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ABSTRACT 

This document reports on an application of artificial intelligence to achieve 

demand-based scheduling within the context of a network-computing infrastructure. 

The described A1 sub-system uses tool-specific, run-time input to predict the 

resoura:-usage characteristics of runs. Instance-based learning with locally weighted 

polynornial regression is employed because of the need to simultaneoi~sly learn 

multiplr: polynomial concepts and the fact that knowledge is acquired increnlentally in 

this dornain. An innovative combination of a two-level knowledge base, and age and 

usage s~.atistics are used to: a) detect inadequate and noisy feature-vectors, 13) account 

for short-term variations in compute-server and network performance, and c) exploit 

temporal and spatial locality of runs. Modifications to the basic learning algorithm 

allow the approach to be computationally feasible for extended use and noise tolerant 

by se1ec:tively adding feature-vectors into the knowledge base and discarding feature- 

vectors that consistently result in inaccurate predictions, respectively. The learning 

system was tested on three semiconductor simulation tools during normal use of the 

Purdue University Network Computing Hub during Fall 1997, and on four synthetic 

data-sets. Results indicate that the described instance-based learning technique using 

locally weighted regression with a locally linear model works well for this domain. 



1. Introduction 

There is increasing evidence to support the view that, in the future, computing will be 
network-based and service-oriented. Desktop computers will be able to reach out across the 
network and obtain whatever software and hardware resources the current application needs 
(Smarr and Catlett, 1992). For example, the proposed Network Computers anid Net PCs (e.g., 
Comerford, 1997) will download the required software from the network, and supplement their 
computing power by that of network-accessible servers. This view implicjtly assumes the 
existence clf an underlying infrastructure capable of supporting network-accessible, demand- 
based computing. 

A denland-based computing system can be characterized by its universal accessibility and 
its ability to make automatic cost/performance tradeoff decisions at run-time. Universal 
accessibility can be provided via a widely-used networked interface such as the world-wide web. 
Run-time cost/performance tradeoff decisions require that the infrastructure be able to decide 
how (whicln implementation - e.g., sequential versus parallel) and where (which platform) to 
execute a tool. In contrast, with conventional computing systems, user-commands are implicitly 
tied to specific - and typically local - implementations and machines. This report presents an 
application of artificial intelligence to achieve demand-based sched~tling withiri the context of a 
network-computing infrastructure (the Purdue University Network Computing Hub, or PUNCH) 
that allows users to access and run existing software tools via standard world-w-ide web browsers 
such as Netscape. 

Cost/performance tradeoff decisions are based on scalability and portability information. 
Scalability information includes run-specific resource-usage in terms of CPU time, network 
data-transfer time, memory usage, and disk-space requirements. Portability information consists 
of a list of the available implementations (e.g., sequential versus parallel) for a given tool, and 
the architec:tures on which they are supported. 

While portability information is usually available a priori, scalability information is 
generally dependent on the mn-time input. Although it may be possible to obtain analytical 
expression:; that describe the relationship between the run-time input and the corresponding 
resource-usage (e.g., matrix-manipulation codes), in general, tools tend to exhibit complex 
behavior that make such analytical expressions nearly impossible. Even when it is possible to 
determine an analytical expression, the resource-usage characteristics cannot be computed from 
an expression that simply describes the computational complexity of the algorithm; the 
appropriate: architecture-specific constants must also be determined. 



To our knowledge, no other system has used tool-specific, run-time i n p ~ ~ t s  to predict the 
resource-usage characteristics of runs. Other work aimed at predicting resource-usage (e.g., 
Goswami, Devarakonda, and Iyer, 1993; Svensson, 1990; Wang, Krueger, and Liu, 1993) 
utilizes tool-specific analytical expressions or statistical data obtained from past runs to predict 
the resourct:-usage characteristics of future runs. For example, Devarakonda anti Iyer (1989) use 
the identity of a tool and its execution history to identify high-density clusters in the space 
defined by the resource-usage parameters. Results show that even these simple heuristics allow 
for significitntly better scheduling (Goswami, Devarakonda, and Iyer, 1993). This approach was 
not used here because the resource-usage characteristics of the tools in our domain tend to be 
highly dependent on run-specific parameters (e.g., a Monte Carlo simulalion can require 
anywhere from a few minutes to several days of CPU time, depending on the problem being 
solved). 

The goal of the A1 sub-system described here is to assist the network-computing 
infrastructure in emulating an ideal user in terms of resource-management and usage policies. 
For the purposes of this work, an ideal user is one who: a) can predict the resource-requirements 
of each run that heishe initiates, b) preferentially uses the most plentiful resources that support 
the requirexents of the given run, and c) voluntarily relinquishes resources to higher-priority 
users when necessary. 

