4-3-2014

Autonomous Indoor Localization for Fire Safety and Resource Location via Field Mapping Techniques

Jaeyoung Kim
Purdue University, kim721@purdue.edu

Kartik Ariyur
Purdue University, Kariyur@purdue.edu

Yan Cui
Purdue University, cui4@purdue.edu

Benjamin D. Branch
Purdue University, bdbranch@gmail.com

Joshua Ebung Umo
Purdue University, jumo@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/lib_fspres

Part of the Acoustics, Dynamics, and Controls Commons, Library and Information Science Commons, and the Other Mechanical Engineering Commons

Recommended Citation
Kim, Jaeyoung; Ariyur, Kartik; Cui, Yan; Branch, Benjamin D.; and Umo, Joshua Ebung, "Autonomous Indoor Localization for Fire Safety and Resource Location via Field Mapping Techniques" (2014). Libraries Faculty and Staff Presentations. Paper 69.
http://docs.lib.purdue.edu/lib_fspres/69

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Autonomous Indoor Localization for Fire Safety and Resource Location via Field Mapping Techniques
DURI Project 2014 Spring
By Jaeyoung Kim, Dr. Kartik Ariyur, Yan Cui, Dr. Dewayne Branch, Joshua Umo

An overall result of this collaboration between the Mechanical Engineering Dept. and the Purdue University Libraries (PUL) should result in building a big data framework that make have knowledge transfer for similar large scale geospatial data implementations. Such may promote best practices of data management where the library skill sets may aid faculty research and student learning. Here, the PUL is concerned with advancing the Mechanical Engineering’s STEM pipeline capacity with this type of research, collaboration and data management engagement.

The application for this work may further patent develop towards building fire and safety issues. The purpose of this project is to run some field testing in the Potter Engineering Library in the near future. The result should create a magnet map of the library using a set of research participants.

This poster shows the current research of localizing an I-phone using big data collection and sensor fusion techniques. The primary work is Autonomous Indoor Localization via Field Mapping Techniques which primarily designed as indoor fire and safety aid.

The I-phone is being applied to in indoor fire, safety and data knowledge design.

Data from I-phone:
1. Acceleration (3-axis)
2. Angular rate (3-axis)
3. Magnetic field intensity (3-axis)
4. RSS signal strength

Major tasks
1. Collect the data using I-phone application
2. Get the data directly from I-phone to a Purdue server through Wi-Fi.
3. Transfer the data to GUI Matlab
4. Find magnetic field intensity map

Future Considerations:
1. Functions after data processing
2. Indoor/outdoor localization
3. Real-time map update from server
4. Step detection and orientation