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A Stochastic Overbooking Model for Outpatient
Clinical Scheduling with No-shows

Kumar Muthuraman, Mark Lawley
School of Industrial Engineering, Purdue University, West Lafayotte, 1IN 47906
kumar@purdue.edu, malawley@purdue.edu

In this paper we formulate a stochastic overbooking model and develop an appointment scheduling policy for
outpatient clinics. The schedule is constructed for a single service period partitioned into time slots of equal
length. A clinic scheduler assigns patients to slots through a sequential patient call-in process where the
scheduler must provide each calling patient with an appointment time before the patient’s call terminates.
Once an appointiment is added to the schedule, it cannot be changed. Each calling patient has a nc-show
probability, and overbooking is used to compensate for patient no-shows. The scheduling objective captures
patient waiting time, staff overtime, and patient revenue. We derive conditions under which the objective
evolution js unimodal and we investigate the belavior of the scheduling policy under a variety of conditions

and make some practical observations on its performance.
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1. Introduction

Healthcare currently consumes 15% of the U.S. Gross Domestic Product and is expected to reach
19% within the coming decade [16]. These costs are due to factors such as new advances in expen-
sive treatment technologies and pharmaceuticals, unfavorable trends in population demographics
such as aging, obesity, and chronic disease, and legal expenses resulting from medical errors and
malpractice. Faced with this environment of increasing costs, limited capacity, and burgeoning
demand, many hospitals are emphasizing shorter lengths of stay and are shifting care from inpa-
tient to outpatient facilities. This in turn is forcing outpatient clinical facilities to re-assess their
operations and capacities, with the dual objectives of stabilizing revenue streams and improving
healtheare access,

Access to outpatient facilities is controlled through appointment scheduling. In traditional
appointment scheduling, a patient seeking an appointment calls the clinic and is immediately
booked for a future appointment time. When the clinic is working close to capacity, the near term
schedule tends to be fully utilized and appointment slots might not be available for many weeks
or months. This long lead time is usually unacceptable for il patients, who must either g0 with-

out care or seek expensive emergency services. Further, when the appointed time does arrive, the
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patient’s needs could have changed significantly; the patient could have recovered, moved, forgot,
or died; leading to the problem of patient no-show. In some clinics, up to 42% of scheduled patients
fail to show up for pre-booked appointments [32]. This behavior wastes clinic resources, decreases
the quality of care, escalates costs, and impacts accessibility. Many factors have been cited as
indicators of patient no-show including patient demographics and medical conditions, physician
characteristics, and patient-physician interactions [14].

Because of these problems and trends, many outpatient clinics are experimenting with open
access scheduling, where patients get an appointment time within a day or two of when they call
(see [17, 24, 30, 31] for representative discussions). In essence, there is no long-term pre-booking,
clinics book only for a very short time horizon. The hope is that this short horizon will help
more patients see their physician when they have a need, not at some distant time in the future,
Operationally, as in any forecasting situation, short term no-show predictions are more reliable, and
hence, under open access, can play a more influential role in optimizing clinical patient scheduling.
But, as a close reading of the appointment scheduling literature shows, appointment scheduling
methods do not fully integrate or exploit patient no-show models. This is unfortunate since patient
no-show modeling is an active area of research with many fruitful results (please see (2,13, 18]).

Overbooking is an important strategy for improving patient access and stabilizing revenue when
there is a significant chance that some scheduled patients will not show up. Overbooking has been
used in the airline industry for many years where the objective is to book passenger reservations to
maximize flight revenue. Typically, the airline booking problem consists of a single-leg scheduled
flight with a fixed cost, capacity limits and fares on different class seats, and & low marginal cost
of carrying additional passengers. Reservation requests for each of the classes arrive according to a
random process for some period of time prior to takeoff. Passengers with reservations may cancel or
no-show, in which case some type of refund, possibly not full, is given. Because empty seats at flight
time represent lost revenue, overbooking may occur. If overbooked passengers are denied boarding,
the airline incurs a bumping penalty. Rothstein [36] provides an engaging review of the evolution of
airline overbooking as an acceptable practice, while McGill [28] provides an informative literature
review. Other representative research in airline overbooking includes (8, 9, 10, 15, 23, 33, 37).

Unfortunately, clinical bocking has little in common with the airline problem. Although both
have significant no-show probabilities, clinical booking has a stochastic service element resulting
in critical patient waiting time and staff overtime features absent in the airline problem. Moreover,
the decision in airline booking is binary, that is, the agent either reserves or refuses to accommodate

the booking request of a potential passenger. In clinical scheduling, apart from the binary decision,
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the scheduler must search for an optimal appointment time. Further, while airlines incur an explicit
financial penalty for overshow situations, system dynamics are not affected. However, overshows
in clinics not only result in excessive worklcad, but also substantially change system dynamics,
resulting in longer patient waiting times. Thus, in this paper, we develop an overbooking process
that accommodates the detailed requirements and dynamics of the clinical scheduling environment
and leverages on no-show patient prediction.

