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ABSTRACT 

Nonsupervised classification by 
clustering has been shown to be a very 
important tool in the analysis of 
satellite remote senSing data. However, 
clustering algorithms which use Euclidean 
distance as a measure of similarity are 
highly sensitive to scaling differences 
among the variables which participate in 
the clustering process. Since the Landsat 
MSS spectral bands have different ranges 
and different calibration functions, this 
scaling sensitivity is likely to have a 
significant impact on the results of 
clustering Landsat MSS data, as is 
demonstrated by the experiments described 
in this paper. A rescaling strategy for 
Landsat MSS data is recommended which 
seems to give appropriate relative weights 
to the four spectral bands. 

I. INTRODUCTION 

Since the first digital analyses of 
the Landsat MSS data were conducted soon 
after the launch of the Landsat-1 
satellite in July 1972, a great deal of 
research has been carried out to develop, 
test, and utilize numerical analysis 
techniques that could be applied 
effectively to this type of multispectral 
scanner data. It was soon recognized that 
the supervised method of developing the 
statistics for training a classifier was 
not an adequate means of defining the 
natural multispectral groupings present in 
a Landsat MSS data set. The supervised 
approach did not allow a satisfactory 
definition of an important type of 
spectral training classes which represent 
a large percentage of the total Landsat 
scene, i.e., the "spectral mixture 
classes."2 Therefore, to overcome this 
limitation of the supervised approach, 
data analysts have been using regularly a 
nonsupervised procedure to determine the 

inherent structure of the Landsat MSS data 
by defining the training statistical 
parameters through the use of clustering 
algorithms. However, analysts need to be 
aware that those clustering algorithms 
which use Euclidean distance as a measure 
of similarity may not yield meaningful 
results when the feature space is not 
isotropic. Because the Landsat MSS 
digital data for bands 4, 5 and 6 range 
from 0 to 127 (7 bits) while those for 
band 7 range from 0 to 63 (6 bits), the 
resulting four-dimensional feature space 
is not isotropic. 

II. CLUSTERING ALGORITHMS 

The spectral response of every 
Landsat MSS spatial resolution element can 
be represented by a vector (data point) in 
a four-dimensional space, and a set of 
Landsat MSS data can be visualized as a 
distribution of points in this space. A 
clustering algorithm can be used to find a 
natural grouping of the vectors in a data 
set which possess strong internal 
similarities, thus describing the 
intrinsic structure of the data set. 

There are several types of clustering 
algorithms, and according to Blashfield et 
al.,4 there may exist as many clustering 
software packages as there are users. 

The clustering function most commonly 
used at LARS (*CLUSTER) is a variant of 
the ISODATA algorithm. 7 *CLUSTER has been 
described in detail elsewhere.9,12,13,14 
The measure of similarity used in the 
*CLUSTER function is Euclidean distance, 
which implies that the cluster classes 
defined by this function are invariant to 
rigid-body motions of the data points, 
i.e., translations or rotations, but the 
function is highly sensitive to 
transformations that distort the distance 
relationships among data points, such as 
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differential rescaling of 
space axes. 6 

the feature 

III. CALIBRATING LANDSAT MSS DATA 

The importance of calibrating the 
Landsat MSS data to aid in labeling 
spectral training classes generated by a 
clustering function has been demonstrated 
and reported elsewhere. I ,3 Calibration of 
the Landsat MSS data involves changing the 
scaling of the four-dimensional feature 
space axes from the original range of 
0-127 for bands 4, 5 and 6 and 0-63 for 
band 7 to "in-band radiance" values which 
are expressed in terms of mWatts/cm 2-sr. 
This rescaling procedure alters the 
distance relationships among the data 
points and thus affects the performance of 
a clustering function which uses Euclidean 
distance as a measure of similarity. 
Figures 1 and 2 illustrate graphically the 
effect of calibrating the Landsat MSS 
data. Figure 1 shows four data points (A, 
B, C, and D) plotted for an uncalibrated, 
two-dimensional (bands 6 and 7) feature 
space. A clustering function which uses 
the Euclidean distance measure would group 
points A and B into Cluster 1 and points C 
and D into Cluster 2. Calibration of the 
Landsat MSS data would change the scaling 
of the two-dimensional feature space axes 
as illustrated in Figure 2. 3 As a 
consequence, the relative inter-point 
distances are considerably changed, and a 
clustering function which uses the 
Euclidean distance measure would group 
points A and C into Cluster 1 and points B 
and D into Cluster 2. It is evident from 
these illustrations that such a simple 
change of scale in the feature space can 
yield completely different cluster 
classes. 

