Tablet-Based Mobile GIS Approaches to Archaeological Data Collection in Armenia

Ian Lindsay
Department of Anthropology
Purdue University
Tablet-Based Mobile GIS Approaches to Archaeological Data Collection in Armenia

1. mobile GIS in archaeology
2. Research problem: Late Bronze Age fortified landscapes in the South Caucasus
3. mobile GIS solutions for site survey in Armenia
Tablet-Based Mobile GIS Approaches to Archaeological Data Collection in Armenia

1. mobile GIS in archaeology
 a. move toward “paperless archaeology”
Tablet-Based Mobile GIS Approaches to Archaeological Data Collection in Armenia

1. mobile GIS in archaeology
 a. move toward “paperless archaeology”
 b. fancy Trimble DGPS and mobile GIS software, e.g., ArcPad (>5000)
1. mobile GIS in archaeology
 a. move toward “paperless archaeology”
 b. fancy Trimble DGPS and mobile GIS software, e.g., ArcPad (> $5000)
 c. tablet-based mobile GIS (< $1000)
 i) built-in GPS (~ 5m), compass, network connection, GIS apps
 a) Google Earth
 b) Collector for ArcGIS (ESRI)
Tablet-Based Mobile GIS Approaches to Archaeological Data Collection in Armenia

1. Mobile GIS in archaeology
2. Field research: studying Late Bronze Age fortified landscapes in the South Caucasus
3. Mobile GIS solutions for site survey in Armenia
Late Bronze Age Near Eastern trade network

- Probable sources of raw materials and goods
- Distribution of finds of similar raw materials and goods
- Possible route of Uluburun ship
- Selected trade route (water)
- Selected trade route (land)

LBA Near Eastern trade network

Eastern Anatolian Highland

(Pulak 2012)
LBA/Iron 1 Fortresses

Böyük Qaleh, northwest Iran (Biscione 2009)

Horom, Shirak Plain, Armenia

Tsaghkahovit, Tsaghkahovit Plain, Armenia

Aliler Kale, Van basin, Turkey (Sevin 2004)
LBA/Iron 1 Fortresses

Çubuklu, Van basin, Turkey (Özfirat 2009)

Knole, Georgia (Shanshashvili and Narimanishvili 2012)

Tsaghkahovit, Tsaghkahovit plain, Armenia (Lindsay 2011)

Çubuklu, Van basin, Turkey (Özfirat 2009)

Voskevaz, Ararat Valley, Armenia
LBA/Iron 1 Metalwork
South Caucasus
Material culture from Gegharot shrines

Mitannian cylinder seal

Domed balance weights

Metallurgical production

Textile production
Gegharot fortress
shrine complexes
Tablet-Based Mobile GIS Approaches to Archaeological Data Collection in Armenia

1. mobile GIS in archaeology
2. Field research: studying Late Bronze Age fortified landscapes in the South Caucasus
3. mobile GIS solutions for site survey in Armenia
1998/2000 Site survey using handheld GPS, notebooks
2015-16 proposed survey areas
Tablet-Based Mobile GIS Approaches to Archaeological Data Collection in Armenia

1. mobile GIS in archaeology

2. Field research: studying Late Bronze Age fortified landscapes in the South Caucasus

3. mobile GIS solutions for site survey in Armenia
 a. field needs from mobile GIS system:
 i. efficient
 ii. collaborative
 iii. affordable
Formatting feature templates, publishing feature service in preparation for use with Collector for ArcGIS app
“Virtual survey” using Bing & Google aerial imagery and ground-truthing potential sites
Large burial fields
recording rate: ~50 tombs/person/hr
Pilot transect survey to examine site densities around LBA fortress

• 2.2 km² sample survey area

• 283 burials (~130 tombs/km²)
Tablet-Based Mobile GIS Approaches to Archaeological Data Collection in Armenia

Field results from pilot survey using iPads and ESRI’s Collector for ArcGIS app:

1) efficient
Tablet-Based Mobile GIS Approaches to Archaeological Data Collection in Armenia