In this work, clinical scheduling and overbooking are essentially problems of assigning appoint-
ment seeking patients to time slots. An operational or service period {called a “day”, typically 4 or 8
hours}, is divided into time periods (called “slots”, typically 15, 20, or 30 minutes). When a patient
calls for an appointment (typically before the service period begins), the appointment scheduler
uses an estimate of the patient’s no-show probability (obtained from the patient’s attributes and
the ciinic’s no-show model) to choose an appointment slot, which is communicated to the patient
before the call ends. During the service period, two types of patients enter any given slot, those that
were unserviced in the previous slot and those who arrive for the current slot. A random nmumber
of waiting patients are serviced in each slot and the remaining overflow into the next siot. Since
patients usually request consultation with a particular physician, we can treat each physician’s
schedule independently, and thus we can assume a single server.

The objectives are to minimize patient wait times, maximize resource utilization, and minimize
the number of patients waiting at the end of the day. Patients waiting at the end of the day cannot
be dismissed and have to be served during overtime. Because of no-shows, the clinic capacity will
usually be under utilized without some overbooking. But, overbooking incurs the risk of overloading
the clinie if too many patients show-up. Excess patient arrivals directly increase patient wait times
and the number of patient overflows at the end of the day. Thus, an optimal policy must balance
the risks of patient waiting, stafl' overtime, and clinic under-utilization. Clearly, this balance is
affected by the weights applied to each of the risks. A reasonable approach is to maximize a profit
objective where attending patients provide a reward and costs are associated with patient waiting
and physician/staff overtime. This is a multi-objective optimization problem with associated costs
and rewards serving as weighting coefficients. It will provide the right balance between utilization,
waiting time, and overtime if the coefficients are properly chosen. While staff/physician related costs
and patient revenues can be explicitly estimated, the cost of patient waiting needs to be estimated
based on local clinic conditions and patient demographics. For example, if waiting facilities are

limited and patients tend to have companions, then the waiting costs could be set relatively high.
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The contributions of this research are as follows. First, it formulates a model of the call-in
scheduling problem and develops a myopic, sequential policy for scheduling call-ins (Section 3}.
Next, it presents and proves the necessary and sufficient conditions for the objective evolution
to be unimodal {Section 4). By unimodal, we mean that the objective is non-decreasing up to a
particular cail-in patient and then is monotone decreasing thereafter, which guarantees an optimal
stopping criterion. That is, once we encounter a decrease in the expected profit obiective, we know
that continuing to schedule patients will only result in further decreases. This implies that the costs
associated with patient waiting times are outweighing the marginal revenues generated, and it is
time to terminate the scheduling process for the given service period. Thus, even though our policy
is myopic, its ability to generate this unimodal objective evolution is very important. Finally, by
using an exhaustive set of numerical examples, the paper develops several insights into the practical
characteristics of the policy (Section 5). In particular, we investigate the effect of cost coefficients
on slot assignments and objective values and provide a tentative, experimental characterization of

how much we lose due to the myopic and sequential nature of our method.

2. Literature Review
In 2003, Cayiril and Veral [6] provided an extensive review of the appointment scheduling literature,
covering eighty papers that span fifty years. They categorize the appointment scheduling literature
by the following attributes: (a) static vs. dynamic; (b) performance measures; {c) system design;
and {d) methodology. They also provide a good discussion of future research directions. In the
following, we will briefly discuss (a)-{d) and then categorize our own work with respect to these
attributes. For a detailed discussion and listing of papers, we refer the reader to Cayiril and Veral [6].
The first classification attribute is static vs. dynamic appointment scheduling. In the static case,
all decisions about appointment times are made prior to the start of a session, whereas in the
dynamic case, appointment times can be adjusted as the system state evolves. The dynamic case
is most applicable in situations where patients are alveady admitted to a hospital and scheduling is
being done for some hospital laboratory operation. It has limited application to cutpatient settings
since, in outpatient scheduling, the schedule for a session tends to be completed before the session
begins. Thus, most of the lterature focuses on the static case, which typically involves a given
set of N punctual patients with independent and identically distributed service times, who are
to be scheduled for a single session (day) with a single physician (single server). Complications
to the static problem include environmental factors such as physician lateness and interruntions:

non-punctual, emergency, walk-in, and no-show patients; and multi-stage check-in, service, and
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check-out procedures, all of which are either addressed or at least discussed to some degree in the
literature. A representative set of recent static papers includes (3, 4, 5, 12, 20, 26, 34].

Performance measures dictate how a given schedule is to be evaluated. These are categorized as
time, congestion, or “fairness” based. Time based measures typically have some weighted function
of patient waiting time, physician idle time, and staff overtime. Congestion based measures capture
features such as queue length, utilization of waiting room resources, and so forth, where it is impor-
tant to consider the presence of patient companions. Fairness based measures try to distribute
patient waiting time evenly over the day (in many systems, average waiting time increases through-
out the session period so that patients scheduled later in the day experience greater expected
waiting). For a detailed review of performance and objective functions, the reader is referred to [29].

