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ABSTRACT
We propose a novel evidence accumulation framework that
accurately estimates the positions of humans in a 3D en-
vironment. The framework consists of a network of dis-
tributed agents having different functionalities. The mod-
ular structure of the network allows scalability to large
surveillance areas and robust operation. The framework
does not assume reliable measurements in single cameras
(referred to as ’sensing agents’ in our framework) or reliable
communication between different agents. There is a position
uncertainty associated with single camera measurements and
it is reduced through an uncertainty reducing transform
that performs evidence accumulation using multiple cam-
era measurements. Our framework has the advantage that
single camera measurements do not need to be temporally
synchronized to perform evidence accumulation. The system
has been tested for detecting single and multiple humans
in the environment. We conducted experiments to evaluate
the localization accuracy of the position estimates obtained
from the system by comparing them with the ground truth.
Also, two different configurations of the agents were tested
to compare their detection performance.

Index Terms— camera networks, distributed processing,
evidence accumulation, uncertainty reduction.

I. INTRODUCTION

The biggest advantage of multi-camera surveillance net-
works over single camera systems is their ability to combine
information from different cameras into scene-level repre-
sentations that yield enhanced awareness of the monitored
environment . But this ability depends critically on how
the information is combined from the different cameras. We
obviously need an evidence accumulation framework that is
well-principled with regard to combining the uncertainties
in the information gleaned from each camera. We also want
such a framework to scale up easily as more and more
cameras are added to the network. As a camera network
becomes large, it is extremely difficult to synchronize image
capture by the different cameras. Therefore, we would want
the framework to combine information from the different
cameras taking into account the uncertainty in image acqui-

sition times. The goal of this paper is to present such an
evidence accumulation framework.

Our proposed framework consists of a hierarchy of agents.
The lowest level of this hierarchy consists of ’sensing
agents’; they extract candidate shapes and features. Higher
levels of the agent hierarchy deal with: 1) the local ac-
cumulation of supporting evidence for the shape/feature
hypotheses that are output by the sensing agents; and 2)
the aggregation of the hypotheses at a more global level.
Note that the candidate shapes/features that are output by the
lowest level of the agent hierarchy suffer from high false-
positive rates because of complex backgrounds, occlusions,
rather limited fields of view of the individual cameras, and
so on (Figure 1). It is the accumulation of evidence at the
higher levels of the hierarchy that progressively eliminates
the false positives and provides accurate estimation of the
human positions in the monitored environment.

II. RELATED WORK

Many evidence accumulation schemes have been proposed
in the multi-camera visual surveillance literature. These
include the schemes reported in [1], [2], [3], [4], [5], [6],
[7], [8], [9] and others. In [1] and [10], a person’s 3D
location is estimated by triangulation of 3D rays directed
along the line joining camera focal points and the person’s
centroid in 2D image planes. A pseudo-intersection point is
computed that minimizes the sum of the squared distance to
each pointing ray. Bayesian networks have also been used for
multi-camera evidence accumulation [4], [11], [12]. In [11],
a Bayesian belief network is used to match subjects across
different cameras by integrating geometry- and recognition-
based modalities, whereas, in [4], the Bayesian net fuses in-
dependent observations from multiple cameras by iteratively
resolving independency relationships and confidence levels
within the net. The system described in [7], [8] is based
on FOV (field of view) lines of the cameras to establish
correspondences between the views of the same object as
seen in different uncalibrated cameras. In [13], image-based
sensor observations are associated with scene-based object
hypotheses using features that are viewpoint independent
e.g. object location, object class (human, vehicle etc.) and
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Fig. 1. Images from a multi-camera test sequence with complex background. They were acquired at approximately the same time. Red circles
depict the detected head candidates (both true heads and false positives). Inspite of a large number of false positives due to the complex background, the
proposed evidence accumulation scheme generates accurate 3D head positions. A demo video of our multi camera person detection system can be viewed
at http://cobweb.ecn.purdue.edu/RVL/movies/MultiCameraPersonDetection_ICDSC08.wmv

color. The associations are made based on comparing the
features of a new observation against the features stored for
each existing object hypothesis using a match score function.
The work in [14] describes a region-based stereo algorithm
capable of finding 3D points inside an object knowing only
the projections of the object (as a whole) in two views. The
work reported in [15] addresses the problem of selecting the
best camera position for extracting the desired human motion
information. The human position, body orientation and body-
side estimation is performed by determining the camera
viewpoints where these features can be easily estimated and
maximizing the joint probabilities of observations obtained
from multiple cameras.

