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Abstract

(Juantization can effectively reduce the huge amount of datawith possibly small error (called quantization
error). In designing a quantizer using a portion of the data as a training data, the training algorithm
tries to find a codebook that minimizesthe quantization error measured in the training data. It is known
that, under several conditions, the minimized quantization error approaches the optimal error for the
underlying distribution of the training data as the training data size increases. In this report, an upper
bound for the minimized quantization error from the training data is derived as a function of the ratio of
the training data size to the codebook size. This bound enables us to observe the convergence behavior

of the trained quantizers as the training data size increases.



1. Introduction

Let F be a distribution function, k be afixed integer, and || - || denote the L2 norm on R*, k-dimensional
Euclidean space. The optimal quantizer design problem for F is to minimize the quantization error

defined by
D(C, F) = / min|[x — y|2dF (x)
yeC

over all possible choices of the set C in C,,, where C, isthe class of sets that contains n (or fewer) points
in R¥ [1],[15].

Suppose that X, X, ... isasequence of independent, identically distributed random variables taking
values in R¥ with distribution F. Let w denote a sample point in the underlying sample space R. For a

set. C (€ C,) and XY, ..., XY, we define the empirical error as
D(C, F2) ;=/ minx— y|[dF(x),
yec

where F is the empirical distribution function constructed by placing mass m~! at each of the m points

¢, ..., X% [8]. In order to minimize D(C, F) with an unknown F', an inductive method that minimizes
D(C, F%) is usually considered based on the empirical risk mininmzati on (ERM) principle [16]. Note
that there exists a convergent. subsequence of C,, such that (D(Cy,F)) and (D(Cy,, F}%)) converge to
infeee, D(C, F)for ailmost every w, where C, satisfies D(Cy,, F2) = infeee, D(C, Fis) [1],[15). If =1
(i.e., the set size nisequal to m),then for all sample points w € R, infcee, D(C, F) = D(C¥, Fx) =0,
since we can choose the set as C* = {XY¢,....X%} for esch F%. In the special case when n = 1 and
m > 1, we obtain the well known relation E{infcec, D(C, Frn)} = (m— 1)/m . Var(X;), which implies
that infc:c, D(C, F) is a biased estimate of the variance.

In this report, upper boundsfor the expectation of the empirically optimal error E{infcec, D(C, F))
are introcluced to observe the performance of C, with respect to m. Through the upper bounds, it will
be shown that infcec, D(C, Fy) is a biased estimate of infeec, D(C,F). In evaluating the designed
quantizer this fact often misleads the quantizer designers, since infcec, D(C, F}) is usualy less than

infcee, £(C. F).A compensation methodfor this biased error based on the bounds will also be suggested.



2. Bound for the Empirically Optimal Error

In this chapter, upper bounds for E{infcec, D(C, F,)} are derived as a function of any n points
Y1i....,¥n and the corresponding partition {S;}"_, in R¥. The corresponding point of the region S;
isy;, and the partition size is n. Note that the partition is a finite, disjoint class {5;}?.,; whose union

is R* (or includes the support of the density function of F). The partition that minimizes the error

. yil|?dF(x) is called the Voronoi partition for yi,...,y,. If we consider a vector W¥ that
is defined as
(00---0)7, ifm¢ =0
W = 1 & _ (2.1)
— ) I5,(X$)Xy, otherwise,
iog=t
where m¢ =3 - 1 ), for each S;, then it is clear that
: w w2 w ;
dnf, DICF) < 3 / e Wl () (2.2)

Let P; denote the probability that X, belongs to S;, i.e., B := P{X; € S;} = fs, dF. Let an index set
beZ ={i : P,#0,i=1,...,n). Then (2.2) can be rewritten as
dnf D(C, ) < —ZZIS (X$)|Xy — W (2.3)
i€Z £=1

Proposition 1 Suppose that E{||X1]||*} < oc. Then for any finite poznts y1,...,yn and the correspond-
g partition {S;} m RF,

(1-p£)"
E{ inf D(C, Fn }<Z/ Ix — yi||°dF(x) [1_"1—&
1€l
Proof of Proposztion 1: Taking expectations in (2.3) we have
. 1 - "
E{Clgcf‘n D(C, Fn)} < m / Z; z; Is,(x¢)||xe — wil||2d F™, (2.4)

where dF™ denotes dF(x1)..-dF(xm), [ denotes a km-fold integral, and w; is the function of x,’s as
given in (2.1).
In order to simplify the expansion, let |Z| = n. The proof in the case of |Z| < n isalso similar (details