The design of an appointment scheduling system is typically specified by three parameters,
the “block”, the number of patients arriving at the beginning of an appointment period, the
“initial block”, the number of patients arrviving for the initial appointment, and the *interval”,
the length of the appointment interval which is either fixed or variable. Typical designs inciude
the Individual-block/Fixed-interval in which one patient is scheduled to arrive at the beginning of
each appointment interval and each interval is of the same length; another design is the Multiple-
block/Fixed-interval, and so forth. Also, the appointment system can be designed to make use
of various types of patient classification systems, which tend to classify patients so that hetter
estimations of service times can be attained and adjustments can be made for wallk-ins, no-shows,
and urgent and emergency patients. For detailed system design studies in complex environments,
the reader is referred to {7, 19, 20, 25, 27, 35].

Finally, there are two broad classes of methodology: analytical studies and simulation. Ana-
lytical papers use queuing theory, math programming, and dynamic programming and tend to
focus on the basic appointment scheduling problem with limited consideration of patient-based
environmental factors such as no-shows and walk-ins. The simulation studies focus on compar-
ing detailed appointment scheduling systems in complex environments. Representative analytical
papers include [3, 4, 5, 12, 34], while simulation studies include 11, 7,19, 20, 21, 25, 35]. Further, [22]
provides a review of simulation studies in health care clinics up to 1999,

Our work can be classified as static, since we do no adjust future scheduled appointment times
as patients arvive. However, we note that our problem differs significantly from the typical static
problem since we do not assume the complete set of patients to be scheduled is known when
scheduling decisions are being made. Rather, our approach builds the schedule sequentially through

a call-in process where we assume that each patient must be given an appointment before their call
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terminates. Further, our patients are classified according to no-show probability that affects how
the schedule is built and how many patients are eventually scheduled. Thus, our problem: has many
dynamic features not found in the typical static problem. Our performance measure is based on a
weighted combination of patient waiting time, physician overtime costs, and revenes generated for
each patient served. We note that physician idle time is not explicitly captured since we consider
the scheduling of a physician for a clinic session to be largely a fixed cost. With respect to system
design, our work can be classified as Multiple-block/Fixed interval where the block size can be
variable due to overbooking. Finally, our work is based on probabilistic modeling and is therefore
analytical,

We close this section by quoting Cayiril and Veral [6], who say “No rigorous research exists which
investigates possible approaches to adjusting the AS in order to minimize the disruptive effects of

no-shows, walk-ins, and/or emergencies”. We view our research as helping to fill this gap.

3. The Clinical Booking Model and Scheduling Policy

Let the period of interest (typically a day} be divided into 7 intervals each called a “slot”. Each
slot =1,2,....1 is of length A¢,, We assume that patients needing an appointment call in to
the scheduler before the beginning of slot 1. These “call-ins” can be scheduled to one of the I
slots or rejected, that is, not assigned to any slot, Patients scheduled for each slot have a no-show
probability and arrive independently of other patients. Arriving patients jeoin a queue and if they
are not serviced in their scheduled slot, they overflow to the next slot. We assume that service
times are exponentially distributed.

At some point during the call-in period, suppose n patients have been scheduled. Let the random
variable X7 denote the number of patients arriving for slot ¢ and ¥, be the number of patients
waiting for the completion of service at the end of slot 4. That is, the number of patients overflowing
from slot i into slot 1+ 1 (see Figure 1). Note that Y™ includes the patient that is in service at the
end of slot 4. Because service times are exponential, the number of service completions in a slot ¢ s
the minimum of a Poisson random variable and the number of patients in the slot. If L; is Poisson

with mean, AAt;, then the overflow from slot 7 is given as,

Y = max(¥", + X" — L. 0). (1)
Here, L; can be interpreted as the number of services that would have been con:pleted provided the
queue does not empty, while min{L,, ¥* | + X) represents the actual number of services completed.

We assume that each scheduled patient has an estimated no-show probability. This probability

can be estimated based on patient attributes and the historical data for the patient or for the group
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of patients with similar attributes, We will categorize the set of patients into J groups depending
on their attributes. A patient belonging to group 7 has a probability p; > 0 of showing up and a

probability 1 —p; of not showing up.

min(L,, X, + ¥, )

|

!
|
-1 A
|

— j+1 ven —» |
Y

X,

!

Figure 1  The System

The state of the next day’s schedule after n calling-ins is represented by the matrix §* e R™Y,
whose z, 7% element 57, denotes the number of patients of type § scheduled for slot 4. The total
number of scheduled patients in slot ¢ will be represented by NP = >_; Sl When the context is
clear in the sequel we often suppress the superscript {as in Figure 1). We also define the following
matrices for further analysis. An assignment matrix A% is of size I x J with a 1 at the 4, 7™ position
and zeros elsewhere. The function Q{.) takes as argumens the state matrix S and gives the arrival
probability matriz, Q(S). The i,m' clement of Q(S) denotes the prohability of m patients arriving
in slot ¢ given the current state S. For notational convenience we also take the matrix Q"= Q5.

The function R{') will represent the over-flow probability matriz, that is, the i, k** element of R(S)
represents the probability of & patients over flowing from slot 1. Similarly as in Q®, R" = R(S").