The A.1 sub-system uses instance-based learning to predict the CPU time and the network 
data-transfer time for a given run on the basis of the associated run-time input. The prediction 
is then used to adapt the network-computing infrastructure's resource-allocation policy. The 
choice of ir~stance-based learning was driven by the need to capture polynomial concepts and the 
fact that kriowledge is acquired incrementally in this domain. Note that each tool has its own 
knowledge base. The following learning issues were addressed by using an innovative 
combination of a two-level knowledge base, and age and usage statistics: a) detection of 
inadequate feature-vectors, b) short-term variations in compute-server or network performance, 
C) noisy features, and d) scalability of the knowledge base for extended use. The learning system 
was tested on three semiconductor simulation tools during normal use of PUNCH in Fall 1997, 
and on four synthetic data-sets (off-line). Locally weighted polynomial regressjon with a locally 
linear mod(:] was found to perform well for all the data-sets tested. 

The report is organized as follows. Chapter 2 provides a brief overview of PUNCH and 
on-demand network-computing. Chapter 3 discusses the domain characteristics that affect the 
selection of the learning algorithm. Chapter 4 introduces the A1 sub-system and Chapter 5 
presents the experimental evaluation and results. Finally, the conclusions of this work and a 
discussion of on-going work are presented in Chapter 6 and Chapter 7, respectively. 

1.  Memory a - ~ d  disk-space requirements are not predicted. This is due to the lack of a monitoring system that allows 
these parameters to be measured accurately, and not a limitation of the A1 system. 



2. The Purdue University Network Computing Hub 

The E'urdue University Network Computing Hub (PUNCH)' is a FVWW-accessible 
collection of simulation tools and related information. Functionally, it allows users to: a) upload 
and manip~~late input-files, b) run programs, and c) view and download output - all via standard 
WWW browsers. For a detailed description of PUNCH, see Kapadia, Fortes, and Lundstrom 
(1 997). 

PUNClH can be logically divided into multiple discipline-specific "hubs" (see Figure 2.1). 
Currently, PUNCH consists of four hubs that contain tools from semiconduictor technology, 
VLSI design, computer architecture, and parallel processing. A fifth hub is devoted to tools that 
were developed with support from the Semiconductor Research Corporation (SRC). These hubs 
contain over thirty tools from five universities and serve more than 500 users from within 
Purdue, across the US, and in Europe. 

- - - - -  

The Purdue University Network-Computing Hub (PUNCH) 
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Compute-Server / ~ o o l  (~pplication) )^ (-4 

... I Tool ( A ~ P F )  8 8- (-4 

Tool (Application) Workstallon CIwter Tool (Appl~cation) 

Phyricul Olcufion. ' I  ' Phyricnl Olcnrion 'n' 

Figure 2.1: A conceptual view of the Purdue University Network-Computing Hub. 

Running a simulation on the hub is a three-step process. The first step involves the creation 
of the input file(s) required for the relevant simulation. In the second step, users define the input 
parameters (e.g., command-line arguments, etc.) for the program and start the simulation. 

1. The Purdue University Network Computing Hub can be accessed at "http:Nwww.ecn.purd1.1e.edu11abs1punch/". 
Courtesy accounts with access to a limited number of tools are available. 



Finally, after the simulation is complete, the user can see and download the resillts via the hub's 
output interface. 

PUNCIH can be viewed as an operating-system for the world-wide web (see Figure 2.1). 
Users communicate with the PUNCH infrastructure via a front end (equivalent to an operating- 
system she:ll) that allows them to access and use distributed resources in a location-transparent 
manner. The front end processes user requests by way of a distributed engine (akin to an OS 
kernel) that can access and control local and remote hardware and software resources. Hardware 
resources can include arbitrary platforms and software resources include any a.rbitrary program 
(the current implementation provides limited support for GUI-based programs). Resources can 
be located at any network-accessible site, and can be dynamically added or removed from the 
infrastructure. 

Demand-Based Scheduling 

Figure 2.2: A flow-chart depicting the components required to perform on-demand scheduling. The 
shaded area represents the scope of the work discussed in this report. 

PUNCH allows on-demand management of existing software and hardware resources by 
delaying the binding of a user's command to a specific implementation and machine until run- 
time, at which point the requirements of the given run can be analyzed (see Figure 2.2). The 
resource-requirements of a particular run are determined by PUNCH'S A1 sub-system, which 
qualifies the user-supplied tool-input with available tool-specific scalability and portability 
information. The output of the A1 system is then used to match a user's request with the 
underlying network-accessible tools and resources. 



3. Domain Characterization 

3.1 Introtluction 
The domain-imposed constraints that determine the selection of the learning algorithm can 

be divided into two categories. The constraints in the first category are a result of the diversity of 
the hub tools and users, while those in the second set are a consequence of the nature of the run- 

time environment associated with a network-computing infrastructure. 

