
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

4-1-1998

Bounds on the Trained Vector Quantizer
Distortion Measured Using Training Data
Dong Sik Kim
Purdue University School of Electrical and Computer Engineering

Mark R. Bell
Purdue University School of Electrical and Computer Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Kim, Dong Sik and Bell, Mark R., "Bounds on the Trained Vector Quantizer Distortion Measured Using Training Data" (1998). ECE
Technical Reports. Paper 54.
http://docs.lib.purdue.edu/ecetr/54

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages


BOUNDS ON THE TRAINED VECTOR 

QUANTIZER DISTORTION 

MEASURED USING TRAINING DATA 

TR-ECE 98-6 
APRIL 1998 



Bourtds on the Trained Vector Quantizer Distortion Measuretl 

Using Training Da,ta 

Dong Sik Kim Mark R. Bell 

School of Electrical and Computer Engineering 

128.5 Elect,rical Engineering Building 

Purdue University 

West Lafayette, IN 47907-1285 



TABLE OF CONTENTS 

Page 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Introduction 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Bound for the Empirically Optimal Error 2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Asymptotic Bound based on Root Lattices 6 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Examples of C 14 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Application: Training Vector Quantizer 15 



... 
- 111 - 

LIST OF FIGURES 

3.1 The curve of [ 1 - (1 - e-P) /P  ] with respect t.o the ratio ,D = mln. . . . . . . . . . . . . 11 

5.1 An example of the bounds for the normal distribution case (Bound 1 is from Theorem 1, 

Bound 2 is from ( 5 . 2 ) ,  {det, s)'Ik = 1, n = 512, and k = 3). . . . . . . . . . . . . . . . . . 16 

5.2 Compensated trained error curves using (1 - <2,3/@) (n  = 512). . . . . . . . . . . . . . . . 16 



Abstract 

Quantzzat~on can effectively reduce the huge amount of data  with possibly small error (called quantzzatton 

error). In designing a quantizer using a portion of the data  as a training data ,  the training algorithm 

tries to find a codebook that  minimizes the quantization error measured in the training data.  I t  is known 

that ,  under several conditions, the minimized quantizat.ion error approaches the opt,imal error for the 

underlying distribution of the training da ta  as the training data  size increases. In this report, an  upper 

bound for the minimized quantization error from the training data  is derived as a function of the ratio of 

the training da ta  size t o  the  codebook size. This bound enables us t o  observe the coiivergence behavior 

of the  trained quantizers as the  training da ta  size increases. 



1. Introduction 

Let F be s distribution function, k be a fixed integer, and 1 1  denote the La norm on IRk, k-dimensional 

Euclidean space. The optimal quantizer design problem for F is to minimize the quantization error 

defined by 

over all possible choices of t,he set C in C,, where Cn is the class of sets t.hat contains n (or fewer) points 

in Rk [1],1:15]. 

Suppose that X1 ,  X2, . . . is a sequence of independent, identically distributed random variables taking 

values in R~ with distribution F .  Let w denote a sample point in the underlying sample space R. For a 

set. C ( E  C,) and X y ,  . . . , XW,, we define the empirical error as 

D ( C ,  F z )  := J m i n x  - ylI2dF$(x). 
yEC 

where F; is the empirical distribution function constructed by placing mass m-' at each of t,he m points 

X y ,  . . . , JL:z [8]. In order to  minimize D(C! F )  with an unknown F, an inductive method that minimizes 

D ( C ,  F z )  is usually considered based on the enzpirical risk minimization (ERM) p15nciple [16]. Note 

that there exists a convergent. subsequence of C,,, such t,hat (D(C,, F ) )  and (D(C,, F g ) )  converge to 

infcEcn Ll(C, F) for almost every LJ, where C ,  satisfies D(C,,, , F z )  = infcEcn D(C,  F;:,) [1:1,[15]. If P = 1 

(i.e., the set size n is equal to m ) ,  then for all sample p0int.s w E R ,  infcEcn D(C,  Fg ) = D(Cu , F E )  = 0,  

since we can choose the set as C" = {Xy,  . . . . X i )  for each F z .  In the special case when n = 1 and 

m > 1, we obtain the well known relation E{infcEcn D(C,  F , ) )  = (m - I ) / m  . Var(.X1), which implies 

that infclIcn D(C,  F z )  is a biased estimate of the variance. 