XS

ly.m?

appear in [13]). Let B, C R*7™ pe the m-fold Cartesian product of S;’s, 1.e., B, = 5;_|,
where v = (i1 — 1)t (2 - )nt .4 (i m —1)n™ P and 4, ; € {1,2,...,n). Then theright hand side
of (2.4) can be rewritten as

nm—1 m

) [ 3 sl wilarm =: bl z¢

l'11£1 v=0



x¢ — w;||*dF™. If m;, (= the number of i in {i,j};f‘:lj is not zero,

where i, =371, fB,, Is, (xe)
then the m; , summandsin ¢;, remain non-zero, since Ig, (x¢) becomes 1 if x; € S;. By rearranging the

parameters x,, ¢; , can be expanded as

™M

I1 7 / s ke = WillPdF(x1) - dF(xom,,), if mi,, #0
¢i,u = =1 Sx =1
J#1
0, otherwise.
(2.5)
Here, w; = mj, 3 poy’ x¢ and S = X;’Z’{Si.
In the case when mi,, # 0, we add
n miv
1_‘[ ijj’" /m. v Z llw: — y,'||2dF(x1) cdF(Xm, ) (2.6)
= A
to both tiesides of (2.5), which results in
¢i,y + H ijj'v /m ||wz - yi||2dF(X1) s ‘dF(Xmg‘y)
it 597 =1
- m;, v
= TIr 2 [ x-viPdre, (27)
: 7 S
j=1 '
since 3o ([Ixe — wil 2 F [[ws — yil1?) = 02 l1xe = il
Morecver, (2.6) can be expanded as
n 1 mq v 2
[ [, [ =y| P drx,.)
1 v JSTUY 2
= =1
(2.8)

n . 1
> TIP3 [ = villarco),
j=1 LS

where equality holds when y; = fs‘ xdF(x)/P;. From (2.7)and (2.8), we have

n . 1
b S TLB - m = 1) [ = yilPdF (o)
ij=1 ¢ i

Note that since there are m!/T;_, m;, different v’s in {0,...,n™ — 1) that yield the same values
,my, ,, it follows that the joint distribution of the random variables my,...,m, (mfy =

My,
v =mPand 3, I, P "y =

zv

of my,,. ..
Yoiey Is,1X¥)) is the multinomial distribution. Hence, 3~ [1; P™ " m

1-(1- 7)™, wherevy;, :=1if m;, # 0, and 0 otherwise. Thus,

n™—1 \m
S i< m- B [ yiar . (29)
v=0 ? 1



The proposition follows from (2.4) and (2.9). il

The next proposition will introduce a simple bound on E{infcec, D(C. Fin)} asa function of m.
Proposition 2 Suppose that E{||X,||?} < oc. Then for any set B € C,,

B{ inf D(C.F)) < D(B,F) (1 _ %) . (2.10)

Proof of Proposition 2: Consider acodebook B = {y1,...,yn} € C, and the corresponding Voronoi

partition {S;}”,. Then D(B,F), the quantizer distortion for B, can be rewritten as

D(B.F):Z/ (|x — yil|2dF(x) (2.11)
i=1 75

for adistribution function F. In asimilar manner in (2.1), if we consider a vector W that is defined as

(00---0)T, if my =0
ZIS X%)XY, otherwise,
’ =1
where m¢ :=3 "}, Is,(XY%), for each S;, then it is clear that

Il

i 1w f — Xw _ 2
Clg(f;“ D(C,Fy) in Z m1n|| M|

ceC, M
- LSS s (XD - WEIP, (2.13)
i=1 £=1
where Fy: (X) := m™" 3000, I_ oo x(X¥) @Nd o0 := (=00, -+, —0c)T. Thelast term in (2.13) can be

expanded as follows.

