Reduction of Sound Radiation by Using Force Radiation Modes: Effect of a Rigid Wall Near a Vibrating Object

J Stuart Bolton
Purdue University, bolton@purdue.edu

Zenzo Yamaguchi
Kobe Steel, Ltd./Kobe University

Shinji Isibashi
Kobe University

Kimihiro Sakagami
Kobe University

Masayuki Morimoto
Kobe University

Follow this and additional works at: http://docs.lib.purdue.edu/herrick
Reduction of Sound Radiation by Using Force Radiation Modes: Effect of a Rigid Wall Near a Vibrating Object

Z. Yamaguchi (Kobe Steel, Ltd. / Kobe Univ.)
S. Ishibashi, K. Sakagami, M. Morimoto (Kobe Univ.)
J. S. Bolton (Purdue Univ.)
Introduction

Structure-borne sound from machinery.

- Radiated acoustic power is affected by locations of vibration sources (i.e., driving force locations)
 especially tonal noise

 E.g. pulsation noise, gear or motor noise, etc.

Identify the vibration source locations which minimize the radiated sound
Introduction

To minimize the radiated sound...

vibration modal analysis is often applied

However...

vibration reduction does not always reduce radiated sound

It is necessary to consider not only vibration but also radiated sound.

Radiation Modes
Radiation Modes

• Developed in the field of ANC (1990s -)
 - depend only on the structure’s geometry
 - independent of structure’s surface vibration

Powerful tool for interpreting sound radiation

• Application to practical subjects
 - low-frequency noise from a highway bridge
 - tire/road interaction noise
 etc.
Objective

Radiation modes
- vibration distribution and sound power.

Previously
Extended radiation modes
\(f_{\text{rad}} \)-mode: force radiation mode
- driving force distribution and sound power

\[\text{Verified the usefulness of the new modes}\]

Often we cannot change the location of the vibration source

Objective of this study:
To study the modification of the \(f_{\text{rad}} \)-modes by purposely changing near-source geometry to reduce sound radiation
Radiation Modes

\[W = \frac{S}{2N} \text{Re}\left\{ v_e^H p_e \right\} = \frac{S}{2N} \text{Re}\left\{ v_e^H Z_e v_e \right\} \]

\[= v_e^H R v_e \]

\[R = Q^T \Lambda Q \]

- sound power
- acoustic transfer vector
- vibration velocities of the structure
- sound pressure on the surface
- eigenvalue/eigenvector decomposition
- Radiation resistance matrix
- Radiation Modes
Force Radiation Modes \((f_{\text{rad}}\text{-mode}) \)

\[
\begin{align*}
\mathbf{v}_e &= \mathbf{Tf}_e \\
\text{vibration velocities on the boundary} \\
\text{Mobility of structure} \\
\text{Driving force} \\
\end{align*}
\]

\[
\begin{align*}
W &= \mathbf{v}_e^H \mathbf{Rv}_e \\
&= \mathbf{f}_e^H \mathbf{T}^H \mathbf{RTf}_e \\
&= \mathbf{f}_e^H \mathbf{Cf}_e \\
\end{align*}
\]

\[
\begin{align*}
\mathbf{C} &= \mathbf{M}^T \mathbf{\Phi M} \\
\text{eigenvalue/eigenvector decomposition} \\
\text{Eigenvalue} \\
\text{Eigenvector} \\
\end{align*}
\]
Force Radiation Modes (f_{rad}-mode)

\[C = M^T \Phi M \]

Eigenvector: Force Radiation Mode

\[\Phi = \begin{bmatrix} \phi_1 & \phi_2 & \ldots & \phi_n \end{bmatrix} \]

Eigenvector

\[M = \begin{bmatrix} m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & \cdots & \cdots & m_{nn} \end{bmatrix} \]
Force Radiation Modes (f_{rad}-mode)

$$W = f_e^H M^T \Phi M f_e = d^H \Phi d = \sum_{n=1}^{N} W_n = \sum_{n=1}^{N} \phi_n |d_n|^2$$

Dominant at low freq.

Eigenvalue

f_{rad}-modes

Driving force

$$W = \begin{cases} W_1 = \phi_1 \\ W_2 = \phi_2 \\ W_3 = \phi_3 \\ \vdots \end{cases}$$
Calculation Model

Beam (steel)
- thickness: 1 mm, width: 20 mm, length: 300 mm (= 2Lx)

Driving frequency
- 500 Hz
Generally, the value of the f_{rad}-mode near the rigid wall becomes larger in magnitude than that at the farther end of the strip.
The relationship between the driving force location and the sound power is strongly influenced by the first f_{rad}-mode.

In contrast, the vibration modes are not generally affected by the sound field.
Radiation modes (500 Hz)

The value of the radiation mode on the side of the strip near the wall becomes larger than that on the farther side of the strip.
Effect of the wall position (500 Hz)

- $a = 0 \text{ m} \sim 0.1 \text{ m}$, the mode shape is almost the same as when $a = 0$
- $a > 0.1 \text{ m}$, the effect of the wall is relatively small but some effect was still observed in a half wavelength (0.34 m) cycle.
Conclusion

An infinite rigid wall was placed beside the vibrating object, in order to study the modification of the f_{rad}-modes by purposely changing the near-source geometry.

- The change of geometry alters the f_{rad}-modes.
- When an infinite rigid wall is placed right beside the vibrating object the value of the f_{rad}-mode tends to increase near the wall.
- When the wall is placed not too close to the vibrating object, the effect of the wall is relatively small, but some effect was still observed in a half wavelength cycle.

The vibration modes themselves are typically not affected by the change of the near-source geometry; the f_{rad}-mode concept will be useful when applied to a real, complicated sound field.
Thank you.