10-2005

"Two-Microphone" Nearfield Acoustical Holography

J Stuart Bolton
Purdue University, bolton@purdue.edu

Yong T. Cho

Huy-Sang Kwon

Yong-Joe Kim

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
“TWO-MICROPHONE” NEARFIELD ACOUSTICAL HOLOGRAPHY

Yong T. Cho and J. Stuart Bolton
Hyu-Sang Kwon and Yong-Joe Kim
Ray W. Herrick Laboratories
Purdue University
INTRODUCTION

• **Conventional NAH**
 - Measurement time required for complete measurement enclosing the acoustic source may be formidable especially when the size of source is large and sound field radiated in various operating conditions is of interest.

• **Two-microphone Nearfield Acoustical Holography**
 - Only one complete measurement enclosing the acoustic source is required to estimate the sound field of acoustic source for various operating conditions.
PARTIAL FIELD DECOMPOSITION

Total sound field
Consist of three incoherent sources
Can be decomposed to three partial fields

First partial field
Second partial field
Third partial field

Purdue University Herrick Laboratories
OBJECTIVE

- Facilitate sound field measurement of the same composite acoustic source in various operating conditions.

 - Two independent sub-sources comprise complete source.

 - Relative levels of sub-sources depend on operating condition.

- Reduce cost of acoustic measurement and allow more detailed investigation of acoustic sources in various operating conditions.
TWO-MICROPHONE HOLOGRAPHY

- **Key assumption**

 Transfer function between reference and field microphones is assumed to be remain identical for various combinations of source level or operating conditions – true if directivity of sub-sources is independent of level.

- **Benefit**

 Partial fields for different operating conditions can then be estimated from a measurement of the reference spectral matrix alone.
TWO-MICROPHONE HOLOGRAPHY

Sound sources

Reference microphones

Field microphones

Transfer function

\[G_{ys} \]

Sub-source 1

Sub-source 2

Transfer function

\[G_{rs} \]

Transfer function

\[H_{yr} \]

Source signal: \(s \)

Reference microphone signal: \(R = G_{rs} s \)

Field microphone signal:

\[Y = G_{ys} s \]
TWO-MICROPHONE HOLOGRAPHY

\[R = G_{rs}s, \]
\[Y = G_{ys}s, \]
\[S_{ry} = E\{R^H Y\} = G_{rs} S_{ys} G_{ys}^H \quad \text{or} \quad S_{ry}^H = G_{ys} S_{ss} G_{rs}^H, \]
\[S_{rr} = E\{R^H R\} = G_{rs} S_{ss} G_{rs}^H, \]

Transfer function between reference and field microphones:

\[H_{yr} = Y R^{-1} = G_{ys} G_{rs}^{-1} = S_{ry}^H S_{rr}^{-1} \]

is independent of sub-source level combination (i.e., operating condition), so long as directivity of component sub-sources is independent of level.
TWO-MICROPHONE HOLOGRAPHY

\[S_{yy} = \mathbb{E}\{YY^H\} = G_{ys} S_{ss} G_{ys}^H = H_{yr} G_{rs} S_{ss} G_{ys}^H = H_{yr} S_{yy} \]

\[= S_{ry}^H S_{rr}^{-1} S_{ry} = P P^H \]

Hence the partial field matrix, \(P \), is,

\[P = S_{ry}^H S_{rr}^{-1/2} = H_{yr} S_{rr}^{1/2} \]

Partial fields for the \(n \)th operating condition can then be estimated from a measurement of the \(n \)th reference spectral matrix \(S_{rr,n} \) alone when \(H_{yr} \) is known from measurement in \(m \)th operating condition: i.e.,

\[P_n = H_{yr,n} S_{rr,n}^{1/2} = H_{yr} S_{rr,n}^{1/2} \]
• Dipole axes in $\phi=0$, $z=5$ cm and $\phi=90^\circ$, $z=25$ cm

$\phi = 0$, $z = 5$ cm

$\phi = 90^\circ$, $z = 25$ cm

$r_h = 14.15$ cm

$z_{inc} = 2$ cm

$\phi_{inc} = 11.25^\circ$

$N_\phi = 32$

$N_z = 25$

$z = 49$ cm

Hologram surface (r_h)

Rigid surface at $z=0$
Dipoles Numerical Simulation

Ref. I

<table>
<thead>
<tr>
<th>Cases</th>
<th>Source Amplitude</th>
<th>Ref. Mic. Position $(r = 10, \text{cm})$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Ref. I</td>
<td>Level I</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Level II</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Ref. II

<table>
<thead>
<tr>
<th>Cases</th>
<th>Source Amplitude</th>
<th>Ref. Mic. Position $(r = 10, \text{cm})$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Ref. II</td>
<td>Level I</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Level II</td>
<td>0.5</td>
</tr>
</tbody>
</table>
DIPOLE NUMERICAL SIMULATION

Sound fields from direct measurement (1000 Hz)

First partial field, Level I

Second partial field, Level I

Total field, Level I

First partial field, Level II

Second partial field, Level II

Total field, Level II
Estimated sound fields for source level II (based on source level I H_{yr})

First partial field, Ref. I

Second partial field, Ref. I

Total field, Ref. I

First partial field, Ref. II

Second partial field, Ref. II

Total field, Ref. II
LOUDSPEAKER MEASUREMENT

- Number of field microphones: \(N_\phi = 32 \) (\(\phi_{inc} = 11.25^\circ \))
- Microphone spacing in z direction: \(z_{inc} = 2.5 \text{ cm} \)
- Radius of hologram: \(r_h = 13 \text{ cm} \)
- Total aperture size: 42.5 cm (\(N_z = 17 \))
- Total number of measurement: 544

Scanning array
Unbaffled loudspeakers

Purdue University Herrick Laboratories
LOUDSPEAKER MEASUREMENT

Sound fields from direct measurement, reference 1 and 2 (2000 Hz)

First partial field, Level I

Second partial field, Level I

Total field, Level I

First partial field, Level II

Second partial field, Level II

Total field, Level II

Purdue University Herrick Laboratories
Estimated sound fields from source level I (based on source level II H_{yr})

First partial field, ref. 1 & 2
Second partial field, ref. 1 & 2
Total field, ref. 1 & 2

First partial field, ref. 3 & 4
Second partial field, ref. 3 & 4
Total field, ref. 3 & 4
CONCLUSIONS

• Once the transfer functions between the reference and field microphones were found, entire sound field for any operating condition could be reconstructed based on reference measurements alone.

• Accurate total fields were obtained even when the reference microphones were placed an unrealistically large distance from the sources and even when partial fields included contribution from both sources.

• This approach can facilitate more detailed investigation of acoustic sources in various operating conditions.

• Potential quality control application to check the total radiated sound fields of many “similar” devices based on reference measurements.