TR -~
Obviously, @*, R" € R where N" = max, N['. By definition, given S,

i = Pr{X}'=m)} (2)

i

R = Pr{Y" =k}, (3)

Suppose the n'* patient calls for an appointment and is of type 7. Letting IV be the set of slots
(that is, integers from 1 to T}, our problem is to choose a slot ¢ € I for the patient so as to maximize
an objective. That is, at each call-in instance, we choose a decision that maximizes f(Q", R™), that

is, we assign patient n to slot i* where

¢ = argmax f(Q(S" ™ + AY) B(§" + AYY) and (4)
v

Sﬂ — Snfl +A1 i (5)

While 5™ will denote the state after an optimal assignment 7, that is =1 + A" , we will use

S to denote the state where the last assignment is to state i, which is not necessarily the best
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assignment, that is 87 = 8”77 4 A%, Similarly Q% and R are the arrival probability matrix and
the over-flow probability matrix associated with S,

We take r as the reward for each patient served and let ¢; represent the cost or penalty we charge
ourselves for making a patient over flow from slot i to slot i+ 1. This provides sufficient Hexibility
to model the cost of physician and staff overtime by assigning an appropriate over flow cost to the
end of the consulting period (assuming that a physician will see all patients before leaving for the
day). Hence our objective will be

JQR) =13 > mQim~ Z@Zkﬁim

= I ET‘ Z X?n Z C;‘_Y;;n} (6)
=l fesl

3.1. Calculating Q™ and R*

Consider the i row of a given S*. We are interested in the probability that rn patients arrive
given 57, 87%,,..., S7;. Let IT be the set of all non-negative, integer J-vectors 7 = {(mi,ma, ., my)
such that Z;.L] m; =m and m; < 5% for all 7. Then conditioning on the event that m; number of

type j patients show up,

Wi = Pr{X} =m}
= ZPr{Xﬂ = (T, m )} Pr{{m, . w0}

well
:ZPI{(%...@)}
meil
I i (1 =), (7)
; ; |(S 7..)[ i) 7

Next consider [}, that is, the probability of k patients over-flowing inte slot 4+ 1 from siot 1,
R, = Pr{Y; =)
= Primax(X; +Y,.; - L, 0) = k)

Pr{X,+Y, - L=k} k>0

PI‘{X%'-{“K_N‘} """ Li §0} kﬁO
Further conditioning yields,

10 - Zzpr{m+‘l‘ <L1}Qz mR:I 1. A
= ZZ(M@(M%))@“,,R:* e (9)
T I
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and similarly for &> 0,
Ry=) % Prim+k-k=L)QI B,
= iihi (m+k - k)QL, RY | ¢ (10}
moE

where Fy (m) = Pr{L; <m} and fi,(m)=Pr{L; =m} are directly obtained from the distribution

of service times. Since our service times are taken to he exponentially distributed with mean 3,

fr.(m) = e"’\’—“-z{%:;)jf -
mo1
Fy, (m) = Z fr, (). .

It is possible to relax the exponential service time distribution and replace it with general service
times. All our calculations above would remain absolutely the same. However relaxing the exponen-
tial distribution in our analysis implicitly brings in an approximation. The memory-less property
of the exponential distribution helps us ignore the amount of time the person in service at the
beginning of a slot has already spent in service. Hence, under a general distribution this ignorance
would be an approximation whose quality depends on the service time distribution used. Moreover
observed data suggests exponential service time distributions {11]. For these reasons we detail our
analysis and results for the exponential service times and simply note that this can be relaxed under
the same analysis but that would implicitly mean an approximation, Alternatively, the restriction
can be eliminated by including another state variable that records the amount of time the patient
in service has spent in service and conditioning all our expectations on this variable. This extension
might be algebraically tedious depending on the service time distribution assumed.

Equations {7),(9) and (10) enable the calculation of @™ and R* for a given S”. For efficient real
time application we would obvicusly like to caleulate Q(S"~' + A%) and R(S"!+A¥) when Q7
and RE*~! are known. That is, given §7~1, A% Q"1 R™! we are interested in calculating Q7 and
1. When the addition to the schedule is at the i** slot, the arrival probabilities for the other slots
are not altered. Hence Q7 = Q:’;f for all i # 4 and for all m. The arrival probabilities for the it*
slot, @7, can be calculated by conditioning on the arrival probabilities of type 7.

Qitl—p) + (@) Dpy when m > 1 and

2,71 i1

o = (13)
Qi (1-py) when m = 0,

The above equation establishes a recurrence relation that can be used efliciently, not only for the
incremental calculation but also for the direct calculation of Q" given S". For the incremental
calculation of the overflow probability matrix B™, note that Ry = R?;l for all ¢ < ¢ and for all k

and the calculation of RE for i > 1 is best achieved using equations (9) and (10).
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3.2, The Scheduling Policy
The scheduling policy is described below as an algorithm. Note that it enumerates all possible
assignments for the current patient and selects the assignment that maximizes the objective func-
tion. It is sequential in the sense that it assigns patients as they call and myopic in the sense
that it does not consider future arrivals when making the assignment. In section 5, we investigate
the effects of these features on solution quality. Further, the algorithm will reject the patient and
terminate when there is no way to schedule the patient without hurting the objective.
L Set S;;=0foralli=1,... JTandj=1,...,J
Qip=Ro=1foralli=1,...,], and n=1.
2. Wait for n'® call.
3. n™ call occurs and is of type ;.
4, Foreachie U
(a) Set SP =5""1 4 AY,
(b) Compute QF and R} from @"~! and B*~! using equations (7),(9) and (10).
(¢) Compute f7 = f(QF, RM).
5. If max fI* > f=—!
(a) Then i* =argmax f, §" =81+ A™, Q7= Qn, R" = R%. Set n=n+ 1. Goto Step 2.
(b) Else Stop.

