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Abstract. The direct simulation Monte Carlo (DSMC) method is a stochastic approach to solve the Boltzmann equation
and is built on various numerical schemes for transport, collision and sampling. This work aims to compare and contrast
two popular O(N) DSMC collision schemes - no-time-counter (NTC) and majorant collision frequency (MCF) - with the
goal of identifying the fundamental differences. MCF and NTC schemes are used in DSMC simulations of a spatially
homogeneous equilibrium gas to study convergence with respect to various collision parameters. While the MCF scheme
forces the reproduction of the exponential distribution of time between collisions, the NTC scheme requires larger number of
simulators per cell to reproduce this Poisson process. The two collision schemes are also applied to the spatially homogeneous
relaxation from an isotropic non-Maxwellian given by the Bobylev exact solution to the Boltzmann equation. While the two
schemes produce identical results at large times, the initial relaxation shows some differences during the first few timesteps.
Keywords: non-equilibrium flows, direct simulation Monte Carlo, majorant collision frequency, Bobylev solution
PACS: 47.45.-n, 47.11.-j

INTRODUCTION

The direct simulation Monte Carlo (DSMC) [1] method is a stochastic approach to solve the Boltzmann equation. The
DSMC algorithm often consists of a “move” step to represent the molecular free-flight and a “collide” step to simulate
the binary molecular interactions though splitless algorithms [2] are also used. The DSMC method has constantly
evolved with improvements in the “move” step largely driven by changes in computer architecture. Of the two different
components of the collide step, the phenomenological models that determine the outcome of a collision have seen
major improvements, whereas the collision schemes have seen few changes in the last two decades. Comparative
studies involving various phenomenological models including models for elastic scattering, internal energy exchange
and chemistry easily outnumber the studies performed comparing different collision schemes. This work attempts a
comparative study of two popular collision schemes used in DSMC - the no-time-counter (NTC) and the majorant
collision frequency (MCF).
While similar studies comparing the two collision schemes have been attempted in the past, these have been

restricted to the comparison of macroscopic properties for one-dimensional problems. The studies have concluded that
both collision schemes lead to results that agree extremely well with each other. However, minor differences between
collision schemes are likely to be more significant in parameters such as convergence [3] in number of simulators, cell
size and timestep than in macroscopic parameters such as density, temperature and velocity. Our objective, therefore,
is to extend the comparison of collision schemes to more fundamental parameters. In essence, we attempt to dissect
the two schemes in order to establish the exact, though minimal, differences between the schemes. In particular,
the objectives of this work include the study of the influence of the collision scheme on DSMC simulations of a
steady spatially homogeneous equilibrium gas and the spatially homogeneous relaxation process from an isotropic
non-Maxwellian and compare with theory. The remainder of the paper is organized as follows. First, the various
collision schemes used in DSMC as well as the Bobylev solution are outlined followed by the results and discussion
with the final section reserved for the conclusions.
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THEORY AND BACKGROUND

Here, we provide a brief overview of the various collision schemes used in the past in chronological order. The time-
counter (TC) method [4] was one of the earliest collision schemes introduced by Bird in which a collision pair is chosen
from among the simulators in a collision cell and the collision is accepted with the probability ((σT cr)/(σT cr)max)
using a standard acceptance-rejection scheme. Here, σT is the total collision cross section for the chosen pair and cr is
the relative speed of the collision pair. The time increment (Δtc) for the collision is computed as

Δtc =
2ΔV

N̄NFNUMσT cr
, (1)

where ΔV is the cell volume, N is the number of simulators in the collision cell, N̄ is its average and FNUM is ratio of
real molecules to simulators in the simulation. The post-collision velocities are computed if the collision is accepted
but a new collision pair chosen if the collision is rejected. The steps are repeated until ∑Δtc ≤ Δt. The algorithm is
computationally efficient with an O(N) complexity, but the method does not reproduce the collision frequency under
certain extreme non-equilibrium conditions.
Koura introduced the collision frequency (CF) scheme [5], which is an exact Monte Carlo scheme in which the

collision frequency (ν) is computed as the average value of σT cr over all collision pairs in the cell as

ν =
nN
2

∫ ∫
f (v) f (v1)σT crdvdv1 ≈

FNUM
ΔV

N

∑
i=1

N

∑
j=1
i�= j

(σT cr)i, j . (2)

