMENDATIONS

Although it is widely
the remote sensing community that
clustering is a very useful analysis tool
for defining the spectral training classes
needed to classify Landsat MSS data, the
analyst needs to be aware of the
sensitivity to scaling inherent in those
clustering algorithms which use the
Euclidean distance as a measure of
similarity. The authors recommend that,
when using such algorithms, the range of
the Landsat MSS band 7 be scaled
(expanded) by a factor of two (from 0-63
to 0-127) before clustering is performed.

recognized by
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Map of 18 Cluster Classes Derived
from Uncalibrated, In-Band Radiance
Values (Matagorda Bay Study Area).




Figure 5. Reproduction of a Portion of Color Infrared
Photograph of the Matagorda Bay Study Area.
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Figure 6.
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Map of 18 Cluster Classes Derived from Transformed

Data.
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Band 7 data was expanded by a factor of 2;
5, and 6 are unaltered.

1983 Machine Processing of Remotely Sensed Data Symposium




	Purdue University
	Purdue e-Pubs
	1-1-1983

	The Effect of Feature Scaling on the Clustering of Landsat MSS Data
	L. A. Bartolucci
	S. M. Davis
	P. H. Swain