4. Objective Formulation and Characterization

This section establishes that our sequential booking policy is unimodal. By unimodal, we mean that
the objective is non-decreasing until a particular call-in patient n and then is monotone decreasing
after. Thus, if the best assignment for the current call-in patient results in an ob jective decrease,
then all subsequent assignments will lead to additional decreases in the objective. This provides a
natural stopping criterion. Theorem 1 and Corollary 1, establish the unimodality of the expected
profit. Further Proposition 2 establishes that » < € is both a necessary and sufficient condition
for n being finite. Propositions 3 and 4 establish the sufficient and necessary conditions for n being
greater than 0, respectively.

First we define some notation. The event A, denotes that the nt* call-in patient actually shows
up for the assigned slot. P will denote the conditional probability that the assignment of the
n* patient increases the overflow from slot 4 by 1 conditioned on the event A4,. Each patient
that shows up is identical from the system perspective. Hence rearranging their precedence in the

waiting queue would not affect any performance parameter. Therefore to facilitate our analysis,
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after service completions we will always process the patient who called-in the earliest amongst the

waiting patients.

Proposition 1 E[Y"] is non-decreasing in n. Moreover if the n'™ patient is of type 7, then B[V —

E[Y ! =p.Pr.

H

Proof: Say the n-patient is scheduled to slot 4,. If i, > ¢ then obviously, EY™ =E[Y*"']. On

the other hand if 4, <i, then we show that EY™ - Y1 > 0. Since for any realization, Y7* > ¥,
ElY" - Y = pBlY) - YA, > 0. (14)

Moreover the random variable ¥* — ¥*~! indicates the additional number of people showing up in
slot 7 due to the assignment of the n'* patient. The worst case behavior of the system can result

in ¥7" - ¥"' =1 and in the best case hehavior Y =¥ =0. Hence

EY Y = pEY] - VA
= Dy Z yPr{¥" - V" =yl A,
y=20,1

=p, Pr{¥" =¥ =14}
= p; I (15)

Theorem 1 If n is such that f(Q", R") < f(Q" ", R*) then for allm >n,
FQ R < F(@Qn ),

Proof: Since f(Q", R"} < f(Q*1, R*1),

B {?‘ZX? - Zc,_-}’f} <B {T'ZX:L” - Zciw-l] . (16)
d=1 i=1 fa] i=1

Rearranging to have rewards on the LHS and costs on the RIIS,
I !
7E {Z(X:* - X:M)J <E {Z(cm" - cz-sc-”-l)} (17)
i=1 =1
The expectation on the LHS simply denotes the probability of the n** patient showing up and is

hence p;. Hence, we can write,

I
Sy - YMJ

i=1

I
< p; ZciP[‘ (from Proposition 1). (18)
i=1
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Herce,
I
P> el (19)
ga=]

Now denote the slot to which the n-patient was assigned to be i,. The only way that the assignment
of patient n to slot 7, can result in one more patient overflowing from slot ¢, is when in each slot,

from 4, to 4, the number of patients serviced is less than the number in the walting queue. Hence,

T, Prils < XP+¥2 JA,) if 4, <i

?'-“:'\':n
PZ'H‘ = (20)
0 otherwise
Now since the assignment of slot 4, to the n*® patient is made by equation (4), we have due to the

fact that the chosen slot yielded the best objective,

HQRY) > f(QL,RL) (21)

T h

= fQ" T+ AW Ry ARy Vi e[, 0]
Subtracting (@', R*"!) from both sides,
J@ B - f(Q" 1 R > FQL RE )~ f(Q R ) Via€[l,.... 1.

Substituting for f(-,-}, and simplifying using Proposition 1 and equation (20),

I i I i
@T—mE:qI]Pqu<X§+z:p%}2%r—m§:qI]PﬁLr<X$+gzw&g Vige[l,..., 1.
=1 17:'1'11 i=1 "_:liﬂ

That is,

I H I g
e [ PriLs < xp+ve 4.} < S [[Prili< X2 +Y2 A Vinely,.. . (22)
=1

=iy

i=1 =g
i=in #

Now consider /" for m >n and say the m* patient is assigned to siot 4,,. Since m > n, we have

for any realization, X7* > X and ¥;™ > Y, therefore,

T
I i
> > e [] Prile < XP+¥" 1A}
de=] %mim

I i
> Zci H Pr{L; < X{+ V" |A.} { from equation (22) )

=1 Feip

I
=2 P | (23)
i=1
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From equation (19),
i i
T < Z e Pl < L P (24)
i=1 =1
Say patient m is of type 7, then multiplying by both sides by p;,
I
TPy < p; Z e P {25)
i=1

Which implies as earlier,

!
rE {Z(X;" - X

i=1 fuml

!
<E {Z Gy - Y)} (26)

or equivalently,

f(Q?n) R?n) < f(cgﬂ’i‘fl: R?)?-—})' (2?)

