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ACREAGE ESTIMATION, FEATURE SELECTION, AND SIGNATURE EXTENSION 

DEPENDENT UPON THE MAXIMUM LIKELIHOOD DECISION RULE 

John A. Quirein, M. C. Trichel 

Lockheed Electronics Company, Inc., 
Aerospace Systems Division, Houston, Texas; and 

Lyndon B. Johnson Space Center, National Aeronautics 
and Space Administration, Houston, Texas 

I. ABSTRACT 

The maximum likelihood decision rule and estima­
tion of the resulting rn-class probability of misclassi­
flcation are discussed. A bound on the variance of a 
proposed unbiased estimator of the m-class probability 
of error is derived. The problem of estimating the 
a priori probabilities for two classes 1s covered. 
When the estimator is counting the proportion of 
classified samples assigned to each class, a bound 
on the error of the estimate is derived. The problem 
of m-class feature selection using the Bhattacharyya 
distance is also addressed. The particular case in 
which each class density is assumed to be a mixture 
of multivariate normal densities is considered in 
detail. In conclusion, the extension of spectral 
signatures in space and time is also discussed. 

II. THE MAXIMUM LIKELIHOOD DECISION RULE AND ESTIMATION OF THE 

RESULTING m-CLASS PROBABILITY OF MISCLASSIFICATION 

I 

The m-class probability of misclassification can be estimated using unlabeled test 
samples and labeled training samples. All prior probabilities are assumed to be known, 
and labeled training data are assumed to be available to construct an estimate for each 
~lass density function. The class prior probabilities and estimated density functions 
are used to obtain an estimate of the conditional risk of misclassification at each point 
of the unlabeled test samples. The average of the risk estimates is shown to be the 
probability of misclassification. An expression for the variance of the estimate result­
ing from finite test sample size is also derived. 

A similar approach has been made (Fukunaga, Kessel, 1973; Minter, Thadani, to be 
published). However, in this paper, the results of Fukunaga and Kessel's paper are 
extended from two to m-classes. In addition, it is shown in a later section of this 
paper how the m-class estimate for the probability of misclassification can be used in 
feature selection. 

Let X be a random n-dimensional measurement vector belonging to one of the 
m-classes wI' w2 ' ••• , wm ' Let qi be the prior probability of the ith class and 

Pi(X) be the probability density function of the random vector X evaluated at X, 

and belonging to the class wl . Let the mixture density be given by 

p(X) 
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Let [Rl ,R2 ,···,RmJ 
such that any vector X 
characteristic function 

be any partition of the underlying 

is classified into wi only if X 

n-dimensional vector space 
belongs to Ri .. Define the 

and the fUnctions 

I, X in Ri 

0, X not in Ri 

p(X) 

r (X) = P (X) 
p (X) 

By definition, the probability of misclassification R for m-classes is given by 

R - q.p. (X)] dX 
~ ~ 

1 -

It follows from the definitions of 
written as 

OR (X), piX), and r(X) 
i 

R = I - 't!q.P. (X) 
i=l 1 1 

= I - fp(X) dX 

1 - ![g~~n p(X) 

1 - f r(X)p(X) dX 

OR. (X) dX 
~ 

dX 

that Equation (5) may be 

(3) 

(4) 

(5) 

( 6 ) 

where in the above, the region of integration is the entire measure space. Thus, the 
probability of misclassification is just the complement with respect to I of the expecta­
tion of r(X) with respect to the random vector X, so that 

R = 1 - E[r(X)] 

It is important to note that the probability of misclassification R can be 
estimated by the sample mean of r(X

i
) for Nt test samples as 

R 1 - /t 
t ·~=l 

(7) 

(8) 

where is a random variable, the 

the class identities of the are 

x. 's 
~ 

not 

are drawn from the mixture density p(X) and 

needed. Note that R is minimized in accord-
ance with Bayes rule if l,···,rn, is defined such that 

k=l,· ··,m (9) 
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Equation (9) is the classic~l maximum likelihood decision rule (Anderson, 1958) so 
that both R and the estimate R of R are minimized by the same likelihood decision 
rule. Using a partition defined by (9), R is then an estimate of the Bayes error. Let 
X belong to Ri . Then 

reX) 

is the posterior probability; i.e., the conditional probability of a measurement X 
belonging to class wi' so that 

represents the average conditional probability for the unlabeled but classified test 
samples, and it follows from Equation (8) that the estimate of the probability of mis­
classification is minimized by maximizing the average conditional probability. Also, 
since 1 - r(X

i
) is the conditional risk of misclassification, it follows from Equa-

tion (8) that the average of the risk estimates is the probability of misclassification. 