The work we report here carries out evidence accumula-
tion with a framework of agents possessing heterogeneous
characteristics. These agents cooperate to estimate 3D hu-
man positions in real time, followed by determination and
visualization of their trajectories. Due to the modular agent-
based processing architecture, the proposed framework is
well suited to large-scale surveillance applications since
new agents can be integrated seamlessly. The evidence
accumulation scheme works well even when the different
cameras are not synchronized with regard to their image
acquisition times. The unsynchronized observations allow
for denser temporal observations of the 3d environment and
avoid redundancy among multiple observations when a large
number of cameras is deployed in the network [16].

The paper is organized as follows. Section 2 describes
the problem of 3D position estimation that we try to solve
and the assumptions about the environment and our current
setup. Section 3 details the agent based architecture which
achieves multiple functionalities through cooperative inter-

action between heterogeneous agents. Section 4 explains the
single sensor processing of acquired images, while section 5
elaborates the novel evidence accumulation scheme to obtain
accurate 3D position estimates. Experimental results are
presented and discussed in section 6. Section 7 gives some
concluding remarks followed by possible future extensions
of the current work. Finally, section 8 acknowledges the
funding support for this research.

III. PROBLEM DESCRIPTION

Our overall goal is to develop a cooperative processing
architecture for detecting and tracking multiple humans in
an environment and visualizing their trajectories. The work
presented in this paper solves a sub-problem of the human
tracking problem: first detect the humans in the environment
and estimate their positions using the individual cameras
in the network, and then combine the information gleaned
from the individual cameras to achieve higher localization
accuracy of the estimated positions and the reduction of
false detections. Our setup consists of 12 cameras monitoring
an indoor rectangular area (8m × 5m). The cameras are
grouped into 4 clusters as shown in Figure 2. In solving
the detection and localization problem, we have made the
following assumptions:
• The environment is defined in terms of the world coor-

dinate frame that is taken to be the reference coordinate
frame.

• All cameras are calibrated with respect to the world
coordinate frame.

• Image capture by the different cameras is not synchro-
nized and the images are acquired with time stamp
information.



Fig. 2. Camera configuration used for the evidence accumulation
framework results reported in this paper: There are 12 cameras grouped
into 4 clusters, each monitoring a small part of a rectangular area.

• The cameras are connected to PCs that perform all
image processing operations.

• The PCs can communicate with one another via either
wired or wireless network connections.

• Multiple humans may exist in the environment viewed
by the network of cameras.

• In this paper, the position of a human is represented by
the human head position.

IV. AGENT BASED ARCHITECTURE

The cooperative processing architecture consists of the
following agents:
• Sensing Agent
• Cluster Leader Agent
• Monitoring Agent
• Visualization Agent

These agents are software processes running on PCs that
are connected by wired or wireless network links. Multiple
such agents may run on a single PC. The agents may
also control hardware such as cameras for image capture
or display devices for visualizing the trajectories of the
detected humans. Figure 3(a) shows a generic view of our
agent based architecture and Figure 3(b) shows an example
implementation that was used for the results reported here.

IV-A. Sensing Agent
The sensing agents are situated at the bottom of the

hierarchy of agents. Ideally, in distributed sensor networks,
a sensor node consists of a sensor, a processing module, and
a communication module. In our current setup, we simulate
a sensor node by a sensing agent. It is a software agent
running on a PC, that utilizes an IEEE 1394 firewire camera
for image capture, performs local processing on the acquired
images and sends some data to other agents (specifically
the cluster leader) at the next higher level of the agent
hierarchy. As mentioned earlier, the images are captured
with time-stamp information. Local processing involves the
application of a background subtraction algorithm [17] to

obtain contours of foreground objects and extracting human-
head like object regions from these contours. The extracted
head-like regions are also called head region candidates.
Head extraction algorithm is explained in section V. Sensing
always involves false detections. So a sensing agent is not
expected to always successfully detect the human heads. Its
responsibility is only to detect the head region candidates. In
the ensuing discussion, we will refer to single camera head
region candidates as ’measurements’. The sensing agent then
sends a message including the measurements to a cluster
leader. It is worth mentioning that actual images are not
sent, rather only small datasets are sent. This is shown in
Figure 4.