Corollary 1 If m is such that f(Q",R") > f(Q™* R*7') then for all m <n, f(Q™ R™) >
f(Qm-—l’Rm——l).

Proof: Follows directly from Theorem 1.
Proposition 2 There exists an n such that f{Q™, R*) < fF{Q™ 1, R* %) if and only if r < ;.

Proof:
I
QN = 1@V R = pylr = Y ) (28)

hence we need to show that there exists a n such that » < z:r_l ce PP if and only if r < ¢;.

First say that there exists an n such that r < Z;.I:lc{P;" then for all m > n from Theorem 1,
r < Ef_l ¢ 5" Let the assignment of the m® patient be to slot 4,,. Then m — oo, P — 1 for
12 4y and P =0 for ¢ < 4,,. Hence from the minimization in equation (4), for very large m, i,, = 1.

Which implies,

Now if r < ¢;, say there does not exist an n such that r < ZL 1 ¢ This implies that,

T
r > lim ZciP,,-”

Tpes OO
i)

o (30)

a contradiction. Hence we have that a necessary and sufficient condition for the existence of a n

such that f(Q", R") — f(Q"" LR Y <0is r <.
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Proposition 3 A sufficient condition for f(Q',R') > fIQYR® is given by r >

F AL (i .
Doy, G M) g gh) g

T=in

Proof: Obviously f(@Q° R%) =0, since we have no scheduled patients. Hence we are interested
in establishing the necessary and sufficient conditions for f(Q' R!) > 0. First we show that if
> Emf" e MU=t for all 4, then f(QY, RN >0

If the first arriving patient is of type 7,

i
f(Ql: Rl) = pj(T ZC-;PM)

! i
= ps | 7 - min e [ Pr{l; <« X} + Vi1 |A,
JF 7 i1

i=1 i=ip

I i
o fr= o [ Pr{ls < X!+ ¥ 4} Vie=1,...,I. (31)
gz=2]

'1:“‘31.:'1
Since only one patient exists in the system entering in slot 4,,, the patient overflows out of slot ¢ only
when zero patients are served in each slot from 7, to 4. Hence the above probability corresponds

£o serving zero patients in each slot from 4, to 4,
I
f(Ql,Rl) > pj(?,_ _ ZC;‘B_)‘AM“%"‘H))

fuz]

>0 (32)

Proposition 4 The necessary condition for f(Q',RY) > f(Q" R%) is given by » >

Ming, 3 s (e Ml 1)

Proof: Next we show that if f(Q', R') >0 then r >min,, Y. ¢;e=224l=ia+1) Proceeding sim-

ilarly as in above we have,
I
FQYRY) = py(r - Zcz‘pl,i)

I
=p; | 7—min Zci H Pr{L; < X} +¥! |4}
izl i:?‘n

>0 (33}

Hence

i

I
r>min gy e [T Pr{l < XD+ Y2 |4}

" i=1 3
I

o l'l'lin Z ci(j—x\.ﬁli(iﬂ —i41) (34)

n

iin

=l
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5. Results and Insights

This section will discuss some insights into various aspects of our scheduling policy. Using examples,
we will illustrate the objective evolution as the call-in period progresses, chserve the resulting
slot assignments, and compare these with a policy that does not consider no-show probabiiities
or overflows. We will also examine the effect of overflow cost coefficients on slot assignments and
expected profits, and we will investigate the “sequence” effect by generating schedules for the same
set of patient call-ins, sequenced in many different ways.

In all the examples considered in this section we set the number of slots to eight, that is J = 8,
with Af; == 30 minutes and A == 3. There will be three classes of patients, that is, J = 3 with no show
probabilities for each type given by p = (0.25,0.5,0.75). While the overflow cost for the last slot (er)
is higher than the overflow costs during the day, the overflow costs during the day will be identical.
Hence, in the sequel, we will always consider cases with ¢; > ¢; when 7 < I and take ¢; to be a
constant for ali ¢ =1,...,7 - 1. For notational convenience, ¢; will denote ¢; for all 1 = i,...,01—1.
‘The reward per patient processed will be r = 100. The sequence of patient types for the examples

are generated by sampling the J types uniformly.

5.1. Ilustrating the scheduling mechanism

Figure 2 illustrates the evolution of our profit objective for an example with ¢ == 40 and ¢; = 200.
Note that the sequence of patient call-ins is given along the abscissa. The left ordinate represents
the expected profit of a current schedule and the right ordinate represents the slot. For each patient
(on the abscissa}, we can read the slot assignment from the right ordinate and the expected profit
associated with the current schedule from the left. For example, the first patient is assigned siot 1
with a corresponding profit value of 24.48, the second to slot 4 with profit 48.95, and so forth. Two
profit curves are displayed. The solid gives the profit associated with the schedule constructed by
our booking policy while the dashed gives the profit of a schedule constructed by a round robin
approach that assigns the * customer to slot ((i —1) mod 8)+1. This round robin approach,
being simple and easy to implement, is often roughiy foillowed by practitioners. The right ordinate
also gives the final assignment of patients to slots at optimal assignment. For example, slot 1
has (2,2,2) indicating that there are two patients of each type assigned to the slot. Figures 3
and 4 provide additional information on the evolution of expected overflow. The expectation of
Yy provides expected nurmber of patients that need to be served at overtime costs and > ElYi]/n
indicates the waiting time per patient in terms of the expected number of slots each patient is

expected to overflow. Again, the solid lnes represent the overflow associated with the schedule
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constructed by our booking policy, while the dashed presents the overflow of the round robin

approach. Note that these curves terminate at the optimal assignment, 34.