In this report, upper bounds for the expectation of the empirically optimal error E{infcEcn D ( C ,  F,)) 

are introduced to observe the performance of C', with respect to m. Through the upper bounds, it will 

be shown that infcEc, D(C,  F;) is a biased estimate of infcEcn D(C,  F ) .  I11 evaluating the designed 

quantizer this fact often misleads the quantizer designers, since infcEcn D(C,  FE)  is usually less than 

infcEc, Ll(C, F). A compensation method for this biased error based on the bounds will also be suggested. 



2. Bound for the Empirically Optimal Error 

In this chapter, upper bounds for E{infcEcn D(C,  Fm))  are derived as a function of any n point,s 

y l ,  . . . , y,, and the corresponding partition {Si)y=l in Rk. The corresponding point of the region Si 

is y i ,  and the partition size is n .  Note that the partition is a finite, disjoint class {,';i)y=l whose union 

is IRk (or includes the support of the density function of F). The partition that nlinirnizes the error 

xy=l Js, I I x  - yiI12dF(x) is called the Voronoi partition for y l ,  . . . , y , .  If we consider a vector WY that 

is defined as 

- X I s ,  ( x ~ ) x T ,  otherwise, 

where my' := xr=l Is ,  (XY), for each Si, then i t  is clear that 

Let Pi denote the probability that  X 1  belongs t o  Si, i.e., Pi := P{X1 E Si) = Js, d P .  Let an index set 

be Z = { i  : Pi # 0, i = 1, . . . , n ) .  Then (2.2) can be rewritten as 

Proposii,io11 1 Suppose that E{llX1112) < m. Then for any jinzte poznts y l ,  . . . , yn  (2nd the correspond- 

zng partition {S , )  zn lZk, 

Proof of Proposztion 1: Taking expectations in (2.3) we have 

E{ inf D(C,  F,)) 5 - 
CEC, m J C C ~ ~ . ( x t l I x t -  w , l 1 2 d ~ m .  

Z E I  e = i  

where dFIm denotes d F ( x l )  . . .dF(x,,), denotes a km-fold integral, and wi is the function of X ~ ' S  as 

given in (2.1). 

In order to  simplify the expansion, let 1x1 = n.  The proof in the case of 1x1 < n is also similar (details 

appear in [13]). Let B, C !Rkm be the m-fold Cartesian product of Si7s,  i t . ,  B, = Siy,l x . . .  x Siy,,,, 

where 11 == (i,,l - 1) + (i,,-, - 1)n + . . -+  (i,,, - l )nm-l  and i,,j E { 1 , 2 , .  . . , n) .  Then the right hand side 

of (2.4) c~xn be rewritten as 



where 4i,, := JBV IS,(xe)llxe - wil12dFm. If mi,, (:= the number of i in { i ,  j)T=, j is not zero, 

then the mi,, summands in d i , ,  remain non-zero, since Is ,  ( xe )  becomes 1 if xe E Si. By rearranging the 

parameters xe, d i , ,  can be expanded as 

~ X , V  

f'YJvv J ,  c 1I.t - wil12dF(x~) d ( m )  if mi,, # 0 
S t  "" e=1 

I O >  otherwise. 

Here, w i  = m,; C::;" xe and s:"" := ~7""' 
3 = 1  si . 