Since the Xi'S are independent and identically distributed random vectors, the 

r(Xi)'s are independent and identically distributed random variables. Therefore, from 

Equation (7), the estimate of Equation (8) is unbiased as 

/ 

E[R] = 1 - N~ t E[r(xJ] =1- E[r(X)] R (10 ) 

We now derive an expression for the variance of R for the particular case of a 
Bayes partition as defined by Equation (9). Since 

it follows 

and 

o 5 1 - r (X) 5 1 _ 1 
m 

E {[ 1 - r (X) ]2} 5 (1 - ~) R 

Therefore, a bound on the variance of 1 - r(X) , cr
2 [1 - reX)] is 

cr 2 [1 - r(X)] E {[l - r (X) ] -- 2} E2 {[l - r (X) ]} 

E {[l - 2} - reX)] - R2 

5 (1 - ~ ) R _ R2 

R (1 - R) - ! R m 

(ll ) 

(12 ) 

(13) 

(14) 

which is the same as the expression derived for two classes except that m now ap'pears 
in the denominator rather than 2 (Fukunaga, Kessel, 1973). Thus, the. variance of R 
is given by 

var [R] (15) 
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h 

and by Equation (14) satisfies 

var [RJ < L [R(l - R) 
- Nt 

The results of this section are summarized below. 

(16) 

I 
Theorem 1: Let reX) be integrable with respect to the mixture density function 

p(X). Then the probability of misclassification R is given by 

R = 1 - jr(X)p(X)dX 1 - E [r (X)] 07J 

so that the probability of misclassification is the complement with respect to 1 of the 
expectation of reX) with respect to the random vector X. 

For any partition [Rl,···,RmJ, R is an unbiased estimator of R in that 

E [RJ = R 

Furthermore, if the partition is the Bayes partition defined by Equation 9, then the 
variance of ~ satisfies 

A 1 [ 1 ] var[RJ < -- R(l - R) - - R 
- Nt m 

III. ESTIMATING A PRIORI PROBABILITIES FOR TWO CLASSES 

Assume the existence of two classes WI and w2 with density functions, Pl(X) 

(18) 

09 ) 

and P2(X), respectively. The functions are not necessarily multivariate normal. For 

example, Pl(X) could be the density function for wheat and P2(X) could be the density 

function for nonwheat, with the mixture density fUnction given by 

In this case, the partition defined by Equation (9) is equivalent to 

X (classified as wheat) exists in Rl if and 

only if qlPl(X) ~ 1/2 p(X) 

Here only training samples are needed for estimating Pl(X) , because the mixture 

density p(X) can be estimated from the unlabeled test samples. 

(20) 

(21) 

In general, with an arbitrary 
ties ql and q2' the space can 

decision rule independent of the 
be partitioned into two regions 

a priori probabili­
RI and R2 . In 

this case, an estimate ql of ql 

samples classified as 
can be obtained by counting the proportion of test 

If the actual ql 

q1 However, it 

f p(X) dX 

Rl 

1s unknown, it is difficult to estimate the error associated with 

is possible to derive a measure of the error. Let 

a = 1 PI (X) dX 
Rl 
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Then it can be algebraically verified that for any partition, 

ql (Equation 22) satisfies 

(25) 

where 0 < a < 1 and 0 < b < 1 
can be written as 

By noting that the probability of misclassification 

it follows that as a and b approach 1, the probability of misclassification 
approaches 0, and from Equation (25) 

(26) 

( 27) 

It follows as in the previous section that estimates of a and b can be obtained using 
unlabeled test samples and are given by 

a 1 L [Pl (Xlj 
Nt !ilXl 

XER1 

(28) 

1 L r2 (Xlj 
Nt P (Xl (29) 

XER 2 

IV. FEATURE SELECTION 

Feature selection is the 
X from n to n' , where 
measurable transformation 

reduction of the dimension n of each observation vector 
n' < n. The dimensionality reduction is obtained by the 

