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ABSTRACT 
 

A long term monitoring system has been implemented in the TRCA (Toronto and Region Conservation Authority) 
Archetype Sustainable House to comprehensively monitor the energy performance of the archetype twin-houses and 
to investigate the effectiveness and efficiency of the mechanical systems. Two different sets of HVAC systems were 
installed in each of these twin houses: current practices and technologies in House-A, and sustainable technologies 
for future practices in House-B. Instrumentation of the monitoring system in House-B has been completed. Yet 
partial installation remains to be done in House-A. This paper describes some of the preliminary results of 
monitoring data of energy recovery ventilator (ERV), radiant in-floor heating system, total electrical energy 
consumption and Photovoltaic (PV) system. The sensible and latent heat recovery of the ERV increased with the 
increase of indoor-outdoor temperature difference and specific humidity difference, respectively. Higher radiant in-
floor heating demand is observed on the 3rd floor. Seven months data of the 4.08 kWp photovoltaic (PV) system has 
been collected and its full year extrapolated result shows that annual electricity generation is 4563 kWh. 
 

1. INTRODUCTION 
 

The Sustainable Archetype House was built in 2008 at Kortright Conservation Centre of Toronto and Region 
Conservation Authority (TRCA) in Vaughan, Ontario, Canada. The Archetype House has two semi-detached 
houses: House-A is designed to demonstrate practices and technologies that are currently available and House-B is 
designed for sustainable technologies that will be practiced in the near future. Figure 1 shows the south side view of 
the Archetype Housing with House A on the left hand side. Both houses are R-2000 and LEED Platinum certified. 
The Archetype House is intended for sustainable technology demonstration, education, training and research 
purpose.  
 
The objective of the monitoring system is to evaluate the performance of equipments and assessing the energy 
benchmarking of the HVAC systems with reference to the local climate, such as temperature and degree-day (DD), 
through long term monitoring. 
 

 
 

Figure 1: South view of the TRCA Archetype twin houses 
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Similar, but different studies have been conducted in Canada. Located in Ottawa, the Canadian Centre for Housing 
Technology (CCHT) house is one of its kinds. This project consists of two side-by-side identical houses built in 
1998. One is the reference house and another one is the test house. Both houses are two storeys and each one has a 
total floor area of 210 m2 (2260 ft2). To evaluate the performance of these two R-2000 certified houses, a 
comprehensive monitoring system was employed and more than 300 sensors were implemented. Simulated 
occupancy of 4 (four) family members was used in the houses. The long term monitoring results have been used in 
the model benchmarking which are being used to predict residential energy performance for different locations 
across Canada (Swinton et al., 2001).  
 
Another similar study is the Mattamy homes project in Milton, Ontario. This project consists of two houses built in 
2005: one house is known as “The Wellington” and the other is known as “The Standbury”. Both houses are 
equipped with solar thermal collectors and grey water heat exchanger to recover drain water heat. The Wellington 
house has a solar thermal collector integrated ground source heat pump for space heating and cooling and 
photovoltaic (PV) system for power generation. The Standbury house uses a two-stage high efficiency natural gas 
furnace with ECM motor and SEER 14 central A/C for space heating and cooling. Hot water is produced by the 
solar thermal collectors with natural gas mini boiler as backup (Cohen, 2010). 
 
A short study has been conducted in the Factor-9 home in Regina, Canada. This is a one-storey R-2000 certified 
single family house. This house has a floor area of 301 m2 (3239 ft2) where 4 occupants are living. Passive solar 
systems are employed for space heating and ground source energy is used for space cooling. The energy 
performance of this house was monitored for only one year from June 1, 2007 to May 31, 2008 (Dumont, 2008). 