3.2 Tool (Jharacteristics 
The tools available on PUNCH come from a wide variety of environment:; and disciplines. 

Each tool rsquires its own set of features and a separate knowledge base. When possible, the list 
of relevant features for predicting the resource-usage characteristics of a tool is obtained by 
consulting the appropriate authors. Otherwise, the list is compiled with the help of an expert in 
the field. Irl general, establishing the correct (i.e., relevant) features for a given tool is a difficult 
problem. Authors are often not accessible, and realistic tools tend to use sophisticated algorithms 
whose behavior cannot be easily correlated to the user-supplied input values. Another problem 
associated with the feature-vector is that the range of values that a given featu.re can assume is 
generally not known a priori, particularly in a research environment. Even when such 
information is available, the limits (e.g., how small a semiconductor device can be) tend to be 
technology-dependent. In terms of the artificial intelligence system, these issues require that the 
system be able to: a) ignore irrelevant features, b) detect inadequate feature-vectors, and c) work 
with unscaled features. 1 

The relationship between the 'n' inputs supplied to a program and the corresponding 
resource-usage characteristics is defined by a set of polynomials in n-dimensional space.2 Thus, 
the learning algorithm used for this domain must be able to capture concepts described by 
(possibly multiple) polynomial functions. Moreover, this relationship often has a non- 
deterministic component with respect to the available inputs. For example, the convergence rate 
of an iterative matrix-manipulation algorithm is likely to depend on the distribution of the 
eigenvalue:; of that matrix, which are difficult to compute in advance. This effectively implies 

1. Note that "unscaled" in this context implies that the system cannot use a constant scaling factor that has been 
determined a priori; it can still scale features on the fly. 

2. Recall that any function can be represented as a polynomial, although this may not be the most concise 
representa1.ion. 



that the learning algorithm will have to work with an incomplete or noisy description of the 
features tha.t determine the resource-usage characteristics of the program. 

3.3 Run-Time Environment 

When a request for a run is received by PUNCH, it extracts the values of the 
administrator-specified features from the user-supplied input and uses thern to predict the 
resource-usage characteristics. The prediction is then used to determine how and where to 
schedule the request. After the run completes, PUNCH provides the true resource-usage 
characteristics to the artificial intelligence system, allowing the learning algorithm to incorporate 
the new information into its knowledge base. Because this process happens in real-time and 
during norrnal use of the system, an incremental learning approach is needed. 

The nin-time environment is also interactive, which requires the predictions to be made in 
real-time. This in turn implies that the resources used by the artificial intelligence system cannot 
grow monotonically with time. 1 

The final issue that affects learning is short-term variations in the performance of computer 
systems. Short-term variations in performance can occur due to unpredictable events such as a 
file-server or network router becoming overloaded. While these short-term anomalies essentially 
amount to noise in the long run, they tend to have a significant impact on run-time when they do 
exist. Thus, the learning algorithm must be able to quickly tailor its predictions to such short- 
term variatj ons without being unduly affected by them in the longer term. 



4. The Artificial Intelligence System 

4.1 Introduction 
The learning mechanism of our approach is based on locally weighted regression (LWR). 

In this cha:?ter, we first present the rationale for the selection of this particular instance-based 
learning m'zthod. We then discuss the learning issues that are specific to this domain and the 
modifications that we made to LWR to handle these issues. 

4.2 Algorithm Selection 
Of the requirements presented in Chapter 3, the following are central to the process of 

selecting a learning algorithm: a) an ability to learn sets of polynomial  function.^, b) incremental 
learning, and c) support for irrelevant and unscaled features. These requirements directly 
contribute .to the applicability of local learning algorithms (specifically, instance-based learning 
algorithms:~. 

Global parametric learning algorithms (Schaal, 1994) such as neural networks attempt to 
establish a11 input-output mapping via a single function y = f (x, €I), where 8 is a finite-length 
parameter .vector. While these methods can theoretically approximate any continuous function 

(Funahashi, 1989; Hecht-Nielson, 1989; Skapura, 1996), they may not be appropriate for all 
tools. For t:xample, semiconductor device simulation tools typically allow users to simulate a 
device in one, two, or three dimensions. In general, different solution techniques are used for 
each of these cases, implying that the input-output mapping for such tools will consist of three 
distinct functions. This is likely to cause problems for learning algorithms that attempt to 
capture cor~cepts at a global level. 

Local parametric algorithms attempt to overcome some of the proiblems of global 
parametric learning by dividing the input space into many partitions (Atkeson, Schaal, and 
Moore, 1997; Schaal, 1994). Each partition 'i' is now approximated by an inde:pendent function 
yi =f i (x ,  €Ii); the functions fi are kept as simple as possible. The problem now shifts to the 
selection of appropriate partitions for the learning system (Schaal and Atkeson, 1994). Non- 
parametric algorithms (e.g., Atkeson, Schaal, and Moore, 1997; Moore, Schneider, and Deng, 
1997; Deng and Moore, 1995) address this issue by allowing the number cjf partitions (and 
consequently the number of parameters) to change dynamically. Instance-based learning (IBL) 
algorithms achieve this by recomputing a fixed set of parameters as a function of the query point 
and do not require an explicit training phase (Deng and Moore, 1995). Morc:over, because of 
their localized nature, IBL algorithms are relatively insensitive to the structul-a1 complexity of 



the functio~i to be learned and are not affected by catastrophic interference (Schaal, 1994). This 
makes then1 an ideal choice for this domain. 

