
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

4-1-1998

Resource-Usage Prediction for Demand-Based
Network-Computing
Nirav H. Kapadia
Purdue University School of Electrical and Computer Engineering

Carla E. Brodley
Purdue University School of Electrical and Computer Engineering

José A. B. Fortes
Purdue University School of Electrical and Computer Engineering

Mark S. Lundstrom
Purdue University School of Electrical and Computer Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Kapadia, Nirav H.; Brodley, Carla E.; Fortes, José A. B.; and Lundstrom, Mark S., "Resource-Usage Prediction for Demand-Based
Network-Computing" (1998). ECE Technical Reports. Paper 57.
http://docs.lib.purdue.edu/ecetr/57

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages

TR-ECE 98-9
APRIL 1998

Resource-Usage Prediction
for

Demand-Based Network-Computing

Nirav H. Kapadia

Carla E. Brodley

Josk A. B. Fortes

Mark S. Lundstrom

School of Electrical and Computer Engineering

1285 Electrical Engineering Building

Purdue University

West Lafayette, IN 47907- 1285

This wo1.k was partially funded by the National Science Foundation under grants CDA-9617372,
EEC-9700762, and MIPS-9500673. The feature-vectors for T-Suprem3 and Minimos were
identified with the help of Mike Young and Steven Bourland, respectively.

TABLE OF CONTENTS

Page

1 . Introduction ... 1

... 2 . The :Purdue University Network Computing Hub 3

3 . Dom.ain Characterization ... 5

... 3.1 Introduction 5
.. 3.2 Tool Characteristics -5

... 3.3 Run-Time Environment 6

4 . The Artificial Intelligence System ... 7

4.1 Introduction ... 7
4.2 Algorithm Selection ... 7
4.3 Learning Issues .. 9
4.4 Knowledge Representation .. 9

.. 4.5 Ihowledge-Base Organization 11
... 4.6 Knowledge Retrieval 12

.. 4.7 Knowledge Management Policies -12
... 4.8 Implementation Issues 14

... . 5 Experimental Evaluation and Results -15

... 5.1 Introduction 15
.. 5.2 Jlata-Sets 15

.. 5.3 Icesults 16

... 6 . Conclusions and Future Work 22

6.1 (2onclusions .. 22
... 6.2 Future Work 22

.. List of 'References 24

ABSTRACT

This document reports on an application of artificial intelligence to achieve

demand-based scheduling within the context of a network-computing infrastructure.

The described A1 sub-system uses tool-specific, run-time input to predict the

resoura:-usage characteristics of runs. Instance-based learning with locally weighted

polynornial regression is employed because of the need to simultaneoi~sly learn

multiplr: polynomial concepts and the fact that knowledge is acquired increnlentally in

this dornain. An innovative combination of a two-level knowledge base, and age and

usage s~.atistics are used to: a) detect inadequate and noisy feature-vectors, 13) account

for short-term variations in compute-server and network performance, and c) exploit

temporal and spatial locality of runs. Modifications to the basic learning algorithm

allow the approach to be computationally feasible for extended use and noise tolerant

by se1ec:tively adding feature-vectors into the knowledge base and discarding feature-

vectors that consistently result in inaccurate predictions, respectively. The learning

system was tested on three semiconductor simulation tools during normal use of the

Purdue University Network Computing Hub during Fall 1997, and on four synthetic

data-sets. Results indicate that the described instance-based learning technique using

locally weighted regression with a locally linear model works well for this domain.

1. Introduction

There is increasing evidence to support the view that, in the future, computing will be
network-based and service-oriented. Desktop computers will be able to reach out across the
network and obtain whatever software and hardware resources the current application needs
(Smarr and Catlett, 1992). For example, the proposed Network Computers anid Net PCs (e.g.,
Comerford, 1997) will download the required software from the network, and supplement their
computing power by that of network-accessible servers. This view implicjtly assumes the
existence clf an underlying infrastructure capable of supporting network-accessible, demand-
based computing.

A denland-based computing system can be characterized by its universal accessibility and
its ability to make automatic cost/performance tradeoff decisions at run-time. Universal
accessibility can be provided via a widely-used networked interface such as the world-wide web.
Run-time cost/performance tradeoff decisions require that the infrastructure be able to decide
how (whicln implementation - e.g., sequential versus parallel) and where (which platform) to
execute a tool. In contrast, with conventional computing systems, user-commands are implicitly
tied to specific - and typically local - implementations and machines. This report presents an
application of artificial intelligence to achieve demand-based sched~tling withiri the context of a
network-computing infrastructure (the Purdue University Network Computing Hub, or PUNCH)
that allows users to access and run existing software tools via standard world-w-ide web browsers
such as Netscape.

Cost/performance tradeoff decisions are based on scalability and portability information.
Scalability information includes run-specific resource-usage in terms of CPU time, network
data-transfer time, memory usage, and disk-space requirements. Portability information consists
of a list of the available implementations (e.g., sequential versus parallel) for a given tool, and
the architec:tures on which they are supported.

While portability information is usually available a priori, scalability information is
generally dependent on the mn-time input. Although it may be possible to obtain analytical
expression:; that describe the relationship between the run-time input and the corresponding
resource-usage (e.g., matrix-manipulation codes), in general, tools tend to exhibit complex
behavior that make such analytical expressions nearly impossible. Even when it is possible to
determine an analytical expression, the resource-usage characteristics cannot be computed from
an expression that simply describes the computational complexity of the algorithm; the
appropriate: architecture-specific constants must also be determined.

To our knowledge, no other system has used tool-specific, run-time i n p ~ ~ t s to predict the
resource-usage characteristics of runs. Other work aimed at predicting resource-usage (e.g.,
Goswami, Devarakonda, and Iyer, 1993; Svensson, 1990; Wang, Krueger, and Liu, 1993)
utilizes tool-specific analytical expressions or statistical data obtained from past runs to predict
the resourct:-usage characteristics of future runs. For example, Devarakonda anti Iyer (1989) use
the identity of a tool and its execution history to identify high-density clusters in the space
defined by the resource-usage parameters. Results show that even these simple heuristics allow
for significitntly better scheduling (Goswami, Devarakonda, and Iyer, 1993). This approach was
not used here because the resource-usage characteristics of the tools in our domain tend to be
highly dependent on run-specific parameters (e.g., a Monte Carlo simulalion can require
anywhere from a few minutes to several days of CPU time, depending on the problem being
solved).