Once ν is computed, the time increment for the next collision is sampled from an exponential distribution given by

f (δ t) = ν exp(−νδ t), (3)

which models the collision as a Poisson process. In a Monte Carlo simulation, this is sampled as δ t = − ln(R)/ν
where R is a uniform random number between 0 and 1. The post-collision velocities of the chosen collision pair are
computed and the steps repeated until ∑δ t < Δt. Though this is an exact scheme to describe the collision process, the
inefficient O(N2) algorithm is a disadvantage.
In the no-time-counter (NTC) scheme, introduced by Bird in 1989 [6], the number of potential collision pairs (Ncoll)

during any given timestep is obtained as

Ncoll =
1
2
N(N− 1)FNUM(σT cr)maxΔt

ΔV
· (4)

The scheme then chooses Ncoll random pairs and accepts the collision between a given pair with a probability
(σT cr)/(σT cr)max.
The majorant collision frequency (MCF) scheme [7, 8, 9] computes the majorant frequency (νmax) as

νmax =
1
2
N(N− 1)FNUM(σT cr)max

ΔV
, (5)

where the parameters are the same as those used to compute Ncoll. Here, it is worth mentioning that σT is a function
of cr depending on the molecular model. For example, for a variable hard sphere (VHS) model [1],

σT = πd2ref
1

Γ(5/2−ω

(
2kTref
mrc2r

)ω−1/2
, (6)

where ω is the viscosity-temperature exponent. For a hard sphere gase, ω = 0.5 and for a Maxwell gas used in this
work, ω = 1. For the Lennard-Jones gas,

σT = πB2max, (7)

where, assuming a cut-off scattering angle of 0.1 radians, Bmax is given by [10, 11]

Bmax = σLJmax

[(
0.4πεLJ
mrc2r/2

)1/6
,

(
0.6πεLJ
mrc2r/2

)1/12]
. (8)
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Once the majorant frequency is computed, a local timestep δ t is sampled from an exponential distribution as

δ t =−
lnR
νmax

, (9)

where R is a random number uniformly distributed between 0 and 1. A collision pair is chosen at random and the
collision is accepted with the probability (σT cr)/(σT cr)max. Since the value of (σT cr)max could have changed due to
the chosen collision pair, νmax is re-computed and δ t is sampled once again from the exponential distribution (Eq. (9))
with the process repeated until ∑δ t ≤ Δt. The null collision (NC) technique introduced by Koura [12] is very similar
to the MCF scheme.

Bobylev Solution to the Unsteady Boltzmann Equation

One of the problems considered in this work is the unsteady relaxation from an initial non-Maxwellian distribution
which is one of the exact solutions to the Boltzmann equation presented by Bobylev [13]. The initial condition for
the Bobylev solution is an isotropic velocity distribution function slightly perturbed from the equilibriumMaxwellian
distribution and given by

f (v,0) = F(v;β0) =
(
m(1+β0)
2πkT

)3/2(
1+β0

[
m(1+β0)
2kT

v2−
3
2

])
exp

(
−
m(1+β0)
2kT

v2
)
, (10)

where β0 is the initial value of the non-equilibrium parameter β (0 ≤ β ≤ 2/3), which decreases to zero at
equilibrium. The Bobylev solution for the velocity distribution function is given by

f (v, t) = F(v;β (t)), (11)

where the time dependence of β is given by

β (t) =
β0 exp(−λBt)

1+β0 [1− exp(−λBt)]
· (12)

The value of λ depends on the molecular model and operating conditions and is given by

λ =

∫ π

0
σcr sin3 χdχ , (13)

where χ is the scattering angle and σcr is the product of the differential cross section and the relative velocity.
For Maxwell molecules with a potential given by κ/r4, the above expression can be simplified to (following Bird’s
convention)

λB =
(
2κ
m

)1/2∫ ∞

0
W0dW0 sin2 χ = 0.436

(
2κ
m

)1/2
(14)

Comparing with the expression for viscosity for Maxwell molecules given by

μ =
2
3π

( m
2κ

)1/2 kT
A2(5)