1 n m
=D > s (XPIXy - Wy’

i=1¢=1

1 n m
= S LX) (XF - ye) (v — WP

i=1 f=1
1 n m
= Y > s (XOIXY ~ il
1=1¢é=1
1 m
=33 s (X7) [ 20%9) Ty - 20X W - yTys + WIW,
i=1€=1
1 o w w 2 w
= =D ) Is(XPIXY - yill ——Zm W —yi]°. (2.14)

i=1 =1



In (2.14), if m¢ # 0, then

2

w 1< "
mi |W¢ —yill* = " ZIS,(Xe J(X{ —yi)
i fle=1
1 - w w 2 1 w
- me ;IS.(xz XY —yill” + my o, (2.15)

where

a7 = 215, (XY) s, (X3)(XY — yi)(X5 —yi)+

o 25, (XY Vs, (XU )XY — yi) (XY —yi),

and m¢||WY¥ — y;||> = 0 otherwise. Hence, by changing m¥ to min the last term of (2.15)and from

(2.14), we obtain a relation

1 n m

33 s ()

i=11¢=1

N 1 &
X5 - yill* - — > omy|[WY —yil®
i=1

n m

< ST - vl

i=1 £=1
1 n m " " 1 n .
_ [WZZIS,(Xz NIXs —yill* + mZai] . (2.16)
i=1 ¢=1 i=1

Note that £{} "7, a;} > 0, where the equality holds when y; = f¢ xdF(x)/ fg dF.and

1« o
E{;;I&(X;)sz —yi||2} = D(B,F). (2.17)
Therefore, from (2.13), (2.14), and (2.16),
. 1
E {C%]Cf" D(C,Fm)} < D(B,F) (1 - E) . (2.18)

From Proposition 2, F{infcec, D(C, Fin)} < infeee, D(C, F)(1 - 1/m). Therefore, for a finite m, we

obtain

| /' . 2.19
E{Clélé‘" D(Cy Fm)} < Clél‘_fn D(C] F) , ( )

which impolies that infeec, D(C, FY%) is a biased estimate of infcee, D(C, F).



3. Asymptotic Bound based on Root Lattices

In this chapter, asymptotic boundsfor E{infccc, D(C, Fy,)} are suggested for an absolutely continuous
F. Inorder to derive an asymptotic bound, we consider root lattices [11]. Let the points of a R-dimensional
lattice £z (C R*) be denoted by ¥j,J € Z. The closure of the ith Voronoi region of the lattice £y isthe

convex polytope H; defined as
Hi :={x € R* . []x — yi||2 <|x- yj||2, foraly; € Ly}, forie Z

Here we lat y; = (0---0)7, thus H; includes the origin y;. Then G(Li), the normalized second moment

of H; is defined as

1 fH,. llx — y:l|2dx
G(Lr) =

where p ::= k/(kt+2) and V(H;) := fH| dx isthevolumeof H; [9]. Notethat all H;, i = Z, have the same
shape. Thus, the normalized second momentsand the volumesof H; are all thesame. Conway and Sloane
have calculated the second moments of various lattices that yield values close to infz, G(Lx) for various
dimensions, where the infimum is taken over all R-dimensional |attices [5],[6, Table I]. For example, the
hexagonal lattice, which is equivalent to the lattice A,, is the optimal lattice in 2-dimensions. In the
3-dimensional case, the Dy lattice (or equivalently the lattice A1) is a body-centerel4 cubic lattice and
optimal in 3-dimensions [3]. Furthermore, Conway and Sloane proposed a lower bound for inf;, G(L)
[7]. Tosummarize, it is known that inf;, G(£2) = G(A42) = 0.08018--- and inf;, G(L3) = G(D35) =
0.07854. .- For the definitions of the lattices see [5].

Let d be the diameter of the convex polytope H; defined asd :=sup{||x — y|| : X,y € H1}. Note that

d < oco. Consider a sequence of cubes

Uy = xi, [—%—di,%+di] , fort=0,1,2,...

and the Lebesque measure p. p(H,) =: u, where » isa non-zero constant and p(U;) = (1+2dt)¥. Suppose
that the lattice £ satisfies H; O Uy.

Now we consider the number of H;’s that have non-zero measure intersections with the cube Uy.
Let N, := number of H;, ¢ € Z, such that u(H; NU;) # 0 and N/} :=number of H;, i € Z, such that
p(H; NU;) = u. Note that N; > N/. Then it isclear that, fort € I,

u(Ui—1) < NtIU < /‘(Ut)‘

n(Uz) < New < p(Urga).



Let ¢, be the largest integer such that n — ¥, > 0,then N;, < n< N, 4; and{, — oo asn — oo.

Thus, we have a relation

NtIn NzI,. S w(Ut,-1)

n Ny = #(Ui42)
1+ 2d(tn — 1)
[1+2d(tn+2)

Since N{ /n < N, /n < 1,for n € N, we obtain

k
] — 1, as n — oo.