BX 

where 1 is an nT-dimensional vector. In practice, B is generally a linear 
formation, and the space of all such 1's is the transformed space. Since B 
assumed to be measurable, the Radon-Nikodym theorem (Kullback, 1968) guarantees 
existence of density functions gi(Y) for each of the m-classes, satisfying 

i=l,··· ,m 

where S is any measurable set and 

trans­
is 
the 

(30) 

(31) 

(32) 

PMCB denotes the minimal probability of misclassification computed in the trans­

formed space for a given transformation B. Similarly, PMC denotes the minimal proba­
bility of misclassification computed in the nontransformed space. The first section of 
this paper shows that if [Sl,···,SmJ is the minimizing partition in the transformed 
space 

s. = (ylq,g. (Yl > q.g. (Yl 
~ .1.~ -)) 

j=l,···,m} (33) 

As shown elsewhere (Quirein, Decell, 1973), PMC ~ PMCB . The two terms are equal 
when 

i=l,··· ,m (34 ) 
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with Ri as defined by Equation (9). 

The difference PMC B - FMC ~ a can be considered a measure of the average loss of 

interclass separability resulting from the measurable transformation Y = BX The 
objective of feature selection is to find an n' < n and transformation B such that 
the difference PMCB - PMC is small. This objective can also be considered as the main­

I tenance of n-dimensional patterns in nt-dimensional space. 

In practice, the expressions PMCB and PMC are difficult to evaluate because the 

qi's are generally unknown and because the higher dimensional integrals are difficult to 

evaluate. However, the approach in the first section of this paper allows the minimizing 
of an estimate of PMC B when the qi's are known and will be discussed briefly since a 

complete derivation is presented elsewhere (Quirein, Minter, 1974). Let PMC B be an 

estimate of PMC B computed in the transformed space, with the variable Xi replaced by 

BX i in Equation (8). Assuming differentiability (which for most cases of interest will 

exist for a given partition), then it is shown elsewhere (Quirein, Minter, 1974), if the 
estimate PMCB of PMC B is to be minimized for a partition [Sl,S2'··· ,Sm] and matrix B, 

then B must satisfy the matrix equation 

e::CB
) (0 ) 

and 

k=l,· •• ,m} 
i=l,··· ,m 

J. =1 ••• N , 't 

(35) 

<36 ) 

The expression for the partial derivative ("::CB) is computable and is presented 

elsewhere (Quirein, Minter, 1974). Because Equations (35) and (36) are numerically com­
plex to satisfy and because the qi's are generally unknown, a measure ~ of interclass 

separability has been devised with these properties: 

1. The expressions for ~ and ~B are easily evaluated. ~B is the measure ~ 

evaluated in the transformed space. 

2. PMC ~ ~ and PMC B ~ ~B 

3. ~B ~ ~ with ~ = ~B implying PMC = PMCB 

To define a measure ~ of interclass separability that satisfies numbers 2 and 3 
and sometimes number 1, the Bhattacharyya distance (Kailath, 1967) is used. The inter­
class Bhattacharyya distance between classes wi and wk is 

i=l,···,m-l ( 37l 

k=i+l,··· ,m 

Similarly, in the transformed space 

i=l,···,m-l <38 ) 

k=i+l,"',m 
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is defined. The separability measure ~ is defined 

m-l m 
~ I: I: l/I(i,k) 

i=l k=i+l 

and the separability measure l/I B is 

m-l m 
~B = I: I: ~B(i,kl 

i=l k=i+l 

The following is proved below: 

Theorem 2: PMC S l/I 

with l/I B = ~ implying PMC = PMCB . 

To prove PMC < ~, note that 

min [qiPi (Xl, qkPk (Xl] ~ [qiPi (Xl qkPk (Xl] 1/2 

and writing the probability of misclassification as 

m-l m 

PMC L L 
i=l k=i+l 

it follows from Equation (41) 

m-l m 

oL L 
i=l k=i+l 

frq . P , (Xl JL J. 1· 

(39) 

I 

(40) 

(41) 

(42) 

(43) 