The goal of the A1 sub-system described here is to assist the network-computing
infrastructure in emulating an ideal user in terms of resource-management and usage policies.
For the purposes of this work, an ideal user is one who: a) can predict the resource-requirements
of each run that heishe initiates, b) preferentially uses the most plentiful resources that support
the requirexents of the given run, and c) voluntarily relinquishes resources to higher-priority
users when necessary.

The A.1 sub-system uses instance-based learning to predict the CPU time and the network
data-transfer time for a given run on the basis of the associated run-time input. The prediction
is then used to adapt the network-computing infrastructure's resource-allocation policy. The
choice of ir~stance-based learning was driven by the need to capture polynomial concepts and the
fact that kriowledge is acquired incrementally in this domain. Note that each tool has its own
knowledge base. The following learning issues were addressed by using an innovative
combination of a two-level knowledge base, and age and usage statistics: a) detection of
inadequate feature-vectors, b) short-term variations in compute-server or network performance,
C) noisy features, and d) scalability of the knowledge base for extended use. The learning system
was tested on three semiconductor simulation tools during normal use of PUNCH in Fall 1997,
and on four synthetic data-sets (off-line). Locally weighted polynomial regressjon with a locally
linear mod(:] was found to perform well for all the data-sets tested.

The report is organized as follows. Chapter 2 provides a brief overview of PUNCH and
on-demand network-computing. Chapter 3 discusses the domain characteristics that affect the
selection of the learning algorithm. Chapter 4 introduces the A1 sub-system and Chapter 5
presents the experimental evaluation and results. Finally, the conclusions of this work and a
discussion of on-going work are presented in Chapter 6 and Chapter 7, respectively.

1. Memory a - ~ d disk-space requirements are not predicted. This is due to the lack of a monitoring system that allows
these parameters to be measured accurately, and not a limitation of the A1 system.

2. The Purdue University Network Computing Hub

The E'urdue University Network Computing Hub (PUNCH)' is a FVWW-accessible
collection of simulation tools and related information. Functionally, it allows users to: a) upload
and manip~~late input-files, b) run programs, and c) view and download output - all via standard
WWW browsers. For a detailed description of PUNCH, see Kapadia, Fortes, and Lundstrom
(1 997).

PUNClH can be logically divided into multiple discipline-specific "hubs" (see Figure 2.1).
Currently, PUNCH consists of four hubs that contain tools from semiconduictor technology,
VLSI design, computer architecture, and parallel processing. A fifth hub is devoted to tools that
were developed with support from the Semiconductor Research Corporation (SRC). These hubs
contain over thirty tools from five universities and serve more than 500 users from within
Purdue, across the US, and in Europe.

- - - - -

The Purdue University Network-Computing Hub (PUNCH)

1 SCION I
Compute-Server / ~ o o l (~pplication))^ (-4

... I Tool (A ~ P F) 8 8- (-4

Tool (Application) Workstallon CIwter Tool (Appl~cation)

Phyricul Olcufion. ' I ' Phyricnl Olcnrion 'n'

Figure 2.1: A conceptual view of the Purdue University Network-Computing Hub.

Running a simulation on the hub is a three-step process. The first step involves the creation
of the input file(s) required for the relevant simulation. In the second step, users define the input
parameters (e.g., command-line arguments, etc.) for the program and start the simulation.

1. The Purdue University Network Computing Hub can be accessed at "http:Nwww.ecn.purd1.1e.edu11abs1punch/".
Courtesy accounts with access to a limited number of tools are available.

Finally, after the simulation is complete, the user can see and download the resillts via the hub's
output interface.

PUNCIH can be viewed as an operating-system for the world-wide web (see Figure 2.1).
Users communicate with the PUNCH infrastructure via a front end (equivalent to an operating-
system she:ll) that allows them to access and use distributed resources in a location-transparent
manner. The front end processes user requests by way of a distributed engine (akin to an OS
kernel) that can access and control local and remote hardware and software resources. Hardware
resources can include arbitrary platforms and software resources include any a.rbitrary program
(the current implementation provides limited support for GUI-based programs). Resources can
be located at any network-accessible site, and can be dynamically added or removed from the
infrastructure.

Demand-Based Scheduling

Figure 2.2: A flow-chart depicting the components required to perform on-demand scheduling. The
shaded area represents the scope of the work discussed in this report.

PUNCH allows on-demand management of existing software and hardware resources by
delaying the binding of a user's command to a specific implementation and machine until run-
time, at which point the requirements of the given run can be analyzed (see Figure 2.2). The
resource-requirements of a particular run are determined by PUNCH'S A1 sub-system, which
qualifies the user-supplied tool-input with available tool-specific scalability and portability
information. The output of the A1 system is then used to match a user's request with the
underlying network-accessible tools and resources.

3. Domain Characterization

3.1 Introtluction
The domain-imposed constraints that determine the selection of the learning algorithm can

be divided into two categories. The constraints in the first category are a result of the diversity of
the hub tools and users, while those in the second set are a consequence of the nature of the run-

time environment associated with a network-computing infrastructure.