NI
lim & = lim = =1 (3.1)

n—00 n—00

The following lemma shows that the quantization error has an asymptotic upper bound that is a
function of G(L;) based on (3.1).

Lemma 1 Suppose that X, is uniformly distributed over the cube U := xf_,[—1/2,1/21. Then there
exists a sequence of sets C, such that
limsupn®*D(Cp, F) < kG(Ly)
n— a
Proof of Lemma 7: Consider a sequence of equivalent lattices L4, t = 0,1,2,..., where the &

generator vectors are obtained by multiplying (1+ 2dt)~! to the generator vectors of L. Note that
G(Ly) = G(Lk ), for t € N. Let H;, denote the convex polytope for y;: € L in the same manner as
H; is a polytope for y; € L. Then, following the earlier methodology we can derive the result (3.1)in
the same way. Note that, since

n I n

up(U) < n/l(Hl,t) - 7 [ N, ”(Hl,f) ]S _Ill(U)) fort=23,..,

and from (3.1),

lim np(Hy,.,) = w(U). (3.2)

n—oc

There is a sequence of C,, such that

n**¥D(Ca, F) < n¥* i/ b = il
B i=1 Y Hin MU H(U)
< RG(LnEN, [ u(Hi )] Ju(U)
< kG(Lr) [np(Hre) ] /u),

from N,, < n. Thusfrom (3.2),

limsupn?/* D(C, F) < kG(Le)- [ (U) ]7/*

n—00




holds. This completes the proof.

In as milar manner asin Lemma 1, we can construct a sequence of ', satisfying

limsupn?/*D(C,,, F) < kG(Li)[If1l,, (3.3)

n—ca

under certain conditionson f , the density function of X, where

Ufll, = [ [ #21ax] "

The conditions on f will be introduced in the following theorems and corollary. It is clear that
limsup,,_.o, n**infeee, D(C, F) < Ji||f|l, from (3.3), where Ji :=inf., kG(Lx). However, if Gersho's

conjecture [9] is correct, then

YT CEy =
lim n Clgé D(C,F) = Ji||f|l,,

n—co

which tells us the asyinptotically optimal quantizer performance [4],[5].

We now express the upper bound in Proposition 1 as a function of Ji||f||, asymptotically in n.

Theorem 1 Suppose that X, has a density function T with compact support and f s bounded on R*.
Then

. 9 . 1— '—5
fimsup £ ot D(C. P} < el (1255 ) (3.4)

n—c ;3

where 3 1s a constani (1 < 3 < oo} and m, 1s a sequence of n such that m,/n "~ B esn  co.

Proof of Theorem 1: Let B be acube that containsthe support off and isdefined by B := x¥_ [a,b] (C
R*), where a and b are finite. Consider a partition of B into 2*¢ cubes By such that u(B¢) =[ (b —
a)/21]"=: v, £=1,...,2%. Define a simple function f, as

2k9

fq(x) = Z pelp, (X'),
£=1

where p; := supy¢ g, f (X). Then since the sequence (f,(x)), is monotonic and lim,—o; fy(x) = f(x) a.e.,
it follows that [ fy(x)dx — 1 [10, p.112]. From [10, p.96], the expectation of the empirically optimal
error E{infcec, D(C, F,,)} satisfies the relation:

E{ jnf D(C, Fin)}

= %// inf Z;}gg“xf—}'Ilzf(xl)'“f(xm)dxl~~'dxm

cCeCn
1=1
m

b [ [ et > el 31 fya) - Sylem)dss - dx (3.5)

i=1

IA



Now consider partitions for each cube Be. Assign

ne:=|n- (kp;)p (3.6)
E?:ql (pJ)p

points to each Be. Suppose that n, > 1if p, # 0 for n > no, where n, is a positive integer. In (3.6),
lc],e € K is the largest integer less than or equal to e and n,/n - (pg)P/E?':I(pj)P, asn — oo. For
each cube Be, make polytopes H; ¢ and the corresponding points y; , in the same way asin Lemma for
the pe # 0 cases. Note that H; . and y; ¢ are functions of n, (or t,,). However, for simplicity we omit
ne in this notation. The lattice for B, is a coset of the scaled lattice, which is equivalent to the lattice
Li. Let Ne := number of H; ¢, i € Z, such that p(H; ¢ N By) # 0 and suppose that p(H; N By) # 0, for
1=1,2,...,N,.