, (15)

we get
λB =

p
3μ

, (16)

which gives the Bobylev distribution function’s approach to the Maxwellian distribution function, which is equivalent
to β0 approaching 0. In order to compare distribution functions obtained from simulations with theory, the x-velocity
distribution given by

f (cx) =
(
m(1+β )
2πkT

)1/2
exp

(
−
m(1+β )
2kT

c2x

)[
1+β

(
m(1+β )
2kT

c2x−
1
2

)]
(17)
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is obtained. Also, the fourth moment of the x-velocity distribution is obtained as

< c4x >= 3
(
kT
m

)2 1+ 2β
β 2

(18)

and used as a parameter to quantify the differences between theory and DSMC simulations. It should be mentioned
that the second moment, which is the temperature, is a constant during the Bobylev relaxation and hence is not used
for comparison.

RESULTS AND DISCUSSION

0-D Steady Case

The first problem considered is a spatially homogenous problem of an equilibrium monatomic gas. The gas
comprises of Maxwell molecules with a reference diameter of 0.4 nm at a reference temperature of 273 K. The
molecular mass of the gas was assumed to be 5× 10−26 kg. The zero-dimensional code by Bird was modified to
include the MCF collision scheme and was used to perform simulations using both NTC and MCF schemes with the
goal of studying the collision quantities obtained. The number density of the gas was taken as 1.4×1020 1/m3 and the
temperature was fixed at 273 K. One of the quantities of interest was the pdf of time between collisions which has a
theoretical expression given by

f (t) =
1
τ
exp

(
−t
τ

)
, (19)

where τ is the mean collision time. For the number density, temperature and molecular model parameters specified
above, τ can be obtained as 32.115 μs. The time between successive collisions was monitored for all particles, and a
pdf was constructed for DSMC simulations using both collision schemes for 2 ≤ Nc ≤ 100. It should be mentioned
that, the values of Δx, Δt and total number of particles were fixed for all simulations in order to isolate the error due
to varying number of simulators/cell. The cell size was chosen as Δx = 1 mm which is about 1/10th the mean free
path corresponding to the operating conditions. The timestep was chosen as Δt = 1 μs which is about 1/30th the
mean collision time. The total number of simulators in the computational domain was fixed at 10000. The number of
simulators/cell was varied by changing the extent of the domain, ratio of real molecules to simulators and the number
of cells. For example, to obtain 2 simulators/cell with a total of 10000 simulators, the number of cells was fixed as
5000. For Δx= 1 mm this corresponds to a domain size of 5.0 m. On the other hand, to obtain 20 simulators/cell, the
number of cells was changed to 500 which corresponds to a domain size of 0.5 m.
The pdf of time between collisions was constructed using data from 10 million collision pairs, and therefore the

sample size was 20 million since 2 simulators participate in each collision. Figure 1 shows a comparison of the ratio
of the pdf of time between collisions obtained from DSMC to the theoretical value for both NTC and MCF schemes.
Clearly, since the MCF scheme has been designed to reproduce the pdf of time between collisions, it shows good
agreement with the theoretical pdf even for Nc = 20. The NTC method, on the other hand, shows good agreement
with theory only for Nc = 100. Here, it should be mentioned that the NTC scheme forces the reproduction of only
the mean collision time but still reproduces the Poisson process by reproducing the pdf of time between collisions
when sufficiently large number of simulators/cell are used. In order to quantify the agreement with theory for the two
schemes, the first five moments of the pdf of time between collisions are compared for both NTC and MCF schemes,
as shown in Fig. 2. It can be seen that while the error for 2 simulators/cell is similar for both cases, the MCF converges
to the theoretical solution faster than the NTC scheme.

0-D Unsteady Relaxation: Bobylev Solution

In this subsection, we consider the spatially homogeneous relaxation to equilibrium and compare the DSMC
solutions obtained using NTC and MCF schemes with the theoretical solution. The gas considered here consists of
Maxwell molecules with a dref of 0.417 nm at Tref = 273 K with a molecular mass of 6.64×10−26 kg. The temperature
of the gas was fixed at 273 K and the number density was chosen as 1× 1020 1/m3 resulting in Bobylev parameter
λB = 5931.98 1/s. The initial value of β was chosen as 0.65. Simulators in the DSMC simulation were initialized by
sampling from the Bobylev distribution corresponding to β = 0.65 using the acceptance-rejectance method.
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FIGURE 1. Comparison of probability distribution function of time between collisions in an equilibrium gas using both NTC
and MCF collision schemes.