There are several points that we want to address. First, note that the profit curve of our approach

exhibits a unique local maximum, as we established in the last section. In general this is not true,

which complicates the selection of a stopping criterion. For example, the round robin approach

exhibits local maxima at patients 28 and 34, and thus it would be not clear how many patients
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need to be scheduled to get the maximum profit. Further, our global maximum occurs at patient
34 with a profit of $1298.50, while the round robin approach yields a maximum profit of $1007.70
with 28 patients scheduled (approx. 30% difference). From Figure 3, we see that the overflow from
period eight is significantly higher for the round robin approach, while the average overflow from
the other slots (Figure 4) is approximasely the same for the two approaches. This reflects the fact
that our booking policy responds to the more severe overtime cost, while the round robin approach

does not.

Average % pationts pssgned

Figure 5 Percentage assignments per siot

1t is also interesting to examine the sequence of slot assignments. Our approach assigned patiens
1 to slot 1, patient 2 to slot 4, patient 3 to siot 6, and so forth. Ernumerating further, we have the
slot assignment sequence 14624371463625. . ., and we see that, in this case, consecutively assigned
slots tend to be at least two slots apart. This results from the policy’s attempt to reduce overflow
between slots and is a function of the overflow costs and service rates. Further, we see that the
number of patients assigned in the optimal schedule to slots 1-8 is 65453632, respectively. Note that
the last two slots have significantly fewer assignments than the others, and that the first has the
maximum assignment (along with slot 6). On average, for the cost structure of this example (¢;=40,
¢;=200, and r=100), our approach tends to load the first slot more heavily, the intermediate slots
uniformiy at a lower level, and the last slot at the lowest level, as illustrated in Figure 5. Note
that Figure 5 gives the average percent of patients assigned to each slot for our example (based on
25,000 call-in sequences). On average, about 18% of patients go to the first slot, 12 to 13% go 1o
each intermediate slot, and around 7% go to the last slot. Of course these percentages are highly

dependent on the cost structure, an issue we will address in the next subsection.
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Finally, in Figure 2, we continued assigning patients after reaching optimal to see how the cost
curve and assignment process behaves, In practice, this represents the case where the scheduler is
forced to keep accepting patients heyond the global optimal. After the global optimal is attained,
the profit curve declines rapidly, indicating that overtime and waiting costs for additional patients
increasingly outweigh additional revenues. During this period of decline, over half of the fifteen
additional patients go to the last three slots, with six going to the last slot. This indicates that
these patients will almost certainly cause additional overfiow in all subsequent slots, and thus the

least expensive assignment will be to the last slot.

5.2. Sensitivity to Cost Coefficients

The previous subsectior illustrates the case for ¢; =40, ¢; = 200 with the reward r = 100. Under
such a cost structure, fewer assignments are made towards the end of the day and the percentage of
assignments to slots 2-7 is roughly uniform. We next want to investigate how these slot assignments
are affected by changes in the cost coefficients. To see this, we generated 5000 call-in sequernces
and used owr policy to schedule these for various cost coefficients. F igure 6 plots the percentage
assignment to each slot with ¢y = 100, v = 100, and varying ¢;, while Figure 7 plots the percentage
of assignment to each slot with ¢; =40, » = 100, and varying ¢;. We see that assignments to slots
2-7 tend to be much less sensitive to the cost coefficients, while assignments to all slots are more
sensitive to changes in ¢; than to changes in ¢;. With increasing ¢;, as one would expect, there is a
significant decrease in numbers assigned to slot 8, with most of the decrease in siot 8 going to slot

i, and the rest being evenly assigned to slots 2-7.

Parcentage of patients assigned
Percentage of patients assigned

Figure 6 Percentage assighments per slot for var- Figure 7 Percentage assignments per slot for var-

ious ¢; (averaged over 5000 sequences) ious c; (averaged over 5000 sequences)
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Figures 8 and 9 plot the expected profits with increase in the cost coefficients, While the dotted
line plots the average expected profit over the 5000 sequences, the solid lines plot the 10* and the
90" percentiles. In this case, unlike in F igures 6 and 7, the sensitivity to ¢; is greater than the
sensitivity to ¢;. This is understandable, since increasing ¢; by say a dollar would make the scheduler
less inclined towards slot 8, at which point patients not assigned to slot 8 can be distributed across
seven other slots. On the other hand, when ¢; is increased by a dollar, the scheduler becomes less
inclined towards assignment to slots 1 — 7, at which point patients not assigned to slots 1~ 7 have
to go to & Notice that these expected cost curves are convex and will go to zero as the costs
go to infinity. This is because when there is an infinite cost for overflow and a fnite reward, the
optimal decision is o schedule none. Figures 10 and 11 plot the three components of the expected
profit equation. These show that the decrease in expected profit is the result of a large decrease in

revennes as well as a smaller decrease in the cost.