There are many instance-based learning algorithms, including nearest neighbor, weighted 
average (kernel regression), and locally weighted regression techniques (e.g., Atkeson, Moore, 
and Schaal, 1996). Nearest neighbor algorithms use the output-value(s) of the closest available 
instance(s) to make a prediction. Weighted average algorithms predict the output as a weighted 
average of the output-values of nearby instances; the weight of an instance is an inverse function 
of its distance from the query point. Locally weighted regression (LWR) fits a surface to nearby 
points, typically via a locally linear or quadratic model. ' With a linear (quadratic) model, the 
target concept is locally approximated by a linear (quadratic) surface. 

Linear Data-Set; Basic IBL Algorithms 
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Figure 4.1: Prediction errors for instance-based learning techniques on instances (from a synthetic data- 
set) whose ~utput-values are linearly-dependent on the feature-vector. Note that the the first few runs 
have been omitted from the plots for improved readability. 

. . . . . . .  

The nearest neighbor and weighted average techniques are not suitable for this domain 
because of their inability to track (even linear) polynomial surfaces without error (Cleveland, 
Devlin, ancl Grosse, 1988). This is illustrated in Figure 4.1, which shows the pre:diction errors for 
the one-nearest neighbor (1-NN), three-point weighted average (3-Avg), locally linear LWR 
(LLWR), a.nd locally quadratic LWR (QLWR) algorithms on a synthetic data-set. The data-set 

1. Higher-orcler local models are generally not used because of the associated computational corjt. 



was made i ~ p  of 1,000 instances with randomly-generated feature-vectors. Each feature-vector 
contained seven features. The "measured" resource-usage characteristics (the figure shows the 
simulated (IPU time) were linear functions of the corresponding feature-vectors. The coefficients 
for the lineiu functions were also chosen randomly. 

In addition to being able to reproduce linear surfaces without error, locally weighted 
regression algorithms (e.g., Cleveland and Devlin, 1988; Moore, 1991; Atkeson, 1992; Schaal 
and Atkeson, 1994) can reproduce peaks and are insensitive to unsymrnetricall!/ distributed data 
(Cleveland. Devlin, and Grosse, 1988; Grosse, 1989; Schaal, 1994). This makes locally weighted 
regression an ideal choice for the given domain. The locally linear model is chosen over the 

locally quadratic model for two reasons: a) it learns faster (for a locally linear surface; see Figure 
4. I), and bl it requires less time to make a prediction. Both are consequences of the fact that, for 
a feature-v~:ctor of length 'n', the LLWR algorithm requires only O(n) parameters to make a 
prediction as opposed to the O(n 2,  for the QLWR algorithm. 

4.3 Learning Issues 

The basic LLWR learning algorithm addresses the following issues: a) learning sets of 
polynomial functions, b) incremental learning, and c) support for irrelevant and unscaled 
features. N[odifications are required to address: a) detection of inadequate fe:ature-vectors, b) 

short-term variations, c) noisy features, and d) scalability of the knowledge base: during extended 
use. 

Of the. listed issues, the last one is the most critical because the basic IBL :ilgorithms do not 
scale well-enough for extended use in the PUNCH environment. This is exemplified by Figure 
4.2, which shows the monotonically increasing nature of the instance-base size and the average 
per-predict-ion lookup time. 

The subsequent sections present solutions for each of the problems mentioned here. 
Detection of inadequate feature-vectors is addressed by storing appropriate imeta-information 
about the instances in the knowledge-base. Sensitivity to short-term varialtions without an 
associated loss in longer-term performance is obtained by using a two-level knowledge base, 
which alsc helps the IBL algorithms scale better. Finally, scalability and noise issues are 
addressed by: a) not adding all instances to the knowledge-base, and b) allowir~g instances to be 
discarded from the knowledge-base. 

4.4 Knowledge Representation 

In a realistic computing environment, multiple runs with identical feat-ure-vectors often 
exhibit different resource-usage characteristics. This is caused by noise in the computing 
environment, inadequate feature-vectors, or a combination of the two. The noise perceived by 
the 1earnin.g algorithm is generated by: a) inaccuracies in the system used to   no nit or resource- 
usage, and b) indirect (via the computing environment) interactions between the different 
processes running on a machine. These considerations were the driving factors for the design of 
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Figure 4.2: Knowledge-base growth and corresponding per-prediction lookup time for instance-based 
learning techniques on instances whose output-values are linearly-dependent on the l'eature-vector. The 
feature-vect~sr contains seven features. Note that the size of the knowledge-base is the same for all four 
methods. 

the chosen knowledge representation. 

The information available to the A1 system at the completion of a run consists of: a) the 
feature-vector, b) the measured resource-usage characteristics, and c) the start-time for the run. 
If the feature-vector is adequate, the measured resource-usage characteristics will generally not 
vary outside of a small range for multiple occurrences. For these situations, we can coalesce 
(multiple) observations within a given range (*lo%, say) into a single averaged observation with 
an associat~~d "use count". The averaged observation is defined as an experience. 