To illustrate the effect that a 
simple change of scale can have on the 
performance of clustering real data, a set 
of Landsat MSS data (Scene ID: 2034-16200) 
collected over Matagorda Bay, Texas, on 
February 25, 1975, was clustered using the 
*CLUSTER function. A total of 10,201 data 
points (pixels) calibrated into in-band 
radiance values were clustered into 18 
classes based on all four bands. The 
resulting cluster map is shown in Figure 
3. 

The uncalibrated data from· the same 
area were clustered into 18 classes, 
yielding the cluster map shown in Figure 
4. 

For reference a black-and-white 
reproduction of a color infrared 
photograph covering the Austwell, Texas, 
7-1/2 minute topographic quadrangle area 
is shown in Figure 5. 

A comparison of the cluster maps 
presented in Figures 3 and 4 shows clearly 
the different cluster results obtained 
from the calibrated (Figure 3) and 
uncalibrated (Figure 4) data sets. Note 
that clustering the calibrated data 
yielded only one spectral class of water 
along Guadalupe Bay, in contrast to the 
three spectral classes of water obtained 
from the uncalibrated data set. On the 
other hand, clustering the calibrated data 
produced the differentiation of two man
made features labeled by the numbers 1 
(concrete parking lot) and 2 (settling 
pond), whereas the uncalibrated data did 
not permit the separation of these two 
different spectral classes. 

These differences in results are not 
unexpected since, in calibrating the 
Landsat MSS data, one is essentially 
applying a different linear transformation 
to each one of the four axes and, in the 
process, changing the (Euclidean) distance 
relationships among all data points. The 
authors have verified that rescaling the 
four Landsat feature space axes by 
applying the same linear transformation 
(multiplying all values by a constant 
greater than unity) to each of the four 
axes does not distort the feature space as 
perceived by the *CLUSTER algorithm, and 
therefore the resulting cluster classes 
correspond exactly to the cluster classes 
obtained from clustering the original non
rescaled data. This is discussed further 
in the next section. 

IV. THE EFFECTS OF OTHER 
RESCALING ALTERNATIVES 

Rescaling the 
on the internal 
values given above 
of multiplying the 

Landsat MSS data based 
calibration reference 

has roughly the effect 
band 7 data by a factor 

* The data were calibrated using the following internal calibration reference values (in 
mwatts/cm2-sr.) : 

Minimum Radiance 
Maximum Radiance 

Band 4 

0.10 
2.10 

Band 5 

0.07 
1. 56 

Band 6 

0.07 
1. 40 

Band 7 

0.14 
4.15 
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of four and the other three bands by 
factors of one and a half or two. Under 
the Euclidean distance measure, this could 
cause the clustering program to emphasize 
information in band 7 to the detriment of 
information in the other three bands. 
This effect can be seen by comparing the 
results of the experiments described below 
with the results of clustering the 
calibrated data. 

The following experiments were 
motivated by the notion that the data in 
the four Landsat MSS bands could be made 
more commensurate simply by equalizing 
their ranges. To do this, one would 
either have to expand (multiply by a 
factor of two) the digital values of band 
7 or compress the range of bands 4, 5 and 
6 by a factor of two, leaving the original 
band 7 unaltered. 

Several 
were applied 
including: 

rescaling transformations 
to the Landsat MSS data, 

2) 

4) 

expansion of band 7 (original scaling 
of 0-63) by a factor of two, leaving 
bands 4, 5 and 6 unaltered. 

compression of bands 4, 5 and 6 by a 
factor of two, leaving band 7 
unaltered, 

expansion of all four bands by the 
same factor (multiplied by 2, 3, 
4 ••• ) , 

compression of all four bands by the 
same factor (dividing by two). 