3.2 Tool (Jharacteristics
The tools available on PUNCH come from a wide variety of environment:; and disciplines.

Each tool rsquires its own set of features and a separate knowledge base. When possible, the list
of relevant features for predicting the resource-usage characteristics of a tool is obtained by
consulting the appropriate authors. Otherwise, the list is compiled with the help of an expert in
the field. Irl general, establishing the correct (i.e., relevant) features for a given tool is a difficult
problem. Authors are often not accessible, and realistic tools tend to use sophisticated algorithms
whose behavior cannot be easily correlated to the user-supplied input values. Another problem
associated with the feature-vector is that the range of values that a given featu.re can assume is
generally not known a priori, particularly in a research environment. Even when such
information is available, the limits (e.g., how small a semiconductor device can be) tend to be
technology-dependent. In terms of the artificial intelligence system, these issues require that the
system be able to: a) ignore irrelevant features, b) detect inadequate feature-vectors, and c) work
with unscaled features. 1

The relationship between the 'n' inputs supplied to a program and the corresponding
resource-usage characteristics is defined by a set of polynomials in n-dimensional space.2 Thus,
the learning algorithm used for this domain must be able to capture concepts described by
(possibly multiple) polynomial functions. Moreover, this relationship often has a non-
deterministic component with respect to the available inputs. For example, the convergence rate
of an iterative matrix-manipulation algorithm is likely to depend on the distribution of the
eigenvalue:; of that matrix, which are difficult to compute in advance. This effectively implies

1. Note that "unscaled" in this context implies that the system cannot use a constant scaling factor that has been
determined a priori; it can still scale features on the fly.

2. Recall that any function can be represented as a polynomial, although this may not be the most concise
representa1.ion.

that the learning algorithm will have to work with an incomplete or noisy description of the
features tha.t determine the resource-usage characteristics of the program.

3.3 Run-Time Environment

When a request for a run is received by PUNCH, it extracts the values of the
administrator-specified features from the user-supplied input and uses thern to predict the
resource-usage characteristics. The prediction is then used to determine how and where to
schedule the request. After the run completes, PUNCH provides the true resource-usage
characteristics to the artificial intelligence system, allowing the learning algorithm to incorporate
the new information into its knowledge base. Because this process happens in real-time and
during norrnal use of the system, an incremental learning approach is needed.

The nin-time environment is also interactive, which requires the predictions to be made in
real-time. This in turn implies that the resources used by the artificial intelligence system cannot
grow monotonically with time. 1

The final issue that affects learning is short-term variations in the performance of computer
systems. Short-term variations in performance can occur due to unpredictable events such as a
file-server or network router becoming overloaded. While these short-term anomalies essentially
amount to noise in the long run, they tend to have a significant impact on run-time when they do
exist. Thus, the learning algorithm must be able to quickly tailor its predictions to such short-
term variatj ons without being unduly affected by them in the longer term.

4. The Artificial Intelligence System

4.1 Introduction
The learning mechanism of our approach is based on locally weighted regression (LWR).

In this cha:?ter, we first present the rationale for the selection of this particular instance-based
learning m'zthod. We then discuss the learning issues that are specific to this domain and the
modifications that we made to LWR to handle these issues.

4.2 Algorithm Selection
Of the requirements presented in Chapter 3, the following are central to the process of

selecting a learning algorithm: a) an ability to learn sets of polynomial function.^, b) incremental
learning, and c) support for irrelevant and unscaled features. These requirements directly
contribute .to the applicability of local learning algorithms (specifically, instance-based learning
algorithms:~.

Global parametric learning algorithms (Schaal, 1994) such as neural networks attempt to
establish a11 input-output mapping via a single function y = f (x, €I), where 8 is a finite-length
parameter .vector. While these methods can theoretically approximate any continuous function

(Funahashi, 1989; Hecht-Nielson, 1989; Skapura, 1996), they may not be appropriate for all
tools. For t:xample, semiconductor device simulation tools typically allow users to simulate a
device in one, two, or three dimensions. In general, different solution techniques are used for
each of these cases, implying that the input-output mapping for such tools will consist of three
distinct functions. This is likely to cause problems for learning algorithms that attempt to
capture cor~cepts at a global level.

Local parametric algorithms attempt to overcome some of the proiblems of global
parametric learning by dividing the input space into many partitions (Atkeson, Schaal, and
Moore, 1997; Schaal, 1994). Each partition 'i' is now approximated by an inde:pendent function
yi =f i (x , €Ii); the functions fi are kept as simple as possible. The problem now shifts to the
selection of appropriate partitions for the learning system (Schaal and Atkeson, 1994). Non-
parametric algorithms (e.g., Atkeson, Schaal, and Moore, 1997; Moore, Schneider, and Deng,
1997; Deng and Moore, 1995) address this issue by allowing the number cjf partitions (and
consequently the number of parameters) to change dynamically. Instance-based learning (IBL)
algorithms achieve this by recomputing a fixed set of parameters as a function of the query point
and do not require an explicit training phase (Deng and Moore, 1995). Morc:over, because of
their localized nature, IBL algorithms are relatively insensitive to the structul-a1 complexity of

the functio~i to be learned and are not affected by catastrophic interference (Schaal, 1994). This
makes then1 an ideal choice for this domain.

There are many instance-based learning algorithms, including nearest neighbor, weighted
average (kernel regression), and locally weighted regression techniques (e.g., Atkeson, Moore,
and Schaal, 1996). Nearest neighbor algorithms use the output-value(s) of the closest available
instance(s) to make a prediction. Weighted average algorithms predict the output as a weighted
average of the output-values of nearby instances; the weight of an instance is an inverse function
of its distance from the query point. Locally weighted regression (LWR) fits a surface to nearby
points, typically via a locally linear or quadratic model. ' With a linear (quadratic) model, the
target concept is locally approximated by a linear (quadratic) surface.

Linear Data-Set; Basic IBL Algorithms
50 I \ I I I I I I I I

I

Run Number

-
2 40

1 - - - iiw~q 1
QLWR

\
1 0 - \

. - - - - 7

0
- - - - - - - - - - _ - - - - - - - -- - - - - - -

0
Run Number

L 1
100 200 300 400 500 600 700 800 900 1000

QLWR

. -

-- - _ _ _ _ _ _ _ _ - - _ - _ - _ - - - - - - I - - - - - -

0
0 100 200 300 400 500 600 700 800 900 looo

-

Figure 4.1: Prediction errors for instance-based learning techniques on instances (from a synthetic data-
set) whose ~utput-values are linearly-dependent on the feature-vector. Note that the the first few runs
have been omitted from the plots for improved readability.

.