The knowledge associated with a given set of experiences with identical feature-vectors is 
represented as shown in Figure 4.3. Observe that the knowledge is keyed to the feature-vector. 
As explair,ed above, each experience contains usage statistics and the associated (average) 
resource-u:;age characteristics. The multiple use-counts allow concept drift (Schlimmer and 
Fisher, 1986) to be detected (see our discussion of future work in Chapter 6). The resource- 
usage prediction for a given feature-vector is precomputed by calculating the .weighted average 
of the resoix-ce-usage characteristics of the set of experiences associated with that feature-vector. 
Note that ~nfrequently observed experiences can be treated as outliers and excluded from the 
average. The age associated with the feature-vector is the age of its earliest experience. The 
usage statistics consist of: a) the number of times the feature-vector was observed, b) the number 
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Figure 4.3: Each feature-vector is associated with a set of experiences, the corrc:sponding average 
resource-usa.ge, and age and usage information. An experience contains knowledge associated with one or 
more instances. 

of times the feature-vector was used for an interpolated query, and c) the number of times the 
use of the feature-vector resulted in an accurate prediction. Together, the age anid usage statistics 
allow the f iI  system to detect and discard noisy feature-vectors from the knowledge-base. (The 
specific manner in which this information is used to achieve noise-tolerance js described after 
the discuss .on of knowledge-base organization and knowledge retrieval.) 

Inadequate feature-vectors can be detected by analyzing the distribution of the associated 
experience!;. A highly-peaked distribution indicates (with high probability) a good correlation 
between the feature-vector and the corresponding resource usage. On the other hand, a multi- 
modal distribution is a definite indication of an inadequate feature-vector. Currently, we do not 
utilize this information, but anticipate that, in the future, we will use it to trigger a second 
knowledge acquisition phase in which we query the expert for additional  feature:^. 

4.5 Knowledge-Base Organization 

The organization of the knowledge-base was driven by two considerations: a) short-term 
variations jn the behavior of computing resources, and b) temporal and spatial. locality of runs. 
For this do:main, the principle of temporal locality can be stated as follows. If a run with a given 
feature-vector is invoked at some time 't', it is likely to be invoked again at some time 't + At'. 
This is esp~=cially true in an academic environment, where a relatively large number of students 
tend to work concurrently on any given assignment. Similarly, the principle of spatial locality 
can be stated as follows: if a run with a given feature-vector is invoked at some time ' t ' ,  runs 
with simi1a.r feature-vectors are likely to be invoked in the near future. This assumption applies 
to users who, for example, need to characterize a system by perturbing a few parameters at a 
time (chara.cteristic of a research environment). 

Based. on these considerations, a two-level knowledge-base was selected. The first level of 
the knowledge-base acts as a fixed-size cache, representing the short-term memory of the system. 
When an instance is encountered, it is first stored in the cache. The instance-filtering algorithms 
described later are not applied to the cache. This allows the learning algorithm to memorize 
instances in the short-term. During the process of making a prediction, the cache is searched 
first, whick allows the learning algorithm to bias its predictions toward recent information. When 



the cache overflows, the least-recently-used instances in the cache are either discarded or 
incorporated into the long-term memory, based on a specific policy described after the 
discussion on knowledge retrieval. 

4.6 Knowledge Retrieval 

In order to retrieve the resource-usage characteristics of a given feature-vector, the learning 
algorithm scans the two-level knowledge-base in the following manner. It first looks in the cache 
for an exact match to the query in terms of the feature-vector. If a match is found, the algorithm 
makes its prediction on the basis of the precomputed characteristics associated with that feature- 
vector. If a match is not found, the process is repeated with the second level of the knowledge- 
base. The t:,me-associated performance advantages of the two-level organization1 are based on the 
supposition that a match will be found in the cache for a significant number of requests. 

If an exact match is not found in either level of the knowledge-base, the learning algorithm 
retrieves the 2 x (n + 1) feature-vectors that are closest to the query. Here, 'n' is the length of the 
feature-vector. Recall that a linear polynomial with 'n' unknowns contains 'n + 1' terms. This 
implies that, at a minimum, 'n + 1' feature-vectors are required to obtain a unique solution to the 
query (with LLWR). The learning algorithm uses 'n + 1' additional feature-vectors to 
compensate for noisy and "non-independent" vectors (e.g., feature-vectors that have identical 
values in a given dimension do not provide any information about that dimension). 

4.7 Knowledge Management Policies 

This section focuses on modifications to the basic IBL algorithms designed to address 
scalability and noise issues. Basic instance-based learning techniques incorporate all instances 
into the knowledge-base. As shown earlier (Figure 4.2), this results in a monotonically 
increasing knowledge-base, making the A1 system unscalable. A survey of techniques that 
address scalability and noise issues can be found in Wilson and Martinez (1997). 