In the  case when mi,, # 0, we add 

to  both t i e  sides of (2.5), which results in 

since CEiiv(llxe - will2 + l l ~ i  - yi1I2) = Cy;n=';" llxe - yi1I2 

Moreclver, ( 2 . 6 )  can be expanded as 

where equality holds when yi = Js, xdF(x)/Pi. From (2.7) and (2.8), we have 

Note tha t  since there are m!/ njn=l mj,, different v's in ( 0 , .  . . ;nm - 1 )  tha t  yield the same values 

of ml,,, . . . , mn,,, it follows that  the joint distribution of the random variables nil, .  . . , mn (my := 

m," ., ELl Is,  IX;)) is the multinomial distribution. Hence, C,  nj ~ ~ ' ~ " m ~ , ,  = mPi and CU nj Pi ?,,, = 

1 - ( 1  - A?)"', where yi,, := 1 if mi,, # 0,  and 0 otherwise. Thus, 



The  proposition follows from (2.4) and (2.9). 1 

The next proposition will int.roduce a simple bound on E{infcEcn D(C: F,)} as al function of rn. 

Proposi1;ion 2 Suppose that E{llX1112) < CO. Then for any set B E Cn, 

Proof of Proposition 2: Consider a codebook B = { y l ,  . . . , y,) E Cn and t,he cor~esponding Voronoi 

partition {Si)r=l.  Then D ( B ,  F ) ,  the quantizer distortion for B ,  can be rewritt.en as 

for a distribution function F .  In a similar manner in (2.1), if we consider a vector W:d tha t  is defined as 

- E I S , ( X ~ ) X ~ ,  otherwise, 

where mt' := C z  I s , ( X r ) ,  for each Si, then it is clear tha t  

1 
inf D ( C , F Z )  = inf - C m i n ~ ~ x : - y I ~  

CEC, CEC,  m yEC 
e = i  

where F i  ( x )  := m-I I(-w,,~(Xy) and -m := (-cm,.. . ,  -co)~.  The last term in (2.13) can be 

expanded as follows. 



In (2 .14) ,  if my # 0,  then 

where 

and my II'Wr - yi11' = 0 otherwise. Hence, by charlgirlg my t o  m in the last term of (2.15) and from 

(2.14),  wcn obtain a relation 

Note that E{CY=l ai) 2 0, where the equality holds when yi = Js, x d F ( x ) /  Ss, d F .  and 

Therefore, from (2.13),  (2.14),  and (2.16),  

(2.18) 

I 

From Proposition 2 ,  E{infcEcn D ( C ,  F,)) < infcEc, D ( C ,  F ) ( 1  - l / m ) .  Therefore, for a finite m, we 

obtain 

E{ inf D ( C ,  F,)) < 2;:" D ( C ,  F ) ,  (2.19) 
CEC, 

which im3lies tha t  infcEcn D ( C .  FK) is a biased estimate of infcEc,, D ( C ,  F ) .  



3. Asymptotic Bound based on Root Lattices 

In this chapter, asymptotic bounds for E{infcecn D(C,  F,)) are suggested for an  absolutely continuous 

F .  In ord1.r t o  derive an  asymptotic bound, we consider root lattices [ l l ] .  Let the points of a R-dimensional 

lattice Lk (C IKk) be denoted by y j ,  j E Z. The closure of the i th  Voronoi region of the lattice Lk is the 

convex polytope Hi defined as 

2 Hi  := {X E R~ : I I x  - yill 5 I I x  - y j 1 1 2 ,  for a11 y j  E Lk):  for i E Z. 

Here we lat yl = ( O . . . O ) ~ ,  thus H I  includes the origin yl.  Then G(Lk),  the normaEized secon,d momen,t 

of Hi is defined as 

where p ::= k/(k + 2) and V(Hi)  := JH,  d x  is the volume of H; [9]. Note that  all H i ,  i Z, have the same 

shape. Thus,  the normalized second moments and the volumes of Hi are all the same. Conway and Sloane 

have calciilated the  second moments of various lattices tha t  yield values close to  i n f ~ , ;  G(Lk) for various 

dimensior~s, where the  infimum is taken over all R-dimensional lattices [5],[6, Table I]. For example, the 

hexagonal lattice, which is equivalent to  the lattice A2 ,  is the  optimal latt,ice in 2-dimensions. In the 