The nearest neighbor and weighted average techniques are not suitable for this domain
because of their inability to track (even linear) polynomial surfaces without error (Cleveland,
Devlin, ancl Grosse, 1988). This is illustrated in Figure 4.1, which shows the pre:diction errors for
the one-nearest neighbor (1-NN), three-point weighted average (3-Avg), locally linear LWR
(LLWR), a.nd locally quadratic LWR (QLWR) algorithms on a synthetic data-set. The data-set

1. Higher-orcler local models are generally not used because of the associated computational corjt.

was made i ~ p of 1,000 instances with randomly-generated feature-vectors. Each feature-vector
contained seven features. The "measured" resource-usage characteristics (the figure shows the
simulated (IPU time) were linear functions of the corresponding feature-vectors. The coefficients
for the lineiu functions were also chosen randomly.

In addition to being able to reproduce linear surfaces without error, locally weighted
regression algorithms (e.g., Cleveland and Devlin, 1988; Moore, 1991; Atkeson, 1992; Schaal
and Atkeson, 1994) can reproduce peaks and are insensitive to unsymrnetricall!/ distributed data
(Cleveland. Devlin, and Grosse, 1988; Grosse, 1989; Schaal, 1994). This makes locally weighted
regression an ideal choice for the given domain. The locally linear model is chosen over the

locally quadratic model for two reasons: a) it learns faster (for a locally linear surface; see Figure
4. I), and bl it requires less time to make a prediction. Both are consequences of the fact that, for
a feature-v~:ctor of length 'n', the LLWR algorithm requires only O(n) parameters to make a
prediction as opposed to the O(n 2, for the QLWR algorithm.

4.3 Learning Issues

The basic LLWR learning algorithm addresses the following issues: a) learning sets of
polynomial functions, b) incremental learning, and c) support for irrelevant and unscaled
features. N[odifications are required to address: a) detection of inadequate fe:ature-vectors, b)

short-term variations, c) noisy features, and d) scalability of the knowledge base: during extended
use.

Of the. listed issues, the last one is the most critical because the basic IBL :ilgorithms do not
scale well-enough for extended use in the PUNCH environment. This is exemplified by Figure
4.2, which shows the monotonically increasing nature of the instance-base size and the average
per-predict-ion lookup time.

The subsequent sections present solutions for each of the problems mentioned here.
Detection of inadequate feature-vectors is addressed by storing appropriate imeta-information
about the instances in the knowledge-base. Sensitivity to short-term varialtions without an
associated loss in longer-term performance is obtained by using a two-level knowledge base,
which alsc helps the IBL algorithms scale better. Finally, scalability and noise issues are
addressed by: a) not adding all instances to the knowledge-base, and b) allowir~g instances to be
discarded from the knowledge-base.

4.4 Knowledge Representation

In a realistic computing environment, multiple runs with identical feat-ure-vectors often
exhibit different resource-usage characteristics. This is caused by noise in the computing
environment, inadequate feature-vectors, or a combination of the two. The noise perceived by
the 1earnin.g algorithm is generated by: a) inaccuracies in the system used to no nit or resource-
usage, and b) indirect (via the computing environment) interactions between the different
processes running on a machine. These considerations were the driving factors for the design of

Linear Data-Set; Basic IBL Algorithms
1000

W 800 - .-
cn 3 - A v ~
z
$ 600 - QLWR
I a, 0

$ 400 - -
3

5 200 -

0
0

Run Number
100 200 300 400 500 600 700 800 900 1000

Run Number

Figure 4.2: Knowledge-base growth and corresponding per-prediction lookup time for instance-based
learning techniques on instances whose output-values are linearly-dependent on the l'eature-vector. The
feature-vect~sr contains seven features. Note that the size of the knowledge-base is the same for all four
methods.

the chosen knowledge representation.

The information available to the A1 system at the completion of a run consists of: a) the
feature-vector, b) the measured resource-usage characteristics, and c) the start-time for the run.
If the feature-vector is adequate, the measured resource-usage characteristics will generally not
vary outside of a small range for multiple occurrences. For these situations, we can coalesce
(multiple) observations within a given range (*lo%, say) into a single averaged observation with
an associat~~d "use count". The averaged observation is defined as an experience.

The knowledge associated with a given set of experiences with identical feature-vectors is
represented as shown in Figure 4.3. Observe that the knowledge is keyed to the feature-vector.
As explair,ed above, each experience contains usage statistics and the associated (average)
resource-u:;age characteristics. The multiple use-counts allow concept drift (Schlimmer and
Fisher, 1986) to be detected (see our discussion of future work in Chapter 6). The resource-
usage prediction for a given feature-vector is precomputed by calculating the .weighted average
of the resoix-ce-usage characteristics of the set of experiences associated with that feature-vector.
Note that ~nfrequently observed experiences can be treated as outliers and excluded from the
average. The age associated with the feature-vector is the age of its earliest experience. The
usage statistics consist of: a) the number of times the feature-vector was observed, b) the number

I FeaturermVector 1 Experience # l I ._.
I Experience #n I Prediction I Age 1 Usage (
. . _ . .

b: Count #1 Use Count #n 1 Measured ~ e s o u r c e - u s a g 4

Figure 4.3: Each feature-vector is associated with a set of experiences, the corrc:sponding average
resource-usa.ge, and age and usage information. An experience contains knowledge associated with one or
more instances.

of times the feature-vector was used for an interpolated query, and c) the number of times the
use of the feature-vector resulted in an accurate prediction. Together, the age anid usage statistics
allow the f iI system to detect and discard noisy feature-vectors from the knowledge-base. (The
specific manner in which this information is used to achieve noise-tolerance js described after
the discuss .on of knowledge-base organization and knowledge retrieval.)

Inadequate feature-vectors can be detected by analyzing the distribution of the associated
experience!;. A highly-peaked distribution indicates (with high probability) a good correlation
between the feature-vector and the corresponding resource usage. On the other hand, a multi-
modal distribution is a definite indication of an inadequate feature-vector. Currently, we do not
utilize this information, but anticipate that, in the future, we will use it to trigger a second
knowledge acquisition phase in which we query the expert for additional feature:^.