Given the characteristics of this domain and the knowledge representation discussed earlier, 
there are two ways to address this problem. The first option is to selectively incorporate only 
incorrectly-predicted feature-vectors into the knowledge base. The second option is to discard 
knowledge associated with feature-vectors that have been consistently used t'o make incorrect 

predictions. 

The first option can be expected to work well in situations where the learning algorithm is 
able to capture the target concept. This is exemplified by Figure 4.4. The LL,WR and QLWR 
algorithms are able to learn linear concepts, which results in a self-bounded knowledge base. 
Note that the concept only has to be locally linear (quadratic) for LLWR (QLFVR) to capture it; 
its global structure can be much more complex. The 1-NN and 3-Avg algorithms, on the other 
hand, are 11:ss dramatically affected (compare the Y-Axis range with that of Figure 4.2) because 
they are not able to learn the concept with a finite number of instances. Observe that selectively 
incorporating knowledge could have a negative impact on the learning rate of the system. For 



Linear Data-Set; Modified IBL Algorithms 
800 I I I I I I I I 

I I 1 

QLWR LLWd I 

. C  
, ,.: 2 

J ,L;- + - - - - + - -  - * -  - - -- - - -- - - -- - - 7---- , -  --, -a 
0 100 200 300 400 500 600 700 800 900 1000 

Run Number 

LD 

? 0.15 - 
8 . , , , , . . .;. ; 1 
8 QLWR . . .  . .  + . - '  - . . .  - . -  

, . . . .  ;c-' ,. 0.1 - 
. - 

. . .-c:-.' 
F . ..: i 
a , ., .; '. .- 
3 

- i . . -  
x , . .-'. - g 0.05 - . - 

.. & 
.-. .- ' 

1 *.. *: - 
. . .MC1 _ -  _ _ _ _ _ _ _ _ _ _ - - - - _ - - - - -  - - - - - - - -  _ _ _ - - - - -  

0 4  I I I I I I I I 
0 100 200 300 400 500 600 700 800 900 1000 

Run Number 

Figure 4.4: Instance-base growth and corresponding per-prediction lookup time for instance-based 
learning techniques on instances whose output-values are linearly-dependent on the feature-vector. The 
feature-vect~r contains seven features. 

example, in some cases, an instance that was discarded in the past could have resulted in a better 
prediction for the current query. While this problem cannot be completely eliminated, it is 
partially addressed by the two-level knowledge base. All instances are incorporated into the 
cache regardless of the current policy. When the cache overflows, instances are incorporated 
into the second. level according to the current policy. 

With the second option, knowledge associated with feature-vectors that have consistently 
been used to make incorrect predictions is discarded. The keepldiscard delcisions are made 
periodically; feature-vectors that do not have adequate use statistics associated with them are 
allowed to retain their history for the next time-frame (the history is reset once a keepldiscard 
decision is made). In practice, the described policy is not enforced until after a certain number of 
runs have been observed, to allow for errors before the concept is learned. Note that this 
approach is  similar to the technique used by Aha and Kibler (1989). 

Finally, to account for situations in which these two heuristics fail, the size of the 
knowledge base has a hard upper bound associated with it. When the size exceeds a specified 

2. For the results presented here, "consistent" was arbitrarily defined as an error-rate of more than 50% in a 50-run 
time-frame. 



threshold, a LRU policy (e.g., Hennessy and Patterson, 1996) is used to discard feature-vectors. 

4.8 Implementation Issues 

To ensure numerical stability, the regression matrices were solved by using singular value 
decomposiiion (Press, Teukolsky, Vetterling, and Flannery, 1992). When a unjque solution was 
not possible, the solution that minimizes the norm of the vector formed by the polynomial 
coefficients, (Press, Teukolsky, Vetterling, and Flannery, 1992) was chosen. Finally, the kernel 
width (Atkeson, Moore, and Schaal, 1997) used by the learning algorithm was dynamically 
adjusted so that it stayed flat until a distance equal to that of the nearest-neighbor (it was 
Gaussian after that). This ensured that at least one set of experiences was always available for 
prediction. 



5. Experimental Evaluation and Results 

5.1 Introtluction 

In this application, there are three performance criteria: a) the prediction error, b) the time 
required for prediction, and c) the growth-rate of the knowledge-base. 

When minimizing the prediction error, it is more important to reduce en-ors for runs that 
make heav,y use of resources. For example, a 100% prediction error for a run that uses only a 
few sec0nd.s of CPU time is relatively insignificant, whereas the same error for a run that uses 
several thousand CPU seconds is likely to have a significant impact on the effectiveness of the 
scheduler. 'This distinction can be accounted for by tracking both the absolute and the percent 
prediction ~crror. For a given absolute error, a higher percent error indicates that the prediction 
errors are biased towards the shorter runs. 

Because the predictions must be made in real-time, it is important to place an upper bound 
on the prediction time. Ideally, this time should be significantly smaller than the shortest runs 
invoked by users. A related criterion is to ensure that the growth-rate of the knowledge-base 
eventually decreases to zero. This requirement does not impose a specific upper-bound on the 
size of the Itnowledge base, but does require that the knowledge-base not grow indefinitely. 

5.2 Data-Sets 

The lc~arning system was tested on three semiconductor simulation tools (T-Suprem3, 
Minimos, m d  S-Demon) during normal use of the hub in Fall 1997. Runs consisted of 
simulations for class projects and homework assignments. 

T-Suprem3 is a commercial package (from Technology Modeling Assocsiates, Inc.) that 
simulates the processing steps used in the manufacture of silicon integrated circuits and discrete 
devices. Minimos simulates semiconductor field-effect transistors in two and three dimensions 
(developed at the Technical University in Vienna). S-Demon uses the Monte Carlo technique to 
simulate electron transport through one-dimensional silicon devices (developed at Purdue 
University). The learning instances collected for T-Suprem3, Minimos, and S-Demon comprised 
of 3398,966, and 131 runs, respectively. 

The system was also tested with four synthetic data-sets. Each of these diita-sets consisted 
of 1,000 iinstances with randomly generated feature-vectors. In the first two data-sets, the 
resource-usage characteristics were linear and quadratic functions of the feature-vector, 
respectively-. The weights for these functions were selected randomly. The thircl and fourth data- 



sets were equivalent to the first two (linear and quadratic, respectively), except that randomly 
generated noise was injected into the feature-values and the resource-usage characteristics. The 
noise perturbed the measured characteristics for the linear (quadratic) data-set by 10% (37%) on 
an average. 

This 1,eport presents detailed results for T-Suprem3; results for the other data-sets showed 
similar trends. The features associated with T-Suprem3 characterize aspects of the fabrication 
process of a semiconductor device. Specifically, the feature-vector was made up of the 
following: a) number of grid points, b) total diffusion time, c) cumulative epitaxial growth (in 
terms of thickness), d) minimum implant energy, e) number of deposit steps, f )  number of etch 
steps, and g) number of implant steps. 

5.3 Results 

The rf:sults in this section focus on the errors associated with the prediction of CPU time 
because of' its importance in terms of scheduling. For convenience, the different policies 
described earlier are named as follows. The basic IBL approach using LLWR is called ' b a s i c ' .  
The policy that does not add accurately predicted feature-vectors into the knowledge base is 
called 'noadd' .  The policy that deletes feature-vectors that consistently result i n  bad predictions 
from the k~iowledge base is called ' n o i  set 01 '. Finally, the combined application of 'noadd'  
and ' n o i  s'st 01' is called 'combined'.  

Prediction Error. The cumulative prediction error plots associated with the: b a s i c  policy 
(Figure 5.1) confirm that the A1 system is able to learn the relationship between the run-time 
inputs and the resource-usage characteristics of T-Suprem3. Error prediction plots for the other 
policies show similar trends; the final cumulative errors for all policies are shown in Table 5.1. 
Observe that discarding feature-vectors that consistently result in incorrect predictions 
( n o i  set  o 1 and combined policies) considerably improves the prediction accuracy. Also 
note that the prediction error associated with the noadd  policy is essentially the same as that of 
the basic:  policy, indicating that discarding feature-vectors did not have a negative impact on 
the system's overall ability to learn. Finally, Table 5.1 shows that caching reduces the 
prediction t:rror for the noadd  and combined policies, which do not add (to the knowledge 
base) feature-vectors whose resource-characteristics can be predicted accurately. This is 
especially true for short runs, as indicated by the larger change in the percent error (versus the 
absolute error). 

Long-Tern1 Scalability. The first plot in Figure 5.2 shows the growth rate of the knowledge 
base for the b a s i c  policy. As expected, the knowledge base grows monotonic,ally. The lookup 
time in the second plot is a function of the size of the knowledge base, and consequently also 
increases rr~onotonically. The data in the second plot also indicates the beneficial effects of the 
two-level knowledge base. A cache size of five reduces the average lookup time by more than a 
factor of two. Increasing the cache size further does not significantly affect the lookup time, 
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Figure 5.1: Cumulative prediction error plots for T-Suprem3 with the basic policy. Note that the the 
first 200 run:< have been omitted from the plots for improved readability. 

Table 5.1: Cumulative error statistics for T-Suprem3. For each policy, the absolute and percent errors 
(for two cache sizes) are presented. The absolute error is in 'seconds'. 
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Figure 5.2: Scalability-related information for the bas ic  policy. The first two plots. show the number 
of feature-v~:ctors in the knowledge-base and the average per-prediction lookup tinne for the LLWR 
algorithm on the T-Suprem3 data-set. The last plot shows the average analysis time, as explained in the 
text. 



indicating that a short-term memory of only five runs was adequate to capture the spatial and 
temporal lclcality discussed in Chapter 4. The analysis time shown in the third plot is equal to the 
time required to compute the regression matrices if a matching feature-vector is not found in the 
knowledge base. If a match is found, the analysis time is zero. The average analysis time is only 
dependent on the number of feature-vectors used for regression, which is a bounded value. 
Consequently, once an adequate number of feature-vectors are available, the analysis time is 
approximately constant. Note that the analysis time subsequently decreases sornewhat as the A1 
system sta1z-s memorizing feature-vectors. Corresponding results for the noacid policy show a 
similar trend, indicating that the A1 system was not able to learn the input-output mapping 
completely. This implies that the concept is not locally linear and/or has a lot 01' noise associated 
with it. 