3-dimensional case, the  D$ lattice (or equivalently the lattice A;) is a body-centerel4 cubic lattice and 

optimal ill 3-dimensions [3]. Furthermore, Conway and Sloane proposed a lower bound for infL, G(Lk) 

[7]. To summarize, it is known that  infL, G(L2)  = G(A2) = 0.08018.. .  and infL, G(L3) = G ( D k )  = 

0.07854 . . .. For the definitions of the  lattices see [5]. 

Let d be the  diameter of the  convex polytope H1 defined as d := sup{llx - yl(  : x, jr E H I ) .  Note tha t  

d < cx?. Consider a sequence of cubes 

and the Lebesque measure p .  p(H1) =: ,u, where ,u is a non-zero constant and p(Ui) = 1(1+2dt)k  Suppose 

that  the lattice Lk satisfies H1 > Uo. 

Now we consider the number of Hi's tha t  have non-zero measure intersections with the cube Uk. 

Let Nt :=: number of Hi, i E Z,  such that  p ( H i  n Ut) # 0 and N,' := number of H i ,  i E Z ,  such that  

p (Hi  n Ut) = u.  Note tha t  Nt 2 N,'. Then it is clear tha t ,  for t E R ,  



Let t ,  be the largest integer such that  n  - I%, > 0. then Ntn I n  < Ni,+1 and t ,  -+ cc as n  -+ cc. 

Thus,  we have a relation 

Since N A / ~  < N t n / n  I 1, for n  E N,  we obtain 

Ni . N,' lim - = lim - = 1. 
n-03 n  71-03 n  

The following lemma shows that  the quantization error has an asymptotic uppl-r bound that  is a 

function of G ( C k )  based on (3.1).  

Lemma 1 Suppose th,at XI is un i formly  distributed over  the  cube U := ~ ; k , ~ [ - l / : ! ,  1/21. T h e n  th,ere 

exists a sequence of se ts  C:, such th,at 

lim sup n 2 1 k ~ ( ~ n  , F )  5 %G'(Ck) 
n- a  

Proof of L e m m a  1: Consider a sequence of equivalent lattices C k , t ,  t = 0 ,  1 , '2 , .  . ., where the % 

generator vectors are obtained by multiplying ( 1  + 2dt)-l t o  the generator vectors of Ck. Note that  

G(Ck)  = G(Ck, t ) ,  for t E N. Let Hi,$ denote the convex polytope for yi,, E Ck, t  in the same manner as 

Hi is a p'3lytope for yi E C k .  Then,  following the earlier methodology we can derive the result (3.1) in 

the same way. Note tha t ,  since 

and from (3.1),  

lim np(Hl,t , ,)  = p(U).  
n i c e  

There is a sequence of Cn such that  

from Ntn  5 n .  Thus from (3 .2) ,  



holds. This completes the proof. I 
In a s milar manner as in Lemma 1,  we can construct a sequence of C:, satisfying 

l i m s ~ ~ n ~ f ~ ~ ( ~ ~ ,  F )  5 kG(Lk)llf lip, 
n-ca 

under certain conditions on f ,  the density function of X 1 ,  where 

The conditions on f will be introduced in the following theorems and corollary. It is clear that 

lim sup,-., n2fk  infCECn D(C,  F )  5 Jk 1 1  f l i p  from (3.3), where J k  := i n f ~ ,  kG(Lk). However, if Gersho's 

conjecturl: [9] is correct, then 

lim n2fk  inf D(C,  F )  = J k l l  f lip. 
n-cc CEC,, 

which tells us the asyinptotically optimal quantizer performance [4],[5]. 

We now express the upper bound in Proposition 1 as a funct,ion of .Ik 1 1  f l i p  asyn~ptotically in n .  