4.5 Knowledge-Base Organization

The organization of the knowledge-base was driven by two considerations: a) short-term
variations jn the behavior of computing resources, and b) temporal and spatial. locality of runs.
For this do:main, the principle of temporal locality can be stated as follows. If a run with a given
feature-vector is invoked at some time 't', it is likely to be invoked again at some time 't + At'.
This is esp~=cially true in an academic environment, where a relatively large number of students
tend to work concurrently on any given assignment. Similarly, the principle of spatial locality
can be stated as follows: if a run with a given feature-vector is invoked at some time ' t ' , runs
with simi1a.r feature-vectors are likely to be invoked in the near future. This assumption applies
to users who, for example, need to characterize a system by perturbing a few parameters at a
time (chara.cteristic of a research environment).

Based. on these considerations, a two-level knowledge-base was selected. The first level of
the knowledge-base acts as a fixed-size cache, representing the short-term memory of the system.
When an instance is encountered, it is first stored in the cache. The instance-filtering algorithms
described later are not applied to the cache. This allows the learning algorithm to memorize
instances in the short-term. During the process of making a prediction, the cache is searched
first, whick allows the learning algorithm to bias its predictions toward recent information. When

the cache overflows, the least-recently-used instances in the cache are either discarded or
incorporated into the long-term memory, based on a specific policy described after the
discussion on knowledge retrieval.

4.6 Knowledge Retrieval

In order to retrieve the resource-usage characteristics of a given feature-vector, the learning
algorithm scans the two-level knowledge-base in the following manner. It first looks in the cache
for an exact match to the query in terms of the feature-vector. If a match is found, the algorithm
makes its prediction on the basis of the precomputed characteristics associated with that feature-
vector. If a match is not found, the process is repeated with the second level of the knowledge-
base. The t:,me-associated performance advantages of the two-level organization1 are based on the
supposition that a match will be found in the cache for a significant number of requests.

If an exact match is not found in either level of the knowledge-base, the learning algorithm
retrieves the 2 x (n + 1) feature-vectors that are closest to the query. Here, 'n' is the length of the
feature-vector. Recall that a linear polynomial with 'n' unknowns contains 'n + 1' terms. This
implies that, at a minimum, 'n + 1' feature-vectors are required to obtain a unique solution to the
query (with LLWR). The learning algorithm uses 'n + 1' additional feature-vectors to
compensate for noisy and "non-independent" vectors (e.g., feature-vectors that have identical
values in a given dimension do not provide any information about that dimension).

4.7 Knowledge Management Policies

This section focuses on modifications to the basic IBL algorithms designed to address
scalability and noise issues. Basic instance-based learning techniques incorporate all instances
into the knowledge-base. As shown earlier (Figure 4.2), this results in a monotonically
increasing knowledge-base, making the A1 system unscalable. A survey of techniques that
address scalability and noise issues can be found in Wilson and Martinez (1997).

Given the characteristics of this domain and the knowledge representation discussed earlier,
there are two ways to address this problem. The first option is to selectively incorporate only
incorrectly-predicted feature-vectors into the knowledge base. The second option is to discard
knowledge associated with feature-vectors that have been consistently used t'o make incorrect

predictions.

The first option can be expected to work well in situations where the learning algorithm is
able to capture the target concept. This is exemplified by Figure 4.4. The LL,WR and QLWR
algorithms are able to learn linear concepts, which results in a self-bounded knowledge base.
Note that the concept only has to be locally linear (quadratic) for LLWR (QLFVR) to capture it;
its global structure can be much more complex. The 1-NN and 3-Avg algorithms, on the other
hand, are 11:ss dramatically affected (compare the Y-Axis range with that of Figure 4.2) because
they are not able to learn the concept with a finite number of instances. Observe that selectively
incorporating knowledge could have a negative impact on the learning rate of the system. For

Linear Data-Set; Modified IBL Algorithms
800 I I I I I I I I

I I 1

QLWR LLWd I

. C
, ,.: 2

J ,L;- + - - - - + - - - * - - - -- - - -- - - -- - - 7---- , - --, -a
0 100 200 300 400 500 600 700 800 900 1000

Run Number

LD

? 0.15 -
8 . , , , , . . .;. ; 1
8 QLWR + . - ' - . . . - . -

, ;c-' ,. 0.1 -
. -

. . .-c:-.'
F . ..: i
a , ., .; '. .-
3

- i . . -
x , . .-'. - g 0.05 - . -

.. &
.-. .- '

1 *.. *: -
. . .MC1 _ - _ _ _ _ _ _ _ _ _ _ - - - - _ - - - - - - - - - - - - - _ _ _ - - - - -

0 4 I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Run Number

Figure 4.4: Instance-base growth and corresponding per-prediction lookup time for instance-based
learning techniques on instances whose output-values are linearly-dependent on the feature-vector. The
feature-vect~r contains seven features.

example, in some cases, an instance that was discarded in the past could have resulted in a better
prediction for the current query. While this problem cannot be completely eliminated, it is
partially addressed by the two-level knowledge base. All instances are incorporated into the
cache regardless of the current policy. When the cache overflows, instances are incorporated
into the second. level according to the current policy.

With the second option, knowledge associated with feature-vectors that have consistently
been used to make incorrect predictions is discarded. The keepldiscard delcisions are made
periodically; feature-vectors that do not have adequate use statistics associated with them are
allowed to retain their history for the next time-frame (the history is reset once a keepldiscard
decision is made). In practice, the described policy is not enforced until after a certain number of
runs have been observed, to allow for errors before the concept is learned. Note that this
approach is similar to the technique used by Aha and Kibler (1989).

Finally, to account for situations in which these two heuristics fail, the size of the
knowledge base has a hard upper bound associated with it. When the size exceeds a specified

2. For the results presented here, "consistent" was arbitrarily defined as an error-rate of more than 50% in a 50-run
time-frame.

threshold, a LRU policy (e.g., Hennessy and Patterson, 1996) is used to discard feature-vectors.