IV-B. Cluster Leader
A cluster leader implements our evidence analysis and

accumulation algorithm to unify the information received
from lower level agents in the agent hierarchy. Note that
the hierarchical organization of the agents shown in Figure
3(a) allows for the node below a cluster leader to be either
a sensing agent or another cluster leader agent. A cluster
leader agent receives messages containing measurements or
position estimates from lower level agents and uses them
to accumulate evidence for accurate 3D position estimation.
There are two types of position estimates:

1) Candidate position estimate (CPE): This is generated
by a lower-level cluster leader as a result of integrating
one or more measurements received from different
sensing agents. It is represented by (p, S), where p
is the mean vector representing the candidate position
and S is the covariance matrix representing position
uncertainty. p and S are specified in 3D world coor-
dinates.

2) Validated position estimate (VPE): When a CPE is able
to accumulate evidence from 3 or more measurements,
it is said to be validated and is then known as a
validated position estimate (VPE). The integration and
validation of position estimates is performed using
Mahalanobis distances and weighted recursive least
squares technique [18]. A VPE is also denoted by
(p, S). A CPE may or may not represent an actual
human head depending on how many measurements
are integrated into it but a VPE represents the position
of an actual human head.

Once the VPEs are generated, “unnecessary” measurements
are eliminated within the cluster leader to avoid data redun-
dancy and to ensure that each measurement is associated
with a unique VPE. The cluster leader then sends a message
to a higher-level cluster leader containing the VPEs and also
the CPEs that it could not validate. If a cluster leader at the
topmost level can not validate any of the CPEs, they are
discarded. A top-level cluster leader sends all the VPEs to the
monitoring agent and the visualization agent for generating
the trajectories and for the visualization of the detected



human heads.

IV-C. Monitoring and Visualization Agents
Since the current paper focuses primarily on accurate head

position detection using evidence accumulation, we fill focus
on the functions of the sensing agents and the cluster leader
agents in the following sections. The monitoring and the
visualization agents will be presented in detail in future
publications. Suffice here to say that the monitoring agent is
responsible for monitoring the object/humans found in the
environment by associating tracking labels with such objects
and the visualization agent provides a user interface for vi-
sualizing the 3D environment along with the objects/humans
found in it.

Fig. 4. Data transmitted from a sensing agent to the cluster leader:
At each time instant i, a data record containing the position estimates for
all the detected head region candidates along with the associated timestamp
information is sent. No images are sent.

IV-D. Connectivity and Communication Issues
In a distributed network (wired or wireless), reliability or

lack thereof is an important issue. We do not wish to assume
a reliable network and we want our framework to allow for
fault conditions such as some sensor nodes going down or
some communication links failing during a detection and
tracking task. To realize an unreliable network, we use the
UDP messaging protocol rather than the TCP/IP protocol.
A cluster leader integrates the information received from
the lower level nodes. Therefore, since the system allows
for cluster leader failure, the network connections between
the sensing agents and the cluster leaders are reconfigurable
dynamically. That way, if a cluster leader node fails, the
sensing agents connected to it can start sending their data to
other active cluster leaders in the network.

IV-E. Configuring the Agent Hierarchy
Depending on the number of sensing agents in the camera

network, there may be one or more cluster leaders and they
may be arranged in multiple layers of the agent hierarchy.
There is a tradeoff involved between the numbers of levels of
the hierarchy in the architecture versus the communication

Fig. 5. Why do we need multiple levels of Cluster Leaders: Head
position validation requires data from at least three sensing agents. Positions
in Area A are coverable by three sensing agents from a single cluster; so
a single cluster leader can perform validation. But positions in area B are
not coverable by three sensing agents of a single cluster. Therefore multiple
levels of cluster leaders are needed for integration and validation in area B.

delays in the network. On the one hand, the sensing agents
and the cluster leaders may be configured in multiple layers
as shown in Figure 3(a), so that there are multiple clusters
of sensing agents and each cluster’s data is processed by
one cluster leader. Such a configuration will have higher
cumulative communication delays compared to a simple
network where all the sensing agents are directly connected
to a single cluster leader that does all the integration and
validation processing. On the other hand, it is typical of
wireless sensor networks that the sensing agent nodes may
have limited communication range and so may not be able to
send their data to a single cluster leader. Therefore formation
of multiple clusters may be necessary.