Theorem 1 Suppoge that X 1  has a denszty functlon f ~11 th  compaci support and f I S  bounded on Ktk. 

Then 

l i m s u p n 2 f k ~ {  inf D(C! F,,)) 5 J i l l  f I I p  (1 - 
n-ca CEC,  

where p 1s a constani (1 5 8 < cm) and m, zs a sequence of n such ihat m,/n - p 61s n - cm. 
Proof of Theorem 1: Let B be a cube that contains the support off  and is defined by B := ~ f = ~ [ a ,  b] (C 

IRk), where a and b are finite. Consider a partition of B into 2kq cubes Be such that ,u(Be) = [ ( b  - 
k 

a ) / P  ] = :  v, e = 1, .  . . , akq. Define a simple function fq  as 

where pe := supxEB, f (x). Then since the sequence ( fq(x)) ,  is monotonic and limq-,, fq(x) = f (x)  a.e.: 

it follows that j- fq(x)dx + 1 [lo, p.1121. From [ lo ,  p.96], the expectation of the empirically optimal 

error E{infcEcn D(C,  F,)) satisfies the relation: 

E{ inf D(C,  F,)) 
CEC,  

m 

- - L J . . .  J inf C m i n I x j  - y l 1 2 f ( ~ 1 ) .  - .  f(xm)dx1 . . . dxrn  
m CEC,  . yEC 

a = l  

m 

5 L m I . . . ]  c a n  inf C m i n  . Y E C  1xi - yl12 f q ( x l ) .  . . fq(xm)dxl  . . .dxnL.  
a = l  



Now consider partitions for each cube Be. Assign 

points t o  each Be. Suppose that ne > 1 if p! # 0 for n 2 no, where no is a positive integer. In (3.6), 

LC] ,  e E 3: is the largest integer less than or equal to  e and n!/n - ( ~ ) p /  ~ ; ~ l ( p j ~ i p j  as n - m. For 

each cube: Be, make polytopes Hire and the corresponding points yi,e in the same way as in Lemma 1 for 

the pe # 0 cases. Note that Hi,e and yi,t are functions of ne (or t,,). However, for simplicity we omit 

ne in thi:, notation. The lattice for Be is a coset of the scaled lattice, which is equivalent to  the lattice 

LI;. Let 1Ve := number of Hi,e, i E Z, such that p(H;,e  n Be) # 0 and suppose that Hi,e n B e )  # 0, for 

i = 1 , 2  , . . . ,  Ne. 

Using Hi,! ,  i  E Z and 0  = 1, .  . . , 2 k q ,  make a partition {Si,e} of B ,  where Si,e C (H i , e  n Be) and 

p(Si,e) = ~ ( H i , e  n Be), for i = 1 ,2 , .  . . , Ne, and Si,e = 0 for i E {1 ,2 . .  . . , ne} - { 1 , 2 , .  . . , Ne}. Then, from 

Propositi3n 1 and (3.5), we obtain a relation 

where Ie := {I : Pj,e # O , j  = 1 , .  . . , ne}, Pi,e := SS,,, f q ( x ) d x u  fq(x)dx,  for all 0 ,  and 

1 - ( 1  - Pi,!)"" I , for i  E Ze. 
mnPi,e 

Note that, @i,e  < 1 and Ze = 0 if pe = 0. Since nep(Hi,t) - v as ne - ca, for i = 1 ; .  . . , ne. from (3.2), we 

have 

lip 

= lim ( $ ) [ ntp(Hi,e) 1''' pe 
n-cu I 

l / p  

= kG(Lk)JJ f q J J , ,  for all i and 0 .  

Thus, m~lt ip lying the right hand side of (3.7) by n2Ik and taking n - ca yields 



Now, the partial second derivatives a2 [ [  1 - (1 - x ) ~  ] / m x  ] / a x 2  > 0, for x > 0 and m = 3 . 4 , .  . .. 

2 k q  Hence, under the constraint El=1 EiEZl Pi,e = 1,  the term inside parenthesis in (3 .81  is bounded as 

k q  z k q  
for n > no if Pi,e = 1 / N ,  where N := ~ i = ~  Ne (Ne = IZel) [12]. Note that n-' ne + 1 and 

N l n  + 1,  as n + a, from (3 .1) .  Thus, since m n / n  + /3 as n increases, dividing (3 .9)  by n and taking 

n + a yields 

Zk,3 

lim sup - C C oi,l 5 
n-co n !=I i C 1 1  

nice lim n [Erie e=i  g 11 - ( 1  - k ) m n ~ ]  

Since [ f11x) ] is also bounded, [ f q ( x )  ] '+ [ f ( x )  I P ,  a.e., it follows that  1 1  fqllp + 1 1  f l i p .  This completes 

the proof. I 

C o r o l l a r y  1 Suppose that E{llX1(12+') < a for some 6 > 0 an,d f is bounded on IRk. Then the inequality 

(3.4) holtls. 

Proof of Corollary 1: Consider an increasing sequence of cubes B 1  c B 2  c . .  . c B Y  For a constant 

0 < q < .I, assign (1 - q ) n  points to the cube BS and q n  points to  BY which is the complement of Bs. 

Then from 14, Theorem 21, there exists a sequence such that 

lim lim n21k / min ilx - y l 1 2 d ~ ( x )  = 0. 
6 1 0 3  71.-03 8 s  yEC,, 

Hence, by letting q * 0,  we obtain the corollary. Note that from the assumption and Holder's inequality, 

( ( f ( l p  < 00 for any 6 > 0 and k E N. I 

From Theorem 1 (or Corollary I ) ,  the asymptotic bound has two parts; JkII flip and [ 1 - ( I - e - @ ) / P ] .  

The second part is concerned with the ratio /3 and, regardless o f f  and the dimension X:, /3 is an important 

factor in the convergence of infcEcn D(C,  FG). The curve of [ 1 - (1 - e-P) / /3  ] with respect to  p is 

depicted in Fig. 3.1. As we can see in this figure, as /3 decreases, the bias between inf zEc, D(C, F E )  and 

infcEcn L)(C, F )  increases monotonically. We can also see that l / P  FZ ( 1  - e-P) /P for /3 = 4 , 5 ,  . . .. 



0 5 10 15 20 25 30 
Ratio 

Figure 3.1: The curve of [ 1 - (1 - e-@)/P ] with respect to the ratio P == m l n .  

Note that  the term (1 - e-3)/@ in Theorem 1 is independent of the di~t~r ibut ion t,ype and the vector 

dimensior~. In the next theorem, a better bound will he introduced, where the tern1 is expressed as a 

function o f f  as well as the ratio 9. 

Theorem 2 Under the assumpiions in Theorem 1, 

l i m s ~ ~ n ~ ~ ' E {  inf D ( C , F m n ) )  5 dxllfllp [I - 
n-03 C E C ,  

where 

Proof of Theorem 2: From (3.7) and (3.8), we have 

Z k q  

lim sup n2Ik E{ inf D(C, Fm,)} 5 kG(Lk) ( (  f ( I p  lim sup lim sup - x x ai,c 
n-ce C E C  9-03 n - w  72 e=i i E z c  

Let N,' :=I { j  : H j , e  C B e ,  j E Z}, t,hen the term inside parenthesis in (3.11) can be expanded as 

1 ' -  
lim sup lim sup - x x ai,t 

9-03 n-03 n e=i i E Z c  



n 
5 1 - lim inf lim inf - 

q-co n-co mn 

n zk9 

+ lim sup lim sup - C 
9-03 n-co mn t=i 

2k9 since n-' Nt 5 1, N: 5 NE, and ptv/Nt 5 Pi,t < ptv/N:. Since ~ : / n  + ( p c ) p / ~ : ~ l ( p i ) ~  and 

Ncln + ( p t ) ~ /  C::~(~~)P, the second term of (3.12) becomes 

and the t :~ i rd  term becomes 

2 
pn zkq 

lim q-+ca sup [k2.. - e = i  C (p t )2p-1~ ] ~ [ ~ ( P i i p v ]  

Note t,hat we have a relation between Theorem 1 and Theorem 2 as follows. 

Under the assumption that J J  f JJ2 , - l  < m, Theorem 2 can also be extended to a more generally 

bounded .f in the same manner as in Corollary 1. F~rt~herrnore, suppose that F is an arbitrary distribution 

function expressed as F ( x )  = cuFac(x) + (1 - cu)Fs(x) for some cu E [O,l], where Fac is absolutely 

continuous and Fs is singular with respect to  p .  Then from [4], the asymptotic upper bound is given by 

Note that C 2 1 from the Schwarz inequality. Since f2p-1(x)e-f1-P(X)llfII~p + 0 as /3 
CO, 

limp,, [(P) = 0 from Lebesgue's dominated convergence theorem [ lo ,  p.1101. In 01;her words, [(P)/P 

converges to  zero at a faster rate than P-l, it follows that,  for relatively large P, [ C - [(P) ] / p  % C/O. 

(Note that a similar approximation for the Theorem 1 case is already illustrated in Fig. 3.1.) Hence, we 

can obta i :~  an approximate upper bound as 

lim sup n 2 l k ~ {  inf D(C, Fmn)} < J k l l f  11, (1 - $) . 
n-03 C € C n  



for relatively large P ,  if follows that  the constant C, in conjunction with p, is the dominant term of the 

bound. 

Suppc~se that  J is an  n x n mat.rix and is invertable. Consider a random vector Z = JX. If X has a 

density function fx then Z has the  density function as 

fz(z) = fx(J-lz)/l det JI. (3.15) 

Hence, jz  for Z satisfies the following relation 

= [I f?-'(~)~ det Jl-2pt2dx f?-l(xjl det ~l-J'~ldx (3.16) 

Therefore C is invariant under a linear transformation of XI, e.g., independent. of i,he variance of the 

input dis1,ribution or the correlation inside the vector XI. 



4. Examples of C 

We next introduce examples involving the constant C for several different di~t~ributions to  observe the 

effect of ,' on the bound. 

For a uniform density function, it is clear that C = 1  and [ ( P )  = e-@. This result is identical with that 

of Theorem 1 .  From ( 3 . 1 3 ) ,  t,he maximal bound of Theorem 2  is obtained when f is a uniform density 

function. 

For the generalized exponential distribution, including the Laplace and normal distributions, C is 

derived. The  generalized exponential density function with the parameters s and 7 (s, 7 > 0 )  is defined 

as 

where (.) denotes an arbitrary norm on IKk, and Vk is the volume of the k-dimensional unit sphere defined 

by I.'n- := J(,),, dx. For example, if s = 1  and the norm is I . 1 ,  then the distribuliion is the Laplace 
- 

distributim; if s = 2  and the norm is 1 )  . 1 1 ,  then the distribution is the normal distribution. 

Suppcse that f is the generalized exponential density function. Then from ( 3 . 1 0 ) .  we obtain 

If 2p - 1  > 0, then 

Therefore, 

The normal dist,ribut,ion (s = 2 )  has lower values of Cs,k than the Laplace di~tribut~ion case (s = 1 ) .  

Furthermore, for a given distribution, increasing vector dimension decreases Cs,k. 



5. Application: Training Vector Quantizer 

Suppose that we have L points x i , .  . . , X L  as data. The data could be a part of the images or the the 

speech spectral vectors. Depending on the application, the data size can be arbitrary large. The optimal 

quantizer design problem for X I , .  . . , xL consists of finding a set C E C, that minimizes the time-average 

error given by 

In this error, the surjective map Qc : IRk - C is defined as 

which is called the vector punnit,-er. The finite set C is called the codebook. 