Using Hiy, i € Z and 0 = 1,...,2%¢, make a partition {S;,} of B, where S;, C (H;, N B,) and
p(Sie) = u(H;eNBe),fori=1,2,...,Ne,and S; e =0fori e {1,2,...,n,} = {1,2,..., N¢}. Then,from
Proposition 1 and (3.5), we obtain a relation

2kq

E{jnf DIC,Fn)} < 303 e /S 1% — 0l (x)dx (3.7)

t=1i€Z,
where Zo:={| © Pje#0,5=1,... ne}, Py = fS,,z fe(x)dx/ [ f,(x)dx, for al 0, and

1-(1-Py™

, for i € Z,.
mn})i,f

Qg ¢ = [1

Note that «o; < 1and Z, = 0 if pp = 0. Since neu(H; ¢) — v asny — oo, for i =1,...,n¢, from (3.2), we

have

11— 00

limsupnl/"/ ||X—Yi.£||2fq(x)dx
Sie

< lim nl/"pg/ ||x—yiyg||2dx
11— 00 Hl.l
1/p 1/p fH l”x_yi,fnzdx
— n [nen(Hie) ] pe [ =
s ( ) [N(Hz’,z)]l/p

Ty

oka

/e
= kG(Ly) [Z(pj)"v} = kG(Lx)|| f,4]l5, for @l i and 0.

ji=1
Thus, mltiplying the right hand side of (3.7)by »** and taking n — oo yields

2k

lim sup n?/k Z Z ai,l/ [Jx — yi,lllzfq (x)dx
Sx,l

n—roo {=14€,

R
< kG(ﬁk)quthmsupE (Z Zaiyg) . (3.8)

€=14i€Z,



Now, the partial second derivatives 4% [[ 1 — (1 — )™ | /mx] /ax?® >0, for x>0and m=3,4,...

Hence, under the constraint Zf; > ez, Pie = 1, the term inside parenthesis in (3.81is bounded as

1€Z, 2,
okq okq 2 m
N~* 1 n
ZZQMSZ"‘_—[I—(I__) ], (39)
¢=14i€I, =1 Mn N

k
forn > ng if P,; = 1/N, where N := Zf:l N¢ (Ne = |Z,|) [12]. Note that "_125:1 ny — 1 and
N/n — 1, asn — oo, from (3.1). Thus, since m,, /n — # as n increases, dividing (3.9) by n and taking
n — oo yields

2k
1

) 1 [ 2% N2 1\™n
et < and 23

INA

n—oo N ¢=1i€Z,

Il
—
|
I
—_
—
{
o
{
@
~—

Since [ fix) ] is also bounded, [ f,(x)]"—[ f(x)]”, a.e., it followsthat || f|l, — || fl,- This completes
the proof. i

Corollary 1 Suppose that E{||X;[|2*¢} < oo for some ¢ > 0 and f is bounded on R¥. Then the inequality
(3.4) holds.

Proof of Corollary 1: Consider an increasing sequence of cubes B! ¢ B? C --. c B*. For a constant
0 <n<1,assign (1 — g)n points to the cube B® and nn points to B*, which is the complement of BS.
Then from [4, Theorem 2], there exists a sequence such that

S 2k ; _vli2 _
lim lim n /Bs yr%16|'17?"||x y|[’dF(x) = 0.

6103nNn—00

Hence, by letting  — 0, we obtain the corollary. Note that from the assumption and Holder's inequality,
[|1fll, <ooforany e>0and ke N. Il

From Theorem 1 (or Corollary 1), the asymptotic bound has two parts; Ji|| f||, and [ 1-(1-e"P)/8 ]
Thesecond part is concerned with the ratio 8 and, regardless of f and the dimension &, 5 isan important
factor in the convergence of infcec, D(C, F%). The curve of [ 1 — (1 — e=?)/8 ] with respect to 3 is
depicted in Fig. 3.1. As we can see in this figure, as # decreases, the bias between inf cec, D(C, F%) and

infeee, D(C, F) increases monotonically. We can also see that 1/8~ (1—e=?)/3for 3=14,5,...



o o
® 0
wh|

-(1-e7)8

rH——1t—ttt—
0 5 10 15 20 25 30
Ratio g

Figure 3.1: The curve of [ 1-(1-e=#)/B | with respect to the ratio 8 == m/n.

Note that the term (1— ¢~#)/3 in Theorem 1 is independent of the distribution type and the vector
dimension. In the next theorem, a better bound will he introduced, where the term is expressed as a

function off as well as the ratio 3.
Theorem 2 Under the assumpiions in Theorem 1,
—, /-
limsupn®“E{ inf D(C, Fin,)} < Jkllfllp[ C_ﬂ] ,

n— 03 Cn IB

where

P
Il

I£1155=3 / 17113 (3.10)
= / 7 e TN a ) | £,

for [¢—&®] /B < L.

Proof o Theorem 2: From (3.7) and (3.8), we have

Ilmsuan/kE{ inf D(C, Fan, )} < KGRI, limsuplimsup - > "% "oy,
n—oc 9—03 n—co N (=1:i€1,

(3.11)

Let N; :=={j: Hj ¢ C Be,j € 7Z}, then the term inside parenthesis in (3.11) can be expanded as
2ka

limsuplimsup - E E o ¢
9—03 n—oo I {=1:€l,

= limsuplimsup %ZNZ - mln ZZ
n =

g—00 n— oo

(1’_ ;e) ”

l 1€,
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since n~
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Note that we have a relation between Theorem 1 and Theorem 2 as follows.

llrI‘Ii,Sgp le/kE{Clggn D(C, an)} .<_ ]ka”P [1 - g—_'-—gi@]
1—e#
< s, (1- 5. 519

Under the assumption that ||f]|2,—1 < oo, Theorem 2 can aso be extended to a more generaly
bounded f in thesame manner asin Corollary 1. Furthermore, supposethat £ isan arbitrary distribution
function expressed as Fi(x) = aFac(x) T (1 - a)Fs(x) for some a € [0,1], where Fac is absolutely
continuous and Fy issingular with respect to g. Then from [4], the asymptotic upper bound is given by

C—;(B)]

Note that ¢ > 1 from the Schwarz inequality. Since frY(x)e /TGS 0 as B o0,

mw$—

limg_.o, £(3) = 0 from Lebesgue's dominated convergence theorem [10, p.110]. In other words, £(3)/3
converges to zero at afaster rate than 3!, it follows that, for relatively large 3, [C -E&3 ] /8~ (/8.
(Note that asimilar approximation for the Theorem 1 case is already illustrated in Fig. 3.1.) Hence, we
can obtaia an approximate upper bound as

Iimsuan/kE‘{Cigg D(C, Fyn )} < Jxllfl, (1 - %) (3.14)



for relatively large 3, if follows that the constant ¢, in conjunction with 3, is the dominant term of the
bound.
Suppose that J isan n X n matrix and is invertable. Consider a random vector Z.=JX. If X hasa

density function fx then Z has the density function as
fa(z) = fx(J~'z)/| det J|. (3.15)
Hence, {7 for Z satisfies the following relation
2
[ / fz"‘l(z)dz] / [ fé"‘l(z)dz]
2

= [/ ffc”‘l(x)ldetJl‘Z”“dx] / [/ FE7Y(x)| det J|7 Pt dx| = ¢x (3.16)
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Therefore ¢ is invariant under a linear transformation of X;, e.g., independent. of the variance of the

input distribution or the correlation inside the vector X;.



4. Examplesof ¢

We next introduce examples involving the constant ¢ for several different distributions to observe the
effect of j on the bound.

For a uniform density function, it isclear that ¢ = 1 and £(3) = e~#. Thisresult isidentical with that
of Theorem 1. From (3.13), the maximal bound of Theorem 2 is obtained when f is a uniform density
function.

For the generalized exponential distribution, including the Laplace and normal distributions, ¢ is
derived. The generalized exponential density function with the parameters s and 7 (s, > 0) is defined
as

nk/s x)®
P —— AL
o) = a5 ©

where (-) denotes an arbitrary norm on R*, and V;. isthe volume of the k-dimensional unit sphere defined
by Vi = f(x><1 dx. For example, if s = 1 and the norm is | .|, then the distribution is the Laplace
distribution; if s = 2 and the norm is || . ||, then the distribution is the normal distribution.

Suppcse that f isthe generalized exponential density function. Then from (3.10).we obtain

2p—
Csk = ”f%n”?ﬁ—i/“fa,nngp

oy [
Vil(1+ k/s)

If 2p — 1> 0, then

[n(20-1)]

Therefore,

%2 k/s
ka = (Z;?tjji) y for k :23,4,....

The normal distribution (s = 2) has lower values of ¢, x than the Laplace distribution case (s = 1).

Furthermore, for a given distribution, increasing vector dimension decreases (; .-

14



5. Application: Training Vector Quantizer

Suppose that we have L points x;,...,x; as data. The data could be a part of the images or the the
speech spectral vectors. Depending on the application, the data size can be arbitrary large. The optimal
quantizer design problem for x1,...,x; consists of finding aset C € C, that minimizes the time-average
error given by

1

7 2 lIxe = Qe (xa)I*. (5.1)

M=

£

1l

1

In this error, the surjective map Q¢ : R*¥ (' is defined as
Y. : o2
Qc(x) = argmin|x — y]*,

which is called the vector quantizer. The finite set ' is caled the codebook.

There exists at least one codebook that minimizes the time-average error (5.1). Finding such an
optimal codebook is, however, difficult, especially for large L, since the search complexity increases
dramatically as L gets large [2]. Note that, in order to search for an optimal codebook, we should
compare the nb distortions of (5.1) in the worst case, since the number of possible codebooks is nt.
In order to reduce the search complexity, first, we generally use a portion of the data, which is caled
training data, in other words, we search a codebook that is optimal for afinite and relatively small data.
However, the search complexity can still be high. Thus, instead of a full search for the optimum, the
K-means clustering algorithm and the Kohonen learning algorithm, which cluster the training data, have
been proposed [2] to find a suboptimal codebook for the training data.

Now, suppose that the time-average error in (5.1) can be rewritten (modeled) as D{C, Ff'), W € Q.

From the Strong Law of Large Numbers [10],
Llim D(C, F}j') = D(C, F) for amost every «’,

for a given codebook C. Therefore, the optimal quantizer design problem can be regarded as finding
a codebook C that minimizes D(C, F) for F if L isinfinitely large. Furthermore, X¢,..., X%, are aso
regarded as a training data and m is the training data size. Then infcee, D(C, F¥) is the trained error
for the training data. Therefore, the upper bounds in Theorem 1 (or Theorem 2) can be used to describe
the performance of the trained vector quantizer.

An example of the bound for a normal distribution is illustrated in Fig. 5.1 with a sequence of
numerica results of infcee, D(C, F%), for 3 = 4 ~ 30, where the K-means algorithm was employed for

the numerical results. If X; has the normal distribution, then the upper bound in (314) is given by

Jell£ll, (1 ~ %) = 2w Jyp D/ (det S)1/F (1 - C%’”) , (5.2)
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Figure 5.1: An example of the bounds for the normal distribution case (Bound 1 is from Theorem 1,
Bound 2 isfrom (5.2), {det S}!/* = 1, n = 512, and k = 3).
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Figure 5.2: Compensated trained error curves using (1 - ¢2,3/3) (n=512).

where S is the auto-covariance matrix of X;. This bound is denoted as Bound 2 in Fig. 5.1, where k = 3,
n = 512 and 27Jpp~*+2)/2(det §)1/k = 53092 -... The numerical results increases as 3 increases. At
B = 5120, the numerical error becomes 5.184 and is approximately equal to the error for F. The bound
in Theorem 1 is also illustrated in Fig. 5.1 (Bound 1). Note that the bound in (5.2), Bound 2, is better
than Bound 1, for relatively large 3.

Asshown in Fig. 5.1, the ratio 8 = m/n dominates the performance of the trained vector quantizer;
the bias increases as 3 decreases. In other words, the trained error for a given set of training data is
usually ruch less than infeec, D(C, F),especialy for small 8. From thisfact, we often overestimate the
performanace of the trained quantizer. Therefore, it is general procedure to check the performance of a

trained quantizer for the validating data [14]. In order to alleviate the bias, from (3.14), we can consider



an error

inf D(C,F%)/ (1 - %) (5.3)

CECy

instead of infcee, D(C, F%), where the trained error is compensated for the bias. Ncte that

E{infcee, D(C, F,,)} isalower bound of infcec, D(C, F). However, the expectation of (5.3) is tighter
than E{infcec, D(C, Fn)}. This compensated error can prevent a wrong estimation due to the biased
trained error. Note that, in (5.3), we can simply set ¢ = 1 for unknown input distributions. In Fig.5.2,

the trained error curve (n = 512) of Fig.5.1 are compensated using the error in (5.3).
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