5.3. Effect of Call-in Sequence on Schedule Profit
In this section, we experimentally examine the effect of the call-in sequence of a set of patients on
the optimal schedule generated by our booking policy. Our procedure s as follows:

1. Randomly generate a set of N patients.

A

. Randomly select M sequences of the N patients.

3. For each of the M sequences, use the booking policy to generate a schedule.

4. Develop the frequency distribution of schedule profits for the M schedules.

Figure 12 illustrates this distribution for our previous example with ¢; = 40, ¢y =200, r = 160 for

25,000 sequences of 48 patients. The maximum observed profit is §1,310, the average is $1,290, and

200
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the minimum is $1,275. Thus, we estimate that, in the worst case, the sequence effect costs us $35 or
around 2.6%, and in the average case, $20 or around 1.5%. Further, the histogram is very symmetric
and has a normal appearance, and thus can be used to make approximate probability statements
about daily profit, which provides some predictive capability for the clinic. For example, assuming
normality, sufficient demand, and estimating u at $1,290 and ¢ at 5.52, we can be approximately
95% confident, that the clinic’s daily profit will fall between $1,279 and $1,301.

Since our policy is myopic, a relevant question is how well it compares to an optimal policy.
Since an optimal call-in policy has not been characterized, we cannot provide rigorous comparisons
but provide some discussion. First, consider the case where the call-in sequence is perfectly known.
Then the problem is very close to the traditional static probiem of optimally scheduling N patients
(see section 2), but extended to include no-show probabilities. In such a case, the optimal mix
of patient no-show probabilities is achieved for each slot in order to attain the maximum profit,
say P, for that set of patients. Clearly, P is an upper bound for our myopic policy, which cannot
achieve a better mix of no-show probabilities since it is constrained by the call-in sequence. Now
the essential question is whether there exists a call-in sequence for the N patients for which myopic
policy achieves P. If so, then the myopic policy can only achieve P when presented with the right
sequence. In this case, the low sensitivity of expected profit to the sequence of arrivals (Figure 12)
indicates that our myopic policy provides solutions within a few percent of P. It is also true that,
for the given set of N patients, an optimal sequential policy that uses distributional knowledge of

the call-in sequence cannot achieve a profit exceeding P. Since P is an upper-bound for both the
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mycpic and the optimal sequential policy, the myopic policy also provides solutions within a few

percent of the optimal sequential.

6. Conclusion
In this work, we formulated an overbooking mode! and presented a myopic scheduling policy for
outpatient clinics that explicitly leverages on patient no-show probability estimases. We developed
an objective function that captures patient waiting time, staff over- time, and patient revenue, and
we derived the necessary and sufficient conditions for the expected profit evolution to be unimodal.
The local maxima can then conveniently serve as a natural stopping criterion for the scheduling
policy. Further, we examined the behavior of the policy with respect to slot loading, changes in cost
coefficients and call-in sequence effects. We believe that the work provides a significant contribution
to the research literature on appointment scheduling and that it is easily implemented in practice,
The model formulated in this paper is readily extendable in many ways, often easily. First, the
number of patient types need not be finite, we could assume that each patient has a different
no-show probability. We take a finite set of patient types only for the convenience in presentation.
Second, walk-ins can be easily added to the model. Only the estimate of Q7 would change depend-
ing on the model describing the walk-ins. And finally, the restriction of exponential service time

can be eliminated by including another state variable that records the amount of time the patient
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being serviced has spent in servicing and conditioning all our expectations on this variable. This
extension might be algebraically tedious depending on the service time distribution assumed. QOur
future work will include some of these extensions and focus on characterizing non-myopic optimal

policies and implementing the approach with our clinical partners.

7. Acknowledgments

We thank Purdue’s Regenstrief Center for Healthcare Engineering for supporting this work. We
also thank the physicians, administrators, and staff of the Indiana University Medical Group and
Wishard Primary Care Clinic of Indianapolis, Indiana for the their interactions, comments, and

feedback.

References
(1} M. Babes and G. V. Sarma. Out-patient queues at the Ibn-Rochd health centre. The Journal
of the Operational Research Society, 42(10):845-855, 1991.
[2] A.G. Bean and J. Talaga. Predicting appointment breaking. Journal of Health Care Marketing,
15(1):29-34, 1995,
[3] P. M. Vanden Bosch and D. C. Dietz. Minimizing expected waiting in a medical appointment
system. [IE Transactions, 32(9):841-848, 2000.
[4] P. M. Vanden Bosch and D. C. Dietz. Schecduling and sequencing arrivals to an appointment
system. Journal of Service Research, 4(1):15-25, 2001.
[5] P. M. Vanden Bosch, D. C. Dietz, and J. R. Simeoni. Scheduling customer arrivals to a
stochastic service system. Nawal Research Logistics, 46(5):549-559, