7-1-2000

The Use of Internal Constraints to Enhance the Sound Transmission Loss of Poroelastic Linings

J Stuart Bolton
Purdue University, bolton@purdue.edu

Bryan H. Song

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

http://docs.lib.purdue.edu/herrick/56

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
THE USE OF INTERNAL CONSTRAINTS TO ENHANCE THE SOUND TRANSMISSION LOSS OF POROELASTIC LININGS

B. Heukjin Song and J. Stuart Bolton

Ray W. Herrick Laboratories
Purdue University
Introduction

- Investigation of edge constraint effect on samples placed in a modified standing wave tube (B. H. Song et al., JASA 1999; J. S. Bolton et al., SAE 1997).

- Internal constraints may be used to selectively enhance the transmission loss of lining materials at low frequencies.

- Implications for design of low frequency noise control barriers following from constraint of porous lining materials around their edges.
Transfer Matrix Approach I

\[
\begin{bmatrix}
P \\
V
\end{bmatrix}_{x=0} =
\begin{bmatrix}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{bmatrix}
\begin{bmatrix}
P \\
V
\end{bmatrix}_{x=d}
\]

\[T_{11} = T_{22}\] symmetry

\[T_{11} T_{22} - T_{12} T_{21} = 1\] reciprocity

* Solve for transfer matrix elements
Transfer Matrix Approach II

\[
\begin{bmatrix}
1 + \frac{R_a}{\rho_0 c_0} \\
\frac{1 - R_a}{\rho_0 c_0}
\end{bmatrix}
= \begin{bmatrix}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{bmatrix}
\begin{bmatrix}
T_a e^{-jkd} \\
\frac{T_a e^{-jkd}}{\rho_0 c_0}
\end{bmatrix}
\]

- Anechoic Reflection Coefficient

\[
R_a = \frac{T_{11} + \frac{T_{12}}{\rho_0 c} - \rho_0 c T_{21} - T_{22}}{T_{11} + \frac{T_{12}}{\rho_0 c} + \rho_0 c T_{21} + T_{22}}
\]

\[
\alpha = 1 - |R_a|^2
\]

\[
Z_n = \frac{1 + R_a}{1 - R_a}
\]

- Anechoic Transmission Coefficient

\[
T_a = \frac{2 e^{jkd}}{T_{11} + \frac{T_{12}}{\rho_0 c} + \rho_0 c T_{21} + T_{22}}
\]

\[
TL = 10 \log(1/|T_a|^2)
\]
Anechoic Transmission Loss

Frequency (Hz)

TL (dB)

- Experiment
- Prediction using FEM (with edge constraint)
- Prediction without edge constraint

Increase in TL due to edge constraint

Shearing mode
Surface Normal Impedance
(Change from mass-like reactance to stiffness reactance)

Re(Zn)

Frequency (Hz)

Im(Zn)

Frequency (Hz)
Variation of Shear Modulus
(As G increases, the shearing resonance moves to higher frequency)
Flow Resistivity

(Controls TL in low and high frequency limits)

Loss Factor

(Loss factor controls depth of TL minimum)

Flow Resistivity

- Flow resistivity = 20,000 MKS Rayls/m
- Flow resistivity = 40,000 MKS Rayls/m
- Flow resistivity = 60,000 MKS Rayls/m

Loss Factor

- Loss factor = 0.1
- Loss factor = 0.3
- Loss factor = 0.5
Effect of Sample Size

Experimental Setup for Low Frequency Tube

B & K Type 3560 Pulse System (Four Channel)

Signal Generator

Signal Amplifier

Microphones

Anechoic Termination

New Sample Holder

Two-Microphone Impedance Measurement Tube B & K Type 4206

Aviation grade glass fiber

\[\rho = 9.61 \frac{Kg}{m^3} \]

10 cm

7.5 cm
Constrained around Edge (50 Hz - 1600 Hz)
Constrained along Plane (50 Hz - 1600 Hz)
Constrained Cross (50 Hz - 1600 Hz)
Transmission Loss (FEM)

- Unconstrained case
- Constrained around edge
- Constrained along plane
- Constrained cross

Frequency (Hz) vs. Transmission Loss (TL) (dB)
Effect of flow resistivity on TL for cross constrained case

- Flow resistivity = 20,000 MKS Ralys/m
- Flow resistivity = 40,000 MKS Ralys/m
- Flow resistivity = 60,000 MKS Ralys/m

![Graph showing TL (dB) vs Frequency (Hz) for different flow resistivities.](image)
△ TL constrained and unconstrained cases

[Panel (Al, 0.762 mm)+Air+Glass fiber (7.5 cm)+Air+panel (Al, 0.762 mm)]
Δ TL constrained and unconstrained cases

[Panel (Al, 0.762 mm)+Air+Glass fiber (7.5 cm)+Air+panel (Al, 0.762 mm)]
Transmission Loss (100 Hz - 6400 Hz)

(10 cm samples very nearly approximates unconstrained case)
Conclusions

- Acoustical performances of fibrous layers such as transmission loss and absorption coefficient are affected by constraint on the boundary of the samples.
- The various constrained effects are well predicted by using poroelastic FEM model (COMET/SAFE).
- Light and stiff fibrous materials combined with edge and internal constraint mechanisms can be used to design, light, high performance low frequency noise control barriers.