If multiple cluster formation is allowed, each cluster may
be able to cover only a portion of the entire monitored
area. In our current system implementation, a cluster leader
requires measurements from at least three sensing agents to
obtain a VPE. As shown in figure 5(a), the cluster leader
for cluster #3 can validate all the locations within area A.
But area B (figure 5(b)) is not coverable by at least three
sensing agents of any one cluster; so no single cluster leader
can validate the locations in this area. So the cluster leaders
corresponding to all the four clusters need to send their
position estimate data to a higher level cluster leader to
perform a second level of integration. This scenario justifies
the need for having multiple levels of cluster leaders in our
architecture.

V. SINGLE VIEW HEAD DETECTION
The human head detection in single camera images in-

volves contour analysis of foreground silhouettes. The al-
gorithm we use for that purpose is based on the work
of Zhao [19]. This work deals with shape decomposition
and body part identification in line-approximated contours
of foreground objects that are assumed to be humans (see
Figure 6 for details). Body part identification is followed by
the extraction of edge segment boundaries. An edge segment
boundary is defined as that contour whose boundary contains



(a) Generic view (b) Example Implementation

Fig. 3. An agent-based hierarchical processing architecture for the detection of humans and their localization.

only one cut; cuts are shown as red lines in figure 6 (c). In
figure 6 (d), edge segment boundaries are the boundaries of
the red colored patches.

For each edge segment boundary, its similarity to a simple
head model is computed. The head model (which is assumed
to be a circle) is fitted to each edge segment boundary i
using the least squares method and its center x0i and radius
ri calculated. The average fitting error Ei in this calculation
is computed as

Ei =
1
Ni

Ni∑
j=1

(
‖xj − x0i‖22 − r

2
i

)
(1)

where xj’s are the points on edge segment boundary i and
there are Ni of them. The similarity of the edge segment
boundary i to the head model is computed as

Simi =

√
r2i − Ei
ri

(2)

Note that 0 ≤ Simi ≤ 1. All the edge segment boundaries
for which Simi exceeds a threshold (0.6−0.8) are detected
as head region candidates. We assume that an average human
head when modeled as a sphere in 3D is approximately 10
inches in diameter. Using this assumption and the estimated
radius of the human head region candidate in a single camera
image, we can estimate a rough distance d of the human head
from the camera, using the relation

d

F
=
D

2r
(3)

where F is the focal length of camera, r the estimated radius
of the head region candidate, and D = 25.4 cm(10 inches).
Here D is the assumed diameter of the average human
head; it is obtained experimentally through measurements
on several people. All lengths are assumed in cm units. This
equation indicates that r is small for a person far away from a

Fig. 6. Zhao’s Shape Decomposition (from [19]): (a) the original
image, (b) line approximated contour of foreground person, (c) computing
the negative curvature minima (represented by small circles) and the cuts
(represented by red lines) (d) the edge segment boundaries; these are the
boundaries of the red colored patches.

camera (d large) and vice versa. This equation also indicates
that |4d| = (4r/r) d, implying that the uncertainty in d is
large for a person far away from a camera and vice versa.

Figure 7 presents an idealized representation of the head
candidate detected by a single camera for a single human
in its field of view. The head candidate is represented in
camera coordinate frame by (u, v, d) where (u, v) are the
pixel coordinates of the head candidate region mean and d
is its distance from the principal center of the camera. The
ellipse in the figure represents the uncertainty in d.

The candidate position measurement (u, v, d) obtained
from a single camera image is transformed into the world
coordinate frame p = (x, y, z). Since there is always some
position uncertainty associated with a camera measurement
of the human head position, each measurement is specified
by the mean position p and covariance matrix S (see Ap-



Fig. 7. Single camera head detection.

pendix A for mathematical details on how the measurement
(u, v, d) is converted to the world coordinate frame).