The siime plots for the combined policy are shown in Figure 5.3. Note the self-bounded 
nature of the knowledge base in the first plot. The oscillations in the size of the: knowledge base 
are caused by the periodic deletion of noisy feature-vectors from the knowledge base. Also 
observe that the size of the knowledge base is dramatically smaller than that for the basic 
policy (compare the range of values on the Y-Axes of Figures 5.2 and 5.3) and that the short- 
term memory does not significantly affect the overall size of the knowledge base. The second 
plot shows the lookup time, which, as expected, is bounded. As before, caching helps lower the 
lookup timl?. The third plot is similar to that of the basic policy, except that caching helps 
reduce the analysis time. The lower analysis time is a consequence of the smaller number of 
interpolated queries with higher cache sizes, as shown in Table 5.2. This also lowers the overall 
prediction (:nor because the resource-usage characteristics for exact matches can be determined 
more accui:ately. (A reduction in the number of interpolated queries is ac'companied by a 
correspondj.ng increase in the number of exact matches.) 

Finalll~, the scalability information for the different policies is summariz;ed in Table 5.3. 
Observe the dramatic reduction in the size of the knowledge base for the noi set01 and 
combined policies. Corresponding numbers in Table 5.1 show that this reduction is obtained 
without any loss in prediction accuracy (prediction accuracy actually increases). The table also 
indicates the relatively modest effects of caching on lookup time because of the small size of the 
knowledge base (recall that it still helps improve the analysis time, which is not dependent on 
the size of the knowledge base). 



Figure 5.3: Scalability-related information for the combined policy. The first two plots show the 
number of l'eature-vectors in the knowledge-base and the average per-prediction lookup time for the 
LLWR algorithm on the T-Suprem3 data-set. The last plot shows the average analysis time, as explained 
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Table 5.2: Predictions can be based on exact matches or interpolated queries. This figure shows number 
of interpola1:ed queries for T-Suprem3. Observe how the number increases with policies that limit the 
number of feature-vectors in the knowledge base (and then decreases with caching). 

Table 5.3: Scalability statistics for T-Suprem3. Observe how caching helps reduce the lookup time. 
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number of ft:ature-vectors in the knowledge base (and then decreases with caching). 
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6. Conclusions and Future Work 

Our results indicate that the described instance-based learning approach using locally 
weighted regression works well for this domain. Selectively adding feature-vectors into the 
knowledge base and discarding feature-vectors that consistently result in inaccurate predictions 
make the described instance-based learning approach scalable and tolerant to noise. 

A two-level knowledge base: a) accounts for short-term variations in compute-server and 
network performance, and b) exploits temporal and spatial locality of mns. The chosen 
knowledge representation allows inadequate feature-vectors to be detected. 

Experimental data collected during normal use of the Purdue University Network 
Computing Hub validates the assumptions of temporal and spatial locality. The use of a two- 
level knowledge base, which exploits these assumptions, results in reduced prediction error, 
faster retrieval of feature-vectors, and smaller (average) analysis time. It should be mentioned 
that the pel-formance benefits of caching observed here are likely to be an upper bound. This is 
because of the fact that the conditions in an academic environment are particu1;xly conducive to 
the locality suppositions. To some extent, however, an increased cache size will1 compensate for 
a reduction in locality. Further benefits may be possible if a three or higher level knowledge base 
is used. 

6.2 Future Work 

The logical extension to the described work is to apply it to a larger number of tools. In 
addition, there are five domain-related issues which are being addressed. 

The rU system described here predicts the CPU time for a given run. From a user's 
perspective, it is more desirable to minimize the response time (i.e., elapsed time), which 
depends on the current load on the target machine. This requires the machine load to be 
incorporated into the feature-vector. 

The current A1 system does not consider the heterogeneity of hardware re:sources. In order 
to account for this, the A1 system must learn scaling factors for each architecture, in addition to 
the tool-specific resource-usage characteristics. 

Com~uting systems exhibit long term variations in characteristics that are typically the 
result of an upgrade of one or more components of the system (e.g., a new version of the 
operating system or compiler). In order to adapt to such changes, the learnin;; algorithm must 



account for concept drift. A related issue is the ability to track rapidly-changing concepts (e.g., 
network traffic). It should be possible to do this by heavily biasing the learning algorithm 
towards mclre recent observations and discarding older observations. 

The final issue is to exploit the predictability of long-term resource-usage trends. Demands 
on computi~tional resources tend to follow patterns that can be learned (certain resources are 
generally over-loaded during the late-afternoon hours, for example). An AI-based approach to 
resource-allocation should be able to exploit them to learn an anticipatory scheduling policy. 
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