Field results from pilot survey using iPads and ESRI’s Collector for ArcGIS app:

1) efficient
 a. aerial image base maps allow for “virtual survey” to examine suitable survey areas, and ground-truth potential sites
Tablet-Based Mobile GIS Approaches to Archaeological Data Collection in Armenia

Field results from pilot survey using iPads and ESRI’s Collector for ArcGIS app:

1) efficient
 a. aerial image base maps allow for “virtual survey” to examine suitable survey areas, and ground-truth potential sites
 b. rapid data collection in online or offline mode
Tablet-Based Mobile GIS Approaches to Archaeological Data Collection in Armenia

Field results from pilot survey using iPads and ESRI’s Collector for ArcGIS app:

1) efficient
 a. aerial image base maps allow for “virtual survey” to examine suitable survey areas, and ground-truth potential sites
 b. rapid data collection in online or offline mode
 c. real-time data upload avoids redundancy and human error in syncing/data transfer
Tablet-Based Mobile GIS Approaches to Archaeological Data Collection in Armenia

Field results from pilot survey using iPads and ESRI’s Collector for ArcGIS app:

1) efficient
 a. aerial image base maps allow for “virtual survey” to examine suitable survey areas, and ground-truth potential sites
 b. rapid data collection in online or offline mode
 c. real-time data upload avoids redundancy and human error in syncing/data transfer
 i. lets me detect and correct errors in the field
Tablet-Based Mobile GIS Approaches to Archaeological Data Collection in Armenia

Field results from pilot survey using iPads and ESRI’s Collector for ArcGIS app:

1) efficient
 a. aerial image base maps allow for “virtual survey” to examine suitable survey areas, and ground-truth potential sites
 b. rapid data collection in online or offline mode
 c. real-time data upload avoids redundancy and human error in syncing/data transfer
 i. lets me detect and correct errors in the field
 d. can record transects to test sampling strategy
Field results from pilot survey using iPads and ESRI’s Collector for ArcGIS app:

2) collaborative
Field results from pilot survey using iPads and ESRI’s Collector for ArcGIS app:

2) collaborative
 a. can create ‘groups’ of users among collaborators across institutions (w/ESRI license)
Tablet-Based Mobile GIS Approaches to Archaeological Data Collection in Armenia

Field results from pilot survey using iPads and ESRI’s Collector for ArcGIS app:

2) collaborative
 a. can create ‘groups’ of users among collaborators across institutions (w/ESRI license)
 b. field consultation w/ off-site team members
Tablet-Based Mobile GIS Approaches to Archaeological Data Collection in Armenia

Field results from pilot survey using iPads and ESRI’s Collector for ArcGIS app:

2) collaborative
 a. can create ‘groups’ of users among collaborators across institutions (w/ESRI license)
 b. field consultation w/ off-site team members
 c. iOS and Android compatible
Tablet-Based Mobile GIS Approaches to Archaeological Data Collection in Armenia

Field results from pilot survey using iPads and ESRI’s Collector for ArcGIS app:

3) affordable
Tablet-Based Mobile GIS Approaches to Archaeological Data Collection in Armenia

Field results from pilot survey using iPads and ESRI’s Collector for ArcGIS app:

3) affordable
 a. tablets inexpensive enough to equip each team member
Field results from pilot survey using iPads and ESRI’s Collector for ArcGIS app:

3) affordable
 a. tablets inexpensive enough to equip each team member
 b. SIM cards are cheap
Field results from pilot survey using iPads and ESRI’s Collector for ArcGIS app:

3) affordable
 a. tablets inexpensive enough to equip each team member
 b. SIM cards are cheap
 c. Collector app is free
Thank You

Nicole Kong, GIS specialist, Purdue Libraries
Larry Biehl, ITaP

Funding sources:
Purdue Office of the Executive VP for Research and Partnerships
- Non-Laboratory Research and Equipment Program (2014)
- Transdisciplinary and Interdisciplinary Research Program (2014)
- Enhancing Research in the Humanities and Arts Grant Program (2015)