The measurement from a single camera may not represent
the actual position of a human head. That is why we refer
to a detected region as a head candidate rather than a
head. The reason is that certain non-human objects may
appear circular in a single camera view and may be mistaken
for a human head. Even if the detected regions actually
represent human heads, there is uncertainty in single camera
position estimates due to sensor noise and due to assumption
about the head size stated previously in this section. This
necessitates evidence accumulation from multiple sensing
agents to integrate their measurements to obtain a VPE.

VI. MULTI-CAMERA EVIDENCE ACCUMULATION
When a cluster leader receives a new measurement from

a sensing agent, it attempts to update its set of existing
position estimates by integrating the new measurement with
any one of them. We now describe how this update is carried
out using weighted recursive least squares technique with
minimum variance.

As mentioned in the previous section, the human head
position in the environment at time t is represented by the
position estimate p = (p, S) where p is the mean vector and
S is the covariance matrix representing position uncertainty.
Let us say that this position estimate is currently stored in
a cluster leader. If a new measurement p′ = (p′, S′) is
received from one of the sensing agents at roughly the same
time t, the cluster leader checks to see if this measurement
can be integrated with the position estimate p by calculating
the Mahalanobis distances between them:
d1 = pTS−1p′ and d2 = (p′)T (S′)−1p
If d1 and d2 are less than a certain distance threshold

dthreshold and if the timestamps of p and p′ differ by less
than a time threshold Tthreshold, they are then allowed to be
integrated. When p is updated, the new estimate is given by
pupdated =

(
pupdated, Supdated

)
. This calculation is carried

out as follows [18]:
1) pre-computation step

K = S (S + S′)−1 (update gain) (4)

Fig. 8. Uncertainty reduction through measurement integration

2) update step

pupdated = p−K (p− p′) (5)
Supdated = (I −K)S (6)

Since there is a time stamp associated with each position
estimate, the time stamp for pupdated is calculated as the
average of the time stamps for p and p′. Integration of one
or more measurements results in a CPE and the cluster leader
keeps track of how many measurements are integrated into
each CPE. In our current implementation, if three or more
measurements can be integrated, a CPE becomes validated
and is called VPE. Upon validation, all the intermediate
CPEs that share any measurement with a VPE are eliminated.
This is done primarily to ensure that each measurement only
contributes to one VPE in order to minimize false detections.
Additionally it leads to efficient memory usage in the cluster
leader and faster integration process because there are fewer
CPEs to keep track of for the purpose of dealing with a new
measurement.

The evidence accumulation and position validation calcu-
lations can be understood better with the help of Figure 9. In
this figure, the possible candidate position estimates gleaned
from the three cameras labeled A, B and C are: P0(A0, C1),
P1(A1, B1, C2), P3(B0, C2), P4(A1, B1), P5(A1, C2) and
P6(B1, C2). It is clear that the measurements A1, B1 and
C2 can be integrated to obtain a VPE P1. All other

Fig. 9. Integration and validation of position estimates.



Fig. 10. This figure shows the case when a single measurement from
one of the cameras participates in multiple integrations vis-a-vis other
camera measurements.

CPEs containing at least one of A1, B1 or C2 will then be
eliminated. In the figure, the position estimates P2(A1, B0),
P3(B0, C2), P4(A1, B1), P5(A1, C2) and P6(B1, C2) are
eliminated.

The integration of measurements is based on computing
the Mahalanobis distance but there may be scenarios where
this leads to false detections. For example, as shown in Fig-
ure 10a, measurement #1 from camera #1 may be integrated
with multiple measurements of camera #2 and all except one
integration will result in false positives in head detection. In
order to handle this situation, the cluster leader retains all the
original measurements even after they are used to generate
an updated position estimate. The measurements are retained
until the measurements either become part of a VPE or are
discarded as explained previously. To illustrate this, Figure
10b shows that measurement A2 from sensing agent A may
be integrated individually with measurements B1 and B2
from sensing agent B, leading to updated position estimates
C1 and C2 respectively. Therefore the cluster leader retains
A2, B1, B2, C1 and C2 because at this point none of them
is validated. The cluster leader does not know apriori which
of the combinations of measurements will get validated.

A cluster leader maintains two types of data records,
called the Candidate Position Estimate Box and the Validated
Position Estimate Box, that are updated upon the arrival
of messages from other agents. Figure 11 depicts the data
records and also the data flow in a cluster leader. The data
records rVBox, vBox and sVBox, all of type Validated

Fig. 11. The data records internal to a cluster leader.

Position Estimate Box, store information related to VPEs,
and the data records rCBox, cBox and sCBox, all of type
Candidate Position Estimate Box, store information related
to CPEs. The rVBox and rCBox act as input buffers to
receive measurements from the sensing agents or the position
estimates from the lower layer cluster leaders. Similarly,
the sVBox and sCBox act as output buffers to send newly
validated position estimates or newly received CPEs to an
upper layer cluster leader. The cBox and vBox store the
current set of position estimates. A cluster leader hangs on
to the “current” position estimates, that is, the estimates that
are within a certain time period in the past (as a short-
term memory). This is done to account for the fact that the
measurements from the different sensing agents may arrive
at slightly different times due to the asynchronous nature
of image capture or because of communication delays in the
network. To compensate for the time delay between the mea-
surements from the different sensing agents, the integration
process uses the timestamp information in addition to the
Mahalanobis distances so that the integration only involves
the position estimates whose time stamps are all within
a certain interval. The outdated measurements or position
estimates are discarded. As mentioned in section IV-B, all
measurements that can not be validated even by the highest
level cluster leader are also discarded.

VII. EXPERIMENTS AND RESULTS

Our agent-based architecture was implemented using stan-
dard PCs (Pentium 4, 3.2 GHz) and 12 cameras (640x480
Dragonfly2, Point Grey Research Inc.). In order to evaluate
our system for human head detection, we acquired a video
sequence, approximately 2 minutes long (frame rate = 7.5
fps), of a scene in which up to three persons were moving
around in a rectangular monitoring area. For analyzing the
head detection performance, we considered separately the
three scenarios where either only one, or just two, or all
three persons were present in the monitoring area. Thirty
multi-frames (time duration = 4 seconds) were extracted
from the video sequence for each of these scenarios, where
one multi-frame consists of 12 images, one from each of the
12 cameras, with all the images captured at approximately at
the same time. Therefore in total, we used 90 multi-frames of
data that corresponds to a 12 second interval. As mentioned
earlier, the goal of this paper is only to demonstrate the
detection and localization performance of the system and
not the tracking performance. Even in a short interval of 12
seconds, there are about 1500 candidate head regions in the
ground truth data (see below) that, we believe, are adequate
to demonstrate the intended performance. Therefore we can
justify using short duration data for system evaluation.

Experimental values of dthreshold ranged from 4 to 6 and
Tthreshold = 1/7.5 when the frame rate is 7.5 fps. Since
the Mahalanobis distance is normalized in terms of standard
deviation, choosing dthreshold between 4 and 6 seems to



(a) 1 person (b) 2 persons (c) 3 persons

Fig. 12. The ground truth trajectories and the detected head positions
reported by the system. Black circle represent false positives

Configuration 1 Configuration 2
Scenario before after reduction before after reduction
1 person 19 6 68.4 % 19 11 42.1 %
2 person 39 14 64.1 % 39 18 53.8 %
3 person 63 19 69.8 % 63 23 63.5 %

Table I. Comparison of the number of false positives before and after
measurement integration and validation

be high. In our experiments, we used a conservatively low
estimate for the initial uncertainty in the head position
(u, v, d), therefore we must set dthreshold to a high value
to ensure that the measurements corresponding to the same
true head position can be integrated. The choice of Tthreshold
is intuitive because we only want to integrate measurements
whose temporal separation is within one frame.

For the purpose of evaluation, ground truth was generated
by manually overlaying circles on human heads in single
camera images. These regions were then integrated to gen-
erate ground-truthed 3D positions using weighted recursive
least squares with minimum variance. Since each person
was assigned a unique identity in the ground truth data,
we generated motion trajectories of the individual persons
by linearly interpolating between the ground truthed 3D
positions. Two different configurations of sensing agents
and cluster leaders were considered during the experiments:
(a) Configuration 1 has a flat structure where all the 12
sensing agents are connected to single cluster leader and
(b) Configuration 2 has a hierarchical structure where the
12 sensing agents are divided into four clusters of three
agents each, as shown in Figure 2. Each of the four clusters
have their own cluster leaders and these cluster leaders are
connected to a second level cluster leader.

A numerical measure of the detection and localization
performance of the system is presented in terms of 1) the
number of false positives before and after measurement
integration and validation (that is, evidence accumulation)
in the cluster leaders; 2) calculation of the percentage of
the true positives after the measurement integration and val-
idation process; and 3) the localization accuracy of correctly
detected heads. A correctly detected head in 3D is one whose
shortest distance from the ground truth trajectory is less than

Configuration 1 Configuration 2
Scenario validated

heads
(correctly
detected
heads)

% true
positives

validated
heads
(correctly
detected
heads)

% true
positives

1 person 56 (50) 89.3% 75 (64) 85.3%
2 person 72 (58) 80.6% 85 (67) 78.8%
3 person 88 (69) 78.4% 97 (74) 76.2%

Table II. True positive performance after measurement integration
and validation in the cluster leaders.

Scenario Configuration 1 Configuration 2
1 person 13 cm 15 cm
2 person 14 cm 14 cm
3 person 13 cm 13 cm

Table III. Mean localization error in the detected head positions in
the world coordinate frame.

25 cm. The performance is estimated over 30 multi-frames
for each of the 3 scenarios.

Figure 12 graphically illustrates the head detection results
for the three scenarios described earlier. The solid curves
represent the trajectories generated from the ground truth po-
sitions and the circles represent the head detections reported
by the system after measurement integration and validation.
The black circles denote the false positives. For the 2-
and 3-person scenarios, there are some instances of missed
detection. This is because of the complicated background in
our test environment that results in lot of spurious contours
in foreground objects. This causes the single camera head
detection algorithm to perform sub-optimally, that is, with a
large number of false positives.

Table I presents a comparison of the number of false posi-
tives in 2D camera images vs the 3D head positions obtained
after the integration and validation of 2D measurements. For
configure 1 of the agent hierarchy, the reduction in the num-
ber of false positives is approximately 64-70 % for the three
scenarios. On the other hand, for configuration 2 of the agent
hierarchy, the reduction in the number of false positives
is roughly in the 42-64 % range. This indicates that there
is a greater decrease in the false detections when a larger
number of sensing agents can simultaneously participate in
the measurement integration and validation process. In table
II, we present the true positive detection performance. The
cluster leaders integrate the measurements received from
the sensing agents and generate validated position estimates
(VPEs). Not all of these VPEs will be actual human head
positions because sometimes false positive 2D measurements
may get integrated to give a false positive VPE. But as
the high true positive percentages in the table indicate,
the system is very effective in filtering out false positive
2D measurements. This is so because the system needs
evidence from at least three sensing agents for generating
a VPE. Even if one sensing agent generates a false positive
measurement, if it is not corroborated by at least two other



measurements from other sensing agents, it will not go past
the integration and validation stage. Table III summarizes
the mean localization error of the correctly detected heads
in the world coordinate frame.

We can observe from the results that both configurations
have comparable detection performances. This is as per our
expectations because the core evidence accumulation algo-
rithm (equations 4, 5 and 6) does not depend on hierarchical
or flat structure of the agent architecture. Nonetheless, the
choice of hierarchical configuration is strongly favored by
considerations of the monitoring area, scalability, real time
performance, and so on. While for a small monitored area
where only a few sensing agents are required, we can opt
for configuration 1 due to its simple implementation. But
for a large monitoring area, we would need a large number
of sensing agents, which in the case of wireless sensor
networks, may not be able to communicate with a single
cluster leader due to limited communication range. Therefore
a hierarchical structure of multiple cluster leaders becomes
essential. Additionally, the measurement integration and val-
idation process is O(n) for configuration 1 and O(log n)
for configuration 2. Therefore the latter configuration is
preferable for real time performance. This configuration is
also more scalable because multiple sensing agents and
cluster leaders can be added in a hierarchical fashion without
affecting the performance of the other parts of the network.