Similarly, it can be shown PMC B ~ WB . To complete the proof of the theorem, note that 

l/I B (i,kl = ![qigi (Yl qkgk (Yl] 1/2 dY 

![qig i(Yl/qkgk(Yl]1/2 qkgk(Yl dY 

![qigi (BXl/qkgk(BXl] 1/2 qkPk(Xl dX (Halmos, 1950) 
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, 

so that 

2WB(i,kl - 2W(i,kl = !{[qi9i(BXl/qk9k(BXl] 1/2 qkPk(Xl 

+ [qk9k (BXl I qi9i (BXl] 1/2 qiPi (Xl 

- 2 [qi Pi (Xl qkPk (Xl ]1/2 } dX 

= ]{[qi9i (BXl/qk9 k (BXl]1/4 [qkPk(Xl] 1/2 

1/4 1/2}2 
- [qk9k(BXl/qi9i(BXl] [qiPi(Xl] dX 

? 0 

which implies that WB(i,k) ~ W(i,k) and WB(i,k) = W(i,k) if and only if 

for all X. Thus it follows that WB ~ wand the condition WB = IjI implies by 

Equation (46) that B-l(Si) = Ri , i = l,···,m. In this case, PMC = PMC B as 

mentioned in the beginning of this section, completing the proof of the theorem. 

(45l 

(46) 

The proof of the above theorem shows that the condition WB = IjI is equivalent to 

Pi (Xl gi (BXl 

Pk(Xl = 9 k (BX l 
i=l, .. . ,m-l 

k=i+l,··· ,m 

almost everywhere, so that a 

thus PMC
B 

= PMC even if the 

B, if one exists, can be found satisfying 

qi'S are unknown. 

V. FEATURE SELECTION WHEN EACH CLASS DENSITY IS A MIXTURE 

OF MULTIVARIATE NORMAL DENSITY FUNCTIONS 

Assume that each class density fUnction Pi(X) may be written as 

ji 

L: q. kP' k(Xl 
k=l ~, ~, 

where each Pi,k(X) is assumed to be multivariate normal and 

Defining the separability measure ~(i,o) between classes 

~(i,ol 
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(49) 
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then 

The following is proved belQw: 

Theorem 3: 

with ~ = ~ B 
implying PMC = PMCB . 

m-l 
I: 

m 

I: ~(i,k) 
i=l k=i+l 

PMC S W S ~ 

PMCB S WB S ~B 

~B ~ ~ 

(51) 

I 

Before proving Theorem 3, note ~hat any within-class separabilities of the following form 
need not be evaluated: 

f[ q· kP· k(X) q .. p .. (X)]1/2 dX 
~,~, 1,J 1,J 

(52) 

This fact 1s particularly useful in the two-class problems in which each class 1s assumed 
to be a mixture of multivariate normal density functions. If jl = 1 so that the first 

class has only one subclass, then 

Moreover, under the assumptions of this section of the paper, expressions such as 

~, ~B' and 

= ~(i,o) 

and it immediately follows that 

and similarly, 

(~:B) 
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The 
if 

inequality ljIB 

then 

> ~ follows exactly as in the proof of Theorem 2. 
almost everywhere 

As in Theorem 2, 

~B = ~ , 

g. k(BX) 
J., 

9 ,(BX) 
o,~ 

k=l, ... ,ji 

£,=1,'" ,jo 

i=l, ... ,m-l 

0=i+1, .. . ,m 

The above can easily be shown to imply almost everywhere, 

i=l, .. . ,m-l 

o=i+l,···,m 

To see this, consider (when Equation 55 is true) 

qiPi(X) 
qopo(X) 

jl 

:2: q. kP, k(X) 
~, ~, 

k=l 
J o 

:2: qo,2Po,2(X) 
2=1 

q. kP' k(X) 
~ , 1. I 

Po,l (X) 
p. 1 (X) 

J., 

• 

go,l (BX) 
g. 1 (BX) 

t
j 

. _q=.. ",k,-g-=. +~"'( B_X_) 1., 1., 

go,l(BX) 
k=l 

J., 

q. kg· k(BX) 1, 1., 

J o 

L 
2=1 

qigi(BX) 

qogo(BX) 

This completes the proof of the theorem. 

VI. SIGNATURE EXTENSION 

In conducting large area crop inventories, spectral signatures obtained from one 
geographical area, perhaps an 11.1- by 9.2-kilometer (17.9- by 14.B-mile) area may be 
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used to classify another geographical area of a similar size. The two areas are usually 
separated by approximately 18.5 to 185.2 kilometers (29.8 to 298.0 miles), and the signa­
tures are obtained usually 1 or 2 days apart. 

