Asphalt Paver Engineering Control Systems

Purdue ECT Team
Purdue University, ectinfo@ecn.purdue.edu

DOI: 10.5703/1288284315776

Follow this and additional works at: http://docs.lib.purdue.edu/ectfs
Part of the Civil Engineering Commons, and the Construction Engineering and Management Commons

Recommended Citation
http://dx.doi.org/10.5703/1288284315776

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Asphalt Paver Engineering Control Systems

The Need
At present, there are approximately 300,000 asphalt paving workers who are routinely exposed to asphalt fume. Presently, limited data exists concerning the level of exposure and subsequent health effects for paving workers. Some workers have reported acute health effects including breathing difficulty; burning of the eyes, nose, throat, and skin; headaches; and nausea. Animal studies indicate that asphalt fumes may be carcinogenic under certain conditions. Asphalt paver engineering controls were implemented to reduce workers’ exposures to hot-mix asphalt fumes in highway paving operations. This is accompanied through the partnership including National Institute for Occupational Safety and Health (NIOSH).

The Technology
The engineering control method developed for highway class pavers includes ventilation systems, baffles, and enclosures to capture the generated contaminant within the paver’s auger area and to exhaust it before it enters the workers’ working environment. The control systems capture up to 80 percent of fume emissions coming from the auger area, the greatest source of fume emissions from paving machines. The controls cover the auger area of the paver where fumes are generated. They then transport the fumes through a duct system and exhaust them through a stack away from the worker. This system significantly reduces worker’s exposure to asphalt fumes.
The Benefits

Performance results on first-generation prototypes ranged from 17-100% capture efficiency. After incorporating design changes, the capture efficiencies improved to a range of 80-100% by July 1997. Five of the control systems were also evaluated during actual paving environments. These tests revealed fume reductions up to 80% from the pavers' auger area.

Status

Initiated by the National Asphalt Pavement Association (NAPA), the effort to reduce workers’ exposures to asphalt fumes involved 5 asphalt paver manufacturers who represented more than 80% of the highway-class paver market. Through an agreement with the Department of Transportation (DOT), NAPA requested that the NIOSH assist the manufacturers with their prototype designs and independently evaluate the performance of each prototype. To reach the goal, manufacturers suggested designs based on their knowledge of machine structure and operating needs. NIOSH scientists provided crucial engineering and industrial hygiene knowledge to measure the volume of fume captured by each prototype system, analyzed results, and suggested design improvements. NIOSH researchers developed and published a test protocol for evaluating the asphalt paver under controlled conditions. NIOSH used this protocol to evaluate the control systems of each of the paver manufacturers and provided recommendations to optimize the performance of each control system. The diverse partners in the initiative signed a voluntary, industrywide agreement with the Occupational Safety and Health Administration (OSHA) to observe the guidelines and to incorporate effective fume emission controls in all new highway pavers. As of September 1998, over 700 of the first generation of pavers built according to the guidelines have rolled off the assembly line.
Barriers
The engineering control system for asphalt pavers is for highway-class pavers, not for non-highway-class pavers, because the research on engineering controls is based on prototype controls applied to highway-class pavers. And current research applies only to new equipment that has the engineering control designs integrated into the basic paver design. Manufacturers must develop kits for reducing worker exposures without creating tripping hazards from duct work, increased noise exposure from externally mounted exhaust fans, or undue burdens on paver hydraulic or electrical systems.

Points of Contact
Margaret Cervarich, National Asphalt Pavement Association
E-mail: mbc@hotmix.org
Margaret Lomax, Federal Highway Administration
E-mail: Margaret.Lomax@fhwa.dot.gov

References
1. NIOSH - Reducing Exposure to Asphalt Fumes http://www.cdc.gov/niosh/innovatn.html
Reviewers
Peer reviewed as an emerging construction technology

Disclaimer
Purdue University does not endorse this technology or represents that the information presented can be relied upon without further investigation.

Publisher
Emerging Construction Technologies, Division of Construction Engineering and Management, Purdue University, West Lafayette, Indiana