There exists at least one codebook that minimizes the time-average error (5.1). Finding such an 

optimal codebook is, howe~er, difficult, especially for large L ,  since the search cclmplexity increases 

dramaticdly as L gets large [ 2 ] .  Yote that,  in order to search for an optimal codebook, we should 

compare the nL distortions of (5.1) in the worst case, since the number of possible codebooks is n L.  

In order to reduce the search complexity, first, we generally use a portion of the data, which is called 

training data, in other words, we search a codebook that is optimal for a finite and relatively small data. 

However, the search complexity can still be high. Thus, instead of a full search f o ~  the optimum, the 

I<-means clustering algorithm and the Kohonen learning algorithm, which cluster the training data, have 

been proposed [2] to find a suboptimal codebook for the training data. 

Now, suppose that the time-average error in (5.1) can be rewritten (modeled) as D(C, FZ'). W' E 52. 

From the Strong Laul of Large 1Vumbers [lo], 

lim D(C, FF') = D(C, F), for almost every w' ,  
L-cc 

for a givcn codebook C .  Therefore, the optimal quantizer design problem can be regarded as jiildzng 

a codebook C tha! mznzmzres D(C, F) for F if L is infinitely large. Furthermore, Xy,  . . . , XW, are also 

regarded as a training data and m is the training data size. Then infcEc, D(C,  Fg) is the trained error 

for the tr,iining data. Therefore, the upper bounds in Theorem 1 (or Theorem 2) can be used to  describe 

the performance of the trained vector quantizer. 

An example of the bound for a normal distribution is illustrated in Fig. 5.1 with a sequence of 

numerica results of infcEc, D(C,  F:), for p = 4 - 30, where the I<-means algorithm was employed for 

the numerical results. If X i  has the normal distribution, then the upper bound in (3 14) is given by 



0 5 10 15 20 25 30 
Ratio /I 

Figure 5.1: An example of the bounds for the normal distribution case (Bound 1 is from Theorem 1, 

Bound 2 is from (5.2), {det s ) l l k  = 1,  n = 512, and k = 3). 

0 5 10 15 20 25 30 
Ratio 

Figure 5.2: Compensated trained error curves using (1 - < z , ~ / P )  ( n  = 512). 

where S is the auto-covariance matrix of X 1 .  This bound is denoted as Bound 2 in Fig. 5.1, where k = 3, 

n = 512 and 2 ~ ~ ~ ~ - ( ~ + ' ) / ~ ( d e t  s ) l l k  = 5.3092 . .  .. The numerical results increases as P increases. At 

p = 5120, the numerical error becomes 5.184 and is approximately equal to  the error for F. The bound 

in Theor6.m 1 is also illustrated in Fig. 5.1 (Bound 1). Note that  the bound in (5.2), Bound 2, is better 

than Bound 1,  for relatively large P. 

As shown in Fig. 5.1, t.he ratio P = m l n  dominates the performance of the trained vector quantizer; 

the bias increases as p decreases. In other words, the trained error for a given set of training data is 

usually rruch less than infcEcn D(C,  F), especially for small b'. From this fact, we often overestimate the 

performa~ce of the trained quantizer. Therefore, it is general procedure t o  check the performance of a 

trained qllantizer for the validating data [14]. In order to  alleviate the bias, from (3.14), we can consider 



an error 

inf D(C,  F;)/ (I - $) 
C E C n  

instead oi'infcEcn D(C,  F;), where the trained error is compensated for the bias. Ncte that 

E{infcEcn D(C,  F,)) is a lower bound of infcEcn D(C,  F ) .  However, the expectation of (5.3) is tighter 

than E{infcEcn D(C,  F,)). This compensated error can prevent a wrong est imatio~~ due to the biased 

trained error. Note that, in (5.3), we can simply set < = 1 for unknown input distributions. In Fig.5.2, 

the trained error curve (n = 512) of Fig.5.1 are compensated using the error in (5.3). 
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