4.8 Implementation Issues

To ensure numerical stability, the regression matrices were solved by using singular value
decomposiiion (Press, Teukolsky, Vetterling, and Flannery, 1992). When a unjque solution was
not possible, the solution that minimizes the norm of the vector formed by the polynomial
coefficients, (Press, Teukolsky, Vetterling, and Flannery, 1992) was chosen. Finally, the kernel
width (Atkeson, Moore, and Schaal, 1997) used by the learning algorithm was dynamically
adjusted so that it stayed flat until a distance equal to that of the nearest-neighbor (it was
Gaussian after that). This ensured that at least one set of experiences was always available for
prediction.

5. Experimental Evaluation and Results

5.1 Introtluction

In this application, there are three performance criteria: a) the prediction error, b) the time
required for prediction, and c) the growth-rate of the knowledge-base.

When minimizing the prediction error, it is more important to reduce en-ors for runs that
make heav,y use of resources. For example, a 100% prediction error for a run that uses only a
few sec0nd.s of CPU time is relatively insignificant, whereas the same error for a run that uses
several thousand CPU seconds is likely to have a significant impact on the effectiveness of the
scheduler. 'This distinction can be accounted for by tracking both the absolute and the percent
prediction ~crror. For a given absolute error, a higher percent error indicates that the prediction
errors are biased towards the shorter runs.

Because the predictions must be made in real-time, it is important to place an upper bound
on the prediction time. Ideally, this time should be significantly smaller than the shortest runs
invoked by users. A related criterion is to ensure that the growth-rate of the knowledge-base
eventually decreases to zero. This requirement does not impose a specific upper-bound on the
size of the Itnowledge base, but does require that the knowledge-base not grow indefinitely.

5.2 Data-Sets

The lc~arning system was tested on three semiconductor simulation tools (T-Suprem3,
Minimos, m d S-Demon) during normal use of the hub in Fall 1997. Runs consisted of
simulations for class projects and homework assignments.

T-Suprem3 is a commercial package (from Technology Modeling Assocsiates, Inc.) that
simulates the processing steps used in the manufacture of silicon integrated circuits and discrete
devices. Minimos simulates semiconductor field-effect transistors in two and three dimensions
(developed at the Technical University in Vienna). S-Demon uses the Monte Carlo technique to
simulate electron transport through one-dimensional silicon devices (developed at Purdue
University). The learning instances collected for T-Suprem3, Minimos, and S-Demon comprised
of 3398,966, and 131 runs, respectively.

The system was also tested with four synthetic data-sets. Each of these diita-sets consisted
of 1,000 iinstances with randomly generated feature-vectors. In the first two data-sets, the
resource-usage characteristics were linear and quadratic functions of the feature-vector,
respectively-. The weights for these functions were selected randomly. The thircl and fourth data-

sets were equivalent to the first two (linear and quadratic, respectively), except that randomly
generated noise was injected into the feature-values and the resource-usage characteristics. The
noise perturbed the measured characteristics for the linear (quadratic) data-set by 10% (37%) on
an average.

This 1,eport presents detailed results for T-Suprem3; results for the other data-sets showed
similar trends. The features associated with T-Suprem3 characterize aspects of the fabrication
process of a semiconductor device. Specifically, the feature-vector was made up of the
following: a) number of grid points, b) total diffusion time, c) cumulative epitaxial growth (in
terms of thickness), d) minimum implant energy, e) number of deposit steps, f) number of etch
steps, and g) number of implant steps.

5.3 Results

The rf:sults in this section focus on the errors associated with the prediction of CPU time
because of' its importance in terms of scheduling. For convenience, the different policies
described earlier are named as follows. The basic IBL approach using LLWR is called ' b a s i c ' .
The policy that does not add accurately predicted feature-vectors into the knowledge base is
called 'noadd' . The policy that deletes feature-vectors that consistently result i n bad predictions
from the k~iowledge base is called ' n o i set 01 '. Finally, the combined application of 'noadd'
and ' n o i s'st 01' is called 'combined'.

Prediction Error. The cumulative prediction error plots associated with the: b a s i c policy
(Figure 5.1) confirm that the A1 system is able to learn the relationship between the run-time
inputs and the resource-usage characteristics of T-Suprem3. Error prediction plots for the other
policies show similar trends; the final cumulative errors for all policies are shown in Table 5.1.
Observe that discarding feature-vectors that consistently result in incorrect predictions
(n o i set o 1 and combined policies) considerably improves the prediction accuracy. Also
note that the prediction error associated with the noadd policy is essentially the same as that of
the basic: policy, indicating that discarding feature-vectors did not have a negative impact on
the system's overall ability to learn. Finally, Table 5.1 shows that caching reduces the
prediction t:rror for the noadd and combined policies, which do not add (to the knowledge
base) feature-vectors whose resource-characteristics can be predicted accurately. This is
especially true for short runs, as indicated by the larger change in the percent error (versus the
absolute error).

Long-Tern1 Scalability. The first plot in Figure 5.2 shows the growth rate of the knowledge
base for the b a s i c policy. As expected, the knowledge base grows monotonic,ally. The lookup
time in the second plot is a function of the size of the knowledge base, and consequently also
increases rr~onotonically. The data in the second plot also indicates the beneficial effects of the
two-level knowledge base. A cache size of five reduces the average lookup time by more than a
factor of two. Increasing the cache size further does not significantly affect the lookup time,

T-Suprem3 Data-Set; Basic LLWR Algorithm
100 I I I I I I 1

I I I I I I I
0 500 1000 1500 2000 2500 3000 3500

Run Number

01 I I I I I
I I

0 500 1000 1500 2000 2500 3000 3500
Run Number

Figure 5.1: Cumulative prediction error plots for T-Suprem3 with the basic policy. Note that the the
first 200 run:< have been omitted from the plots for improved readability.

Table 5.1: Cumulative error statistics for T-Suprem3. For each policy, the absolute and percent errors
(for two cache sizes) are presented. The absolute error is in 'seconds'.