If the random vector variable X belongs to area 1 and the random variable Y 
belongs to area 2, the hypothesis states that under certain conditions a linear trans­
formation B and additive vector v can be found satisfying 

Y = BX + v 
1 
(58) 

If Equation (58) is physically 
ditions, known statistics from area 
area 2. Methods for determining B 
fied are discussed below. 

satisfied almost everywhere, then, under certain con­
I can be transformed using B and v to classify 

and a consideration of the conditions to be satis-

The conditions to be satisfied to find the desired transformation and perform a 
classification of area 2 using statistics from area 1 fall into two distinct categories 
surface conditions and above-surface conditions. The above-surface conditions are 
affected primarily by the atmosphere, Sun angle, and the sensor. It has been shown 
(Potter, Shelton, 1974) that a difference in Sun angle only between two areas can be 
accounted for with a linear transformation. Conceivably, areas with "similar" atmos­
pheric transmission could be delineated by an analyst inspecting satellite imagery. 

The surface conditions are primarily affected by surface moisture, soil color, and 
crop type and ~tage of maturity. Soil mOisture maps could be updated on a real-time 
basis using meteorological information. Soil color maps could be constructed using his­
torical information. Areas of similar crop type and stage of maturity could be obtained 
using historical information and updated as needed during the growing season. Below, we 
consider strategies for satisfying Equation (58) when a solution may exist. 

Assume that area 1 consists of m distinct classes 

(59) 

normally distributed with known covariances and means (nj'~i)' Also, let TIl be the 

"class of interest!! in that we are only interested in determining the percentage of 
class TIl in area 1. The classes ~2,···,TIm can be assumed to represent the competing 

crops. Assume that area 2 consists of m~ < m distinct but generally unidentified 
classes 

TI 1 ,TI 2 ,··· ,TIrn~ (60) 

normally distributed with known or unknown covariances and means (Ai,Si)' Only the 

cases where (A
i

,8i ) are known will be considered. We assume that for each distinct 

class TIi' the same physical class TI
j 

exists in segment 1. Thus the problem becomes 

one of associating each of the classes of unknown identity, TIi' in segment 2 with 

corresponding physical class TI
j 

in segment 1 in some way and then solving Equa-

tion (58) such that 

i=l, •.. ,m'" 

(61 ) 

In general, such an association of classes cannot be made, since, if this were the case, 
area 2 could be classified using statistics from area 2. 

A possible approach to solving this problem is discussed below. Assume that in each 
of the areas the same physical class exists and that this class is "easily" identified -
with or without ground truth. Such a class is called a "calibration class." Let the 
calibration class in area 1 be TI

j 
and the corresponding calibration class in area 2 be 

ITi Assuming that a B and v satisfying Equation (58) eXist, then it suffices to 

solve the following for B . 
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Bn.BT = A. 
J ~ 

B~j + v = Bi 

It is immediately verified that the solution is given by 

If a calibration class cannot be obtained, a possible way of obtaining an association 
between the classes in the two areas is described below. Let 

i=l,···,rn 

Bl-l i + v i=l,···,m 

(62) 

(63) 

(64 ), 

(65) 

(66) 

( 67) 

Let the index i denote the 
the index j denote classes 
distance between classes tti 
respectively, define 

transformed classes from area 1 (Equations 
from area 2. Using ~(i,j) to denote the 

and I
j 

having statistics (ni,P i ) and 

66 and 67) and 
Bhattacharyya 
(Aj,B j ) , 

Yj = max ~ (i, j) 

i 

l~i'5m 

a. i which maximizes $I'",! J 

Thus the association is obtained by 

m 

¢ ='L Y
J
. 

j=l 

max {¢} 
B 

j=l, .. ,rn 
, 

(68) 

(69) 

(70 ) 

Since for a given association 
ciated with the i'th class in 
solution could be obtained by 

(ex = i 
j 

area 1), 
iterating 

denotes the jth class in area 2 has been as so­

¢ is a differentiable function of B, the 
Equations 66-70 until the condition 

j=l,··· ,m" (71) 

is satisfied, where t is some predetermined threshold. 
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