FIGURE 2. Comparison of second to fifth moments of the pdf of time between collisions in an equilibrium gas for various values
of Nc using both MCF and NTC schemes

The DSMC simulations were performed using a total of 4 million simulators with Δx= 10 mm and Δt = 25 μs. The
cell size is less than the mean free path of 12 mm and the timestep is less than the mean collision time of about 38 μs.
It was also ensured that the timestep is less than the mean residence time of the simulators in a given cell. It should
be mentioned that there is a finite statistical error while sampling from the initial Bobylev distribution. However, for
the case of 4 million total simulators, this error is not significant. Specifically, the initial value of the fourth moment
of the x-velocity distribution function is 8.1276× 109 which differs by only about 0.3 % from the theoretical value of
8.1588× 109.
The Bobylev solution is a case of relaxation from weak non-equilibrium as can be seen in Fig. 3. Figure 3 also

shows a comparison of the theoretical and DSMC solution for the x-velocity distribution function after 50 μs, and
the agreement is very good. In order to enable a more rigorous comparison between theory and DSMC solutions, the
fourth moment of the x-velocity distribution function obtained using MCF and NTC schemes is compared with the
theoretical solution in Fig. 4 for 8 simulators/cell and 40 simulators/cell.
The solution obtained with 8 simulators/cell using both MCF and NTC schemes agrees reasonably well with the

theoretical evolution in time. Though there appears to be a significant discrepancy between the DSMC and theoretical
solutions, the actual difference is quite small and is about 0.9 % after 450 μs. The theoretical solution is about
9.6504×109 in comparison to 9.5601×109 and 9.5523×109 obtained using the MCF and NTC schemes respectively.
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It should be mentioned that this error has contributions from both the initial statistical error of about 0.3 % due
to a finite number of simulators as well as the evolution error due to using only 8 simulators/cell. Using only 8
simulators/cell could result in small but finite errors in the collision frequency even in an equilibrium gas as pointed
out in Bird [1] which is the cause of the slightly larger difference even at large times. On the other hand, when the
number of simulators/cell is increased to 40, the error after 450 μs decreases to about 0.3 % which is same as the
initial statistical error.
Though there is good overall agreement between the two collision schemes, the MCF scheme agrees better with the

theoretical solution when sufficient number of simulators/cell are used particularly during the initial timesteps. This
difference can be largely attributed to the fact that the NTC scheme requires a few timesteps to establish the right
collision frequency whereas the MCF scheme due to the use of local timesteps within a global timestep leads to the
right collision frequency right at the first timestep. Apart from the minor differences, the MCF and NTC solutions
both show very good agreement at large times using both 8 simulators/cell and 40 simulators/cell indicating that the
difference due to different pdf of time between collisions is not significant for relaxation from a Bobylev distribution.

FIGURE 3. Comparison of theoretical and DSMC solutions of the Bobylev 0-D relaxation after 50 μs (≈ 1.32τ) from an initial
value of β = 0.65. The figure on the left shows the Bobylev distribution corresponding to β = 0.65 and β = 0

FIGURE 4. Comparison of time history of fourth moment of the x-velocity distribution function of the Bobylev solution using
both NTC and MCF collision schemes.
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CONCLUSIONS

A comparative study of two popular DSMC collision schemes - NTC and MCF - was performed with the goal of
identifying the fundamental differences. DSMC simulations using the MCF and NTC schemes were used to study
various collision parameters in a spatially homogeneous equilibrium gas. While the MCF scheme is designed to
reproduce the exponential distribution function for the time between collisions, the NTC requires larger number of
simulators/cell to reproduce the Poisson process. As a result, the MCF scheme displays faster convergence to the
theoretical value for the higher moments of the pdf of time between collisions. The two collision schemes were
also used to study the 0-D relaxation given by Bobylev’s exact solution to the Boltzmann equation for Maxwell
molecules. While the two schemes produced identical results at longer times, the initial relaxation process showed
minor differences. The differences can be attributed to the fact that the NTC scheme requires a few timesteps to
establish the right collision frequency which could be important in unsteady problems. A rigorous convergence study
for both collision schemes should be performed for various benchmark problems in 0-D and 1-D.
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