T-Suprem3 Data-Set; Basic LLWR Algorithm
I I

I I

0 500 1000 1500 2000 2500 :3000 3500
Run Number

G? 0.2 I I

C
0

. - . - . -

.. . E 0.1 _ _ . - .
. . ..

. _ . - .
i=
0.05 _ _ . _ _ _ .- , _ _ _ _ _ - _ _ . - . - . - - - .

Y _._ . . '
0 . -> . .'
0
-I 0 I I I I

0 500 1000 1500 2000 2500 :3000 3500 - Run Number
0.04

C
0
0.03

i=

0
0 500 1000 1500 2000 2500 :3000 3500

Run Number

Figure 5.2: Scalability-related information for the bas ic policy. The first two plots. show the number
of feature-v~:ctors in the knowledge-base and the average per-prediction lookup tinne for the LLWR
algorithm on the T-Suprem3 data-set. The last plot shows the average analysis time, as explained in the
text.

indicating that a short-term memory of only five runs was adequate to capture the spatial and
temporal lclcality discussed in Chapter 4. The analysis time shown in the third plot is equal to the
time required to compute the regression matrices if a matching feature-vector is not found in the
knowledge base. If a match is found, the analysis time is zero. The average analysis time is only
dependent on the number of feature-vectors used for regression, which is a bounded value.
Consequently, once an adequate number of feature-vectors are available, the analysis time is
approximately constant. Note that the analysis time subsequently decreases sornewhat as the A1
system sta1z-s memorizing feature-vectors. Corresponding results for the noacid policy show a
similar trend, indicating that the A1 system was not able to learn the input-output mapping
completely. This implies that the concept is not locally linear and/or has a lot 01' noise associated
with it.

The siime plots for the combined policy are shown in Figure 5.3. Note the self-bounded
nature of the knowledge base in the first plot. The oscillations in the size of the: knowledge base
are caused by the periodic deletion of noisy feature-vectors from the knowledge base. Also
observe that the size of the knowledge base is dramatically smaller than that for the basic
policy (compare the range of values on the Y-Axes of Figures 5.2 and 5.3) and that the short-
term memory does not significantly affect the overall size of the knowledge base. The second
plot shows the lookup time, which, as expected, is bounded. As before, caching helps lower the
lookup timl?. The third plot is similar to that of the basic policy, except that caching helps
reduce the analysis time. The lower analysis time is a consequence of the smaller number of
interpolated queries with higher cache sizes, as shown in Table 5.2. This also lowers the overall
prediction (:nor because the resource-usage characteristics for exact matches can be determined
more accui:ately. (A reduction in the number of interpolated queries is ac'companied by a
correspondj.ng increase in the number of exact matches.)

Finalll~, the scalability information for the different policies is summariz;ed in Table 5.3.
Observe the dramatic reduction in the size of the knowledge base for the noi set01 and
combined policies. Corresponding numbers in Table 5.1 show that this reduction is obtained
without any loss in prediction accuracy (prediction accuracy actually increases). The table also
indicates the relatively modest effects of caching on lookup time because of the small size of the
knowledge base (recall that it still helps improve the analysis time, which is not dependent on
the size of the knowledge base).

Figure 5.3: Scalability-related information for the combined policy. The first two plots show the
number of l'eature-vectors in the knowledge-base and the average per-prediction lookup time for the
LLWR algorithm on the T-Suprem3 data-set. The last plot shows the average analysis time, as explained

T-Suprem3 Data-Set; Modified LLWR Algorithm ("combined" Policy)
I I

. .

rM

. Cache=O
w Cache=5
rn - - - $ 20
0

0 500 1000 1500 2000 2500 3000 3500
Run Number

z 0.02
rn
C

.
0
$ 0.015
m

. ; 0.01

. - . - . -
i= Cache=5

Cache=l 0
Y
o Cache=20
0
-1 0

0 500 1000 1500 2000 2500 3000 3500
Run Number

I I I

....

in the text.

. Cache=O .- Cache=5
.-
~1 Cache=l 0
a Cache=20

- -., n= Lkv -.. - . . L a - . -_ -_ _,

I I

500 1000 1500 2000 2500 3000 3500
Run Number

Table 5.2: Predictions can be based on exact matches or interpolated queries. This figure shows number
of interpola1:ed queries for T-Suprem3. Observe how the number increases with policies that limit the
number of feature-vectors in the knowledge base (and then decreases with caching).

Table 5.3: Scalability statistics for T-Suprem3. Observe how caching helps reduce the lookup time.

Table 5.2: Predictions can be based on exact matches or interpolated queries. This figure shows number
of interpola1:ed queries for T-Suprem3. Observe how the number increases with policies that limit the
number of ft:ature-vectors in the knowledge base (and then decreases with caching).

I Number of Interpolated Queries I
Policy

basic

noadd

Table 5.3: Scalability statistics for T-Suprem3. Observe how caching helps reduce the lookup time.

noisetol

combined

I Scalability Statistics I

Cache Size

986

1626

I noisetol 1 1 39 I 0.017 I 39 1 0.013 I

0

822

1504

Policy

basic

noadd

10

822

946

5

823

1038

990

1157

20

823

908

combined

993

1030

Cache Size = 0

993

1009

Cache Size = 20

#F-Vec t

839

595

39

#F-Vec t

839

53 1

tlookup

0.130

0.120

tlookup

0.060

0.046

0.017 3 5 0.01 1

6. Conclusions and Future Work

Our results indicate that the described instance-based learning approach using locally
weighted regression works well for this domain. Selectively adding feature-vectors into the
knowledge base and discarding feature-vectors that consistently result in inaccurate predictions
make the described instance-based learning approach scalable and tolerant to noise.

A two-level knowledge base: a) accounts for short-term variations in compute-server and
network performance, and b) exploits temporal and spatial locality of mns. The chosen
knowledge representation allows inadequate feature-vectors to be detected.