 
2. HOUSE DESCRIPTION 

 
2.1 House-A 
This is a 3-storey south facing house which has a total (excluding basement) floor area of 261 m2 (2808 ft2). All 
windows are double glazed with U-value of 2.19 W/m2 K (0.39 Btu/ft2oF) with total window area of 37.68 m2 (405.4 
ft2). Roxul fibre batt and 3” Styrofoam are used in the above grade walls with an overall resistance of RSI-5.31 (R-
30), and Durisol blocks of RSI-3.54 (R-20) is used for the basement wall/foundation. The roof uses Structurally 
Insulated Panel (SIP) with RSI-7 (R-40). 
 
The designed heating load of House A is 7.91 kW (27 MBH) when outdoor and indoor temperatures are -22oC (-
7.6oF) and 22oC (71.6oF), respectively, and cooling load is 4.92 kW (16.8 MBH) when outdoor and indoor 
temperatures are 31oC (87.8oF) and 24oC (75.2oF), respectively. 
 
The mechanical and hydronic systems of this house are featured with a one-tank hot water system with the capacity 
of 300 litres (79 USG). This tank has two coils: one is connected to a 2.32 m2 (25 ft2) flat plate solar collector and 
the other is connected to the wall mounted 18.5 kW (63 MBH) mini boiler for backup supply. A 10.5 kW (3 ton) 
two-stage air-to-air source heat pump is used to supply warm/cold air for space heating/cooling. The air source heat 
pump is connected to the air handling unit (AHU), which has a variable speed fan and supplies forced air to the 
zones above basement. If the heat pump cannot supply sufficient heat to the space during low outdoor temperature, 
mini boiler will start to supply hot water to the heating coil of the AHU for supplementary heat to the zone. The 
return warm water will circulate in the radiant in-floor heating system for basement space heating. In the mechanical 
ventilation system a heat recovery ventilator (HRV) is used for heat recovery from the stale air. A 0.91 m (36”) long 
grey water heat exchanger was installed to recover heat from waste water (Barua et al., 2009). 
 
2.2 House-B 
This is a 3-storey south facing house which has a floor area of 317 m2 (3412 ft2). All windows are triple glazed with 
U-value of 1.59 W/m2oK (0.28 Btu/ft2oF) with total window area of 46.37 m2 (499 ft2). Heat-lock Soya Polyurethane 
Foam and/or Icynene spray Foam and 3” Styrofoam are used in the above grade basement wall with an overall 
resistance of RSI-5.31 (R-30) and Durisol blocks is used for the basement wall/foundation with combined resistance 
of RSI-3.54 (R-20). The roof uses Structurally Insulated Panel (SIP) with RSI-7 (R-40). This house has a 6.7 m × 
3.81 m (22’×12.5’) In-law Suite above the garage which has the same envelope features as the main house. 
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The designed heating load of House B is 7.94 kW (27.1 MBH) when outdoor and indoor temperatures are -22oC (-
7.6oF) and 22oC (71.6oF), respectively and cooling load is 6.18 kW (21.1 MBH) when outdoor and indoor 
temperatures are 31oC (87.8oF) and 26oC (78.8oF), respectively. 
 
More advanced HVAC systems are used in this house. A two-tank system was adopted for hot water production. 
One is a 300 litres (79 USG) preheat tank and the other is a 175 litre (50 USG) time-of-use (TOU) tank. The preheat 
tank is heated by a 2 m2 (21.52 ft2) evacuated tube solar collector and the TOU tank has a 6 kW (20.48 MBH) 
electric coil for back up hot water generation. The radiant in-floor heating system is used for space heating in each 
floor. A ground source heat pump (GSHP) with the capacity of 13.3 kW (45.4 MBH) is connected to two 152.3 m 
(500 ft) horizontal loops in the yard. In the cooling season, the GSHP supplies chilled water to the multi-zone AHU. 
A Stirling engine based micro combined heat and power (CHP) unit was also set up in substitute of the GSHP. This 
CHP unit can generate 1 kW electricity and 7 kW (24 MBH) equivalent thermal power. A buffer tank is used in 
between the GSHP/CHP and the infloor system/AHU to minimize equipment cycling. The roof-top PV system has 
the capacity of 4.08 kW and 2.4 kW for the wind turbine. An energy recovery ventilator (ERV) was installed in the 
mechanical ventilation system. A 0.91 m (36”) long grey water heat exchanger was installed for grey water heat 
recovery. There is a 10 m3 (2642 USG) underground cistern in the field that collects rain water for toilet flushing 
and gardening (Barua et al., 2009).  
 

3. MONITORING SYSTEM 
 

In any monitoring project the following activities are involved (ASHRAE, 1999a) 
 Projects planning 
 Installation of sensors and data acquisition equipments 
 Calibration, ongoing data collection, and verification  
 Data analysis and reporting  

 
To implement the monitoring system of this project above activities are being followed.  
 
In order to evaluate the performance of individual equipments, necessary equations are incorporated and based on 
these equations relevant sensors are selected. Common input parameters of these equations are air temperature, 
relative humidity (RH), air flow rate/velocity, water temperature, water flow rate, energy consumption and 
generation, soil temperature and moisture content as well as solar radiation. These inputs are useful to determine the 
energy balance of the house and the efficiency of each mechanical component. In order to evaluate the performance 
of each component as well as the energy performance of the house 9 different kinds and more than 300 sensors are 
installed. All sensors, except the solar irradiance sensors and gas flow meters, are field calibrated. Calibration of 
sensors is an ongoing routine process to ensure data quality. To capture the sensors signal National Instrument (NI) 
LabVIEW software and Data Acquisition (DAQ) hardware are being used where all data is saved in the SQL 
database. 
 

4. DATA ANALYSIS 
 

No occupant will live in the twin houses due to the nature of the project. However, the houses are open to the public 
for visit, and staff can work inside during the day. Therefore, both houses have occupants in the weekdays. The real 
time data being collected is similar to that in the typical family environment except household activities such as 
cooking, bath and laundry. Simulated occupancy system will be implemented later on to simulate typical residential 
conditions. 
 
The following factors are considered for system performance analysis (EVO, 2007): 

 outdoor temperature 
 time intervals in seconds, hours or days 

 
4.1 Energy Recovery Ventilator (ERV) 
A tight building envelope system is often used in modern houses for energy conservation. Due to the reduction of 
infiltration in the air tight house, proper mechanical ventilation system is essential for adequate indoor air quality 
and human comfort. The ASHRAE standard 62.2 (ASHRAE, 1999b) recommends the minimum ventilation rate 
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through the introduction of air-to-air heat recovery system. Typical air heat recovery systems are Heat Recovery 
Ventilator (HRV) and Energy Recovery Ventilator (ERV), which can filter fresh air, increase or decrease air 
temperature and/or humidity. Figure 2 shows the daily average indoor/outdoor temperatures and relative humidity 
during January 6-25, 2010. It was found that the average outdoor RH was 71% when the average temperature was -
4.05oC (24.71oF). The absolute amount of moisture or water vapour in this cold air was only 2.59 g/m3 (1.62×10-4 
lb/ft3). If the ERV were not installed, the incoming air would be extremely dry with only 13% RH at the room 
temperature. With the ERV, moisture from the exhaust air was transferred to the incoming low moisture fresh air, 
and the RH value rose to 27%. 
 
According to ASHRAE Standard 62.2-2007, Walker et al. (2007a) showed that the minimum ventilation rate can be 
determined from the following equation: 
 

    15.701.0 2 NftAcfmQ floor    (1) 
 

Where, Afloor is the house floor area and N is the number of bedrooms. From equation (1), the ventilation rate for this 
3-bedroom residential house should not be less than 64 cfm (30 L/s) and the optimum humidity range for human 
comfort should be 30%-60% (ASHRAE, 2000). However, as shown in Figure 2, indoor RH remains below 30% for 
that period. The possible reasons of low RH value can be attributed to: a) high air exchange rate at low outdoor 
temperature, and b) low internal moisture generation (Walker et al., 2007b). It is worth noting that the ventilation 
rate through the variable speed ERV was kept at 148 cfm (70 L/s) during that period, which is high for a non-
occupied house. The light human activity inside the house cannot provide sufficient moisture generation. Figures 3 
and 4 show the sensible/latent heat recovery with respect to the indoor-outdoor conditions. As can be seen, the 
sensible heat recovery increases linearly as the dry bulb temperature difference increases. The latent heat recovery 
shows similar trend with respect to the specific humidity difference, although small discrepancy was observed. 
 

 
 

Figure 2 Daily average indoor-outdoor temperature and relative humidity during January 6-25, 2010 
 

 
Figure 3 Sensible heat recoveries via ERV vs. daily    Figure 4 Latent heat recoveries via ERV vs. daily 
average indoor-outdoor temperature difference    average indoor-outdoor specific humidity difference 
from December 23, 2009 to January 11, 2010    from December 23, 2009 to January 11, 2010 
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4.2 In-floor radiant heating 
Figure 5 shows the “thin slab over frame floor” system was used on 1st, 2nd and 3rd floor of House B. A set of 1.25 
cm (0.5 inch) diameter tubing was stapled on the plywood subfloor at 23 cm (9.05 inch) center to center distance 
under the 6.5 cm (2.56 inch) thick cement slab. On top of the cement slab, 1.5 cm (0.59 inch) thick finished wood 
floor was installed. Figure 6 show that the in-floor radiant heating system maintained indoor temperature at around 
20 oC (68oF). This is controlled by the actuator, which has a series of valves that control the hot water flow from the 
buffer tank to different zones as required. The actuator is operated by the controller, following a demand from the 
thermostat which makes decision based on the indoor-outdoor temperature difference. The buffer tank holds warm 
water at constant temperature around 40oC (105oF) during the heating season. 
 
As shown in Figure 7, the space heating increases with the increase of indoor-outdoor temperature difference. Figure 
8 shows that there is higher heating demand on the 3rd floor. Possible reasons can be attributed to the larger exposed 
surface area and the higher ceiling, where the highest level is 4.98 m (16 ft) away to the floor. Elovitz (2001) shows 
that radiant in-floor heating system is popular in residential and light commercial buildings where the ceiling height 
is in the range of 2.4 m (8 ft) to 2.7 m (9 ft). 
 

 
 

Figure 5 Radiant in-floor heating of “thin slab over         Figure 6 Daily average indoor temperature from  
frame floor” system           December 23, 2009 to January 11, 2010 
 

 
 
Figure 7 Space heating vs. daily average indoor-outdoor Figure 8 Daily space heating at different floors from 
temperature difference from December 23, 2009 to                December 23, 2009 to January 11, 2010     
January 11, 2010     
      
4.3 Total electricity consumption 
Roth and Brodrick (2008) showed that occupant behaviour has a major impact on the building energy consumption. 
In the archetype houses, most of the appliances are not utilised in full capacity due to the absence of occupants. 
However, all mechanical and hydronic systems are operated in partial or full load capacity. Figures 9 and 10 show 
the total electricity consumption is mainly influenced by indoor-outdoor temperature difference, indicating that the 
space heating is the major factor for electricity consumption in the heating season. 
 

Plywood subfloor- 2 cm
(0.79 inch)

Concrete-6.5 cm
(2.56 inch)

Finished wood floor-
1.5 cm (0.59 inch)

Tubing-23 cm
(9.05 inch)

centres
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Figure 9 Total electricity consumption vs. daily average Figure 10: Outdoor temperature vs. electricity 
indoor-outdoor temperature difference from   consumption on Tuesday, Dec 01, 2009 
December 23, 2009 to January 5, 2010         
    
4.4 Photovoltaic (PV) system 
The monocrystalline photovoltaic system composed of 48 modules was installed on the roof of House-B. Each 
module has a capacity of 85 W. The total cell area of all modules is 31.1 m2 (334.34 ft2) with combined generation 
capacity of 4.08 kWp. Under standard test condition, the maximum efficiency of this PV system is 13.12%. Out of 
48 modules, 16 modules were installed on the roof at a tilt angle of 9.46o, 24 modules at an angle of 11.77o and the 
rest 8 modules at an angle of 33.69o. All modules were grouped in 3 strings of 16 modules each which were 
connected to a 5 kW single inverter. This inverter’s efficiency is 95.5%. To determine the PV output at different 
angles, the generation capacity of 4.08 kWp is distributed according to the ratio of total cell area: 1.36 kWp at angle 
9.46o, 2.04 kWp at angle 11.77o and 0.68 kWp at angle 33.69o. Seven months of PV data from September 2009 to 
March 2010 was collected at Kortright Centre. The evaluation of yearly PV performance has been conducted with 
RETScreen. Solar radiation of 20 years averaged data at Pearson International Airport (PIA) weather station was 
used in the RETScreen analysis. This solar radiation data was compared with the available data at University of 
Waterloo weather station, which is the closest station to both PIA and Kortright Centre. It shows that the solar 
radiation of the 7 months data at University of Waterloo weather station is 1.23% higher than the 20-year average 
data at PIA using RETScreen.  
  

 
    

Figure 11 Yearly electricity generations by the 4.08 kWp roof top grid connected PV array 
 
In RETScreen analysis, losses of the PV system were set to be zero. The results show that yearly electricity 
generation is 4970 kWh in RETScreen. During this 7 months period, PV generated 1726 kWh electricity, which is 
10 % less than the RETScreen prediction. Possible reasons for underproduction are: a) dirt accumulation on the PV 
surface in the no-rain period, b) snow accumulation on the array during winter period (SolarCity, 2009a), c) more 
miscellaneous losses of array and inverter, d) actual radiation is different on site from the RETScreen database. 
Pyranometers were recently installed at the site to obtain the actual solar radiation. Figure 11 shows a full year PV 
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electricity generation from September 2009 to August 2010. The PV generation from April to August 2010 was 
extrapolated based on the ratio of actual data to RETScreen output of the 7 month period. The total yearly PV 
generation was estimated to be 4563 kWh. This amount of energy can reduce 0.89 MT of GHG emission based on 
hourly average GHG emission factors (Gordon and Fung, 2009). The rule of thumb for Toronto’s solar resources 
shows that each kW PV system can generate 1100 kWh/yr electricity (SolarCity, 2009b). According to this rule, the 
existing 4.08 kW PV system can generate approximately 4500 kWh/yr electricity, which is only 1% less than the 
extrapolated result. 
 

5. CONCLUSION 
 

A monitoring system has been implemented in the Archetype Houses at Kortright Centre. Preliminary analysis 
shows that indoor-outdoor temperature difference is the primary factor influencing the ERV performance, in-floor 
radiant heating and total electricity demand.  
 
The sensible and latent heat recovery of the ERV increased with the increase of indoor-outdoor temperature 
difference and specific humidity difference, respectively. In the in-floor radiant heating system, higher heating 
demand was observed on the 3rd floor. Indoor temperature was maintained constant at 21oC regardless of the indoor-
outdoor temperature difference. Space heating demand and total electricity consumption increased linearly with the 
increase of indoor-outdoor temperature difference. Seven months data of the 4.08 kWp photovoltaic (PV) system 
has been collected. The measured seven months output is 10% less than the RETScreen analysis, excluding the 
consideration of PV losses. Nevertheless, the yearly extrapolated data is only 1% less than the prediction based on 
the rule of thumb of Toronto’s solar resources. 
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