Of these four transformations, only 
the third did not produce cluster classes 
different from those obtained from 
clustering the original (untransformed) 
data. Transformations 1, 2 and 4 changed 
the internal structure of the data 
distribution considerably. The results of 
applying the clustering algorithm to data 
sets that have undergone a linear 
compression in bands 4, 5 and 6 show that 
compressing these bands linearly causes a 
great deal of the information content 
(spectral separability) in the data set to 
be lost. 

Only the first transformation, i.e., 
expanding the range of band 7 by a factor 
of two and leaving bands 4, 5 and 6 
unaltered, caused the clustering algorithm 
to define spectral classes that more 
accurately represented the ground cover 
types in the scene. Figure 6 shows the 
result of clustering a Landsat MSS data 
set which has undergone a linear expansion 

of band 7 with bands 4, 5 and 6 left 
unaltered. 

A comparison of the cluster maps 
shown in Figures 4 and 6 with the 
reference photography (Figure 5) indicates 
that the spectral cluster classes obtained 
from the "expanded" data set (Figure 6) 
represent more accurately the ground cover 
types in the scene. Note that features 
"1" and "2" in Figure 4 have been 
clustered into the same spectral class 
although the reference infrared 
photography (Figure 5) shows that these 
two features are definitely different 
cover types. Feature 2 is a turbid pond, 
whereas feature 1 is a large factory.* 
These results show the limitations of the 
clustering algorithm when applied to 
original Landsat MSS data. On the other 
hand, note that features 1 and 2 in Figure 
6 have been clustered into two different 
spectral classes which accurately 
represent the two different ground cover 
types present in the scene. 

The spectral separability of these 
two distinct cluster classes (features 1 
and 2) as measured by the Transformed 
DivergencelO,ll indicates that the classes 
are completely separable; they have a 
pairwise transformed divergence value of 
2000. These results show that the 
clustering algorithm was unable to 
distinguish these two spectrally very 
different classes when applied to the 
original (unexpanded) data set, whereas 
these two features were accurately 
differentiated by the same clustering 
algorithm applied to the expanded data. 

* The turbid water and the factory with 
associated parking lots have similar 
spectral responses in bands 4, 5 and 6, 
and very different spectral responses in 
band 7. However, in the original 
(untransformed) data set, band 7 has a 
range of 0-63 gray levels, 1. e., one 
half the range of bands 4, 5 and 6, and 
consequently spectral differences in 
band 7 contribute (weigh) only half as 
much as those in bands 4, 5 and 6. If 
the analyst desires to apply 
differential weighting factors to each 
spectral band of the data to be 
clustered, this can be done by 
appropriately expanding or compressing 
the ranges of the different spectral 
bands. S 

1983 Machine Processing of Remotely Sensed Data Symposium 
322 



V. CONCLUSIONS AND RECOMMENDATIONS 

Although it is widely recognized by 
the remote sensing community that 
clustering is a very useful analysis tool 
for defining the spectral training classes 
needed to classify Landsat MSS data, the 
analyst needs to be aware of the 
sensitivity to scaling inherent in those 
clustering algorithms which use the 
Euclidean distance as a measure of 
similarity. The authors recommend that, 
when using such algorithms, the range of 
the Landsat MSS band 7 be scaled 
(expanded) by a factor of two (from 0-63 
to 0-127) before clustering is performed. 
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Figure 3. Map of 18 Cluster Classes Derived 
from Calibrated Data (Matagorda 
Bay Study Area). 
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Figure 4. Map of 18 Cluster Classes Derived 
from Uncalibrated, In-Band Radiance 
Values (Matagorda Bay Study Area) . 



Figure 5. Reproduction of a Portion of Color Infrared 
Photograph of the Matagorda Bay Study Area. 
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Figure 6. Map of 18 Cluster Classes Derived from Transformed 
Data. Band 7 data was expanded by a factor of 2; 
bands 4, 5, and 6 are unaltered. 
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