Experimental data collected during normal use of the Purdue University Network
Computing Hub validates the assumptions of temporal and spatial locality. The use of a two-
level knowledge base, which exploits these assumptions, results in reduced prediction error,
faster retrieval of feature-vectors, and smaller (average) analysis time. It should be mentioned
that the pel-formance benefits of caching observed here are likely to be an upper bound. This is
because of the fact that the conditions in an academic environment are particu1;xly conducive to
the locality suppositions. To some extent, however, an increased cache size will1 compensate for
a reduction in locality. Further benefits may be possible if a three or higher level knowledge base
is used.

6.2 Future Work

The logical extension to the described work is to apply it to a larger number of tools. In
addition, there are five domain-related issues which are being addressed.

The rU system described here predicts the CPU time for a given run. From a user's
perspective, it is more desirable to minimize the response time (i.e., elapsed time), which
depends on the current load on the target machine. This requires the machine load to be
incorporated into the feature-vector.

The current A1 system does not consider the heterogeneity of hardware re:sources. In order
to account for this, the A1 system must learn scaling factors for each architecture, in addition to
the tool-specific resource-usage characteristics.

Com~uting systems exhibit long term variations in characteristics that are typically the
result of an upgrade of one or more components of the system (e.g., a new version of the
operating system or compiler). In order to adapt to such changes, the learnin;; algorithm must

account for concept drift. A related issue is the ability to track rapidly-changing concepts (e.g.,
network traffic). It should be possible to do this by heavily biasing the learning algorithm
towards mclre recent observations and discarding older observations.

The final issue is to exploit the predictability of long-term resource-usage trends. Demands
on computi~tional resources tend to follow patterns that can be learned (certain resources are
generally over-loaded during the late-afternoon hours, for example). An AI-based approach to
resource-allocation should be able to exploit them to learn an anticipatory scheduling policy.

References

Aha, D. PI., and Kibler, D. 1989. Noise-Tolerant Instance-Based Learning Algorithms. In
Proceedings of the 1 1 th International Joint Conference on Artificial Intelligence, 794-799.
Morgan Kaufmann.

Atkeson, C.G., Schaal, S. A., and Moore, A. W. 1997. Locally Weighted Learning. AI Review
11: 11-73. ELluwer Publishers.

Cleveland, W. S., and Devlin, S. J., 1988. Locally Weighted Regression: An Approach to
Regression Analysis by Local Fitting. Journal of the American Statistical Association
83(403):596-610.

Cleveland, W. S., Devlin, S. J., and Grosse, E. 1988. Regression by Local Fitting: Methods,
Properties, and Computational Algorithms. Journal of Econometrics 37:87-114.

Comerford, R. 1997. The Battle for the Desktop. IEEE Spectrum 34(5):21-28.

Deng, K., and Moore, A. W. 1995. Multiresolution Instance-Based Learning, In Proceedings of
the Internal.iona1 Joint Conference on Artificial Intelligence (IJCAI).

Devarakonda, M. V., and Iyer, R. K. 1989. Predictability of Process Resource Usage: A
Measurement-Based Study on UNIX. IEEE Transactions on Software Engineering
15(12): 1579-1586.

Funahashi, K. 1989. On the Approximate Realization of Continuous Mappings by Neural
Networks, .Veural Networks 2: 183- 192.

Goswami, K. K., Devarakonda, M., and Iyer, R. K. 1993. Prediction-Based Dynamic Load-
Sharing Heuristics. IEEE Transactions on Parallel and Distributed Systems 4(6'):638-648.

Grosse, E. 1989. LOESS: Multivariate Smoothing by Moving Least Squares. In Approximation
Theory VI: Volume I, 299-302. Chui, C. K., and Ward, J. D. eds. Academic Press.

Hecht-Nielson, R. 1989. Theory of the Backpropagation Neural Network, In P:roceedings of the
International Joint Conference on Neural Networks, 593-61 1. Washington.

Hennessy, J., and Patterson, D. A. 1996. Computer Architecture: A Quantitative Approach.
Morgan k~ufmann Publishers.

Kapadia, N. H.; Fortes, J. A. B; and Lundstrom, M. S. 1997. The Semiconductor Simulation
Hub: A Network-Based Microelectronics Simulation Laboratory. In Proceedings of the 12th
Biennial IEEE University Government Industry Microelectronics Symposium, '72-77. Rochester,
New York: IEEE.

Moore, A. W., Schneider, J., and Deng, K. 1997. Efficient Locally Weighted Polynomial
Regression Predictions, In Proceedings of the 1997 International Machine Learning Conference.

Press, W. VV., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. Numerical Recipes
in C. 2nd Edition.

Schaal, S. 1994. Nonparametric Regression for Learning. In Proceedings of the Conference on
Adaptive B'ehavior and Learning. Center for Interdisciplinary Research, University of Bielefeld,
Germany. Also technical report TR-H-098, ATR Human Information Processing Research
Laboratories.

Schaal, S., and Atkeson, C. G. 1994. Assessing the Quality of Learned L,ocal Models. In
Advances i,u Neural Information Processing Systems 6, Cowan, J., Tesauro, G., and Alspector J.,
eds. Morgan Kaufmann.

Schlirnrner, J. C., and Fisher, D. 1986. A Case Study of Incremental Concept Induction. In
Proceedings of the National Conference on Artificial Intelligence, 496-501. AA,4I.

Skapura, D. M. 1996. Building Neural Networks. ACM Press.

Smarr, L., and Catlett, C. E. 1992. Metacomputing. Communications of the ACA4 35(6):45-52.

Svensson, A. 1990. History, an Intelligent Load Sharing Fiter. In Proceedings of the 10th
1nternation.al Conference on Distributed Computing Systems, 546-552.

Wang, C. J., Krueger, P., and Liu, M. T. 1993. Intelligent Job Selection1 for Distributed
Scheduling. In Proceedings of the 13th IEEE International Conference on Distributed
Computing Systems, 517-524.

Wilson, D. R., and Martinez, T. R. 1997. Reduction Techniques for Exemplal--Based Learning
Algorithms,. Forthcoming.

	Purdue University
	Purdue e-Pubs
	4-1-1998

	Resource-Usage Prediction for Demand-Based Network-Computing
	Nirav H. Kapadia
	Carla E. Brodley
	José A. B. Fortes
	Mark S. Lundstrom