VIII. CONCLUSIONS

In this paper, we presented a novel evidence accumulation
framework for detecting and localizing humans in an indoor
environment with a network of cameras. Our framework
uses an agent-based architecture that can easily be scaled
up as cameras are added to the network to cover a larger
area. The two different types of agents we discussed in
detail are the sensing agent and the cluster leader agent, the
former for acquiring and locally processing the 2D images
of the monitored environment and the latter for carrying out
measurement integration and validation to generate accurate
3D head positions. A cluster leader agent integrates the
sensing agent measurements using a weighted recursive least
squares technique with minimum variance to obtain validated
head position estimates. The work we reported in this paper
focused on human head detection and localization in the
environment. Our future research will focus on uniquely
identifying different humans and tracking their trajectories
in real time. An important assumption we made for the
experimental results reported here was that, on the average,
the human head is roughly 10 inches in diameter. This
assumption can be eliminated in future improvements by
using face detection in the images and using the detected
faces to estimate the actual head size of the subjects. Face
detection can be performed in a camera view that captures
the frontal position of the subject (see, for example, [15] for
detecting the orientation of a person) and then the head size

information can be transmitted to the other sensing agents
over the network.
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APPENDIX A
POSITION ESTIMATION IN WORLD FRAME

We describe the steps to obtain the CPE p = (x, y, z) and
its error covariance matrix S from the raw measurements
(u, v, d) . Let q = (u, v, d) be the measurement vector of
the human head which is a random vector with mean as the
actual measurement q̂ and the error covariance matrix Q.

Let (R, T ) represent the transformation for a camera from
the camera coordinate frame to the world coordinate frame.
Note that all the cameras are calibrated with respect to the
world frame. Let P (x, y, z) be the 3D point specified in the
world frame and Pc (xc, yc, zc) be the corresponding point
in the camera frame. Then x

y
z

 = R

 xc
yc
zc

+ T (7)

Since the camera is calibrated, in the camera coordinate
frame, we have the following relationship between the mea-
surement (u, v, d) and the 3D point Pc (xc, yc, zc):

u = αu
xc
zc

+ u0

v = αv
yc
zc

+ v0

d =
√
x2
c + y2

c + z2
c

(8)

where (αu, αv)represent the magnification factors in the x-
and y- direction, and (u0, v0) represent the image center of
the camera image. From (8), we obtain

zc = dq
(u−u0

αu
)2

+( v−v0αv
)2

+1

xc = u−u0
αu

zc

yc = v−v0
αv

zc

(9)

Using Eqs. (7) and (9), we can compute (x, y, z).

APPENDIX B
ERROR COVARIANCE ESTIMATION IN WORLD FRAME

We will now show how the relationship between the
measurement vector q = (u, v, d) and its world-coordinate
version p = (x, y, z) can be used to transform the error
covariance matrix Q associated with q into the error covari-
ance matrix S associated with p. Let p = f (q) represent the
transformation from q to p which is actually a non-linear
transformation. Consider first the mean vector of p:

p = E [p] = E [f (q)] ≈ f (E[q]) = f (q) = f (q̂) (10)

where we have used the linear approximation in writing
E [f (q)] ≈ f (E[q]). This approximation linearizes the



nonlinear function by retaining only the first term in the
Taylor series expansion. The nonlinear function f(.) can be
expanded as a Taylor series about q̂:

p = f(q) = f(q̂+ δq) = f(q̂) +higher order terms
⇒ p ≈ f(q̂)
⇒ E [f(q)] = E [p] = E [f(q̂)] = f(q̂) = f (E[q])
As for the covariance matrix S, we consider the deviation

from the mean vector. For δp = p− p̄, δq = q− q̄ = q− q̂,
we obtain (again using the linear approximation)

δp =
∂f
∂q

δq (11)

The covariance matrix S is now computed as follows:

S = E
[
(p− p) (p− p)T

]
= E

[
δpδpT

]
= E

[
∂f
∂q

δqδqT
(
∂f
∂q

)T]

=
∂f
∂q

E
[
δqδqT

]( ∂f
∂q

)T
=

∂f
∂q

E
[
(q− q) (q− q)T

]( ∂f
∂q

)T
=

∂f
∂q

Q

(
∂f
∂q

)T
where ∂f

∂q is evaluated at p = p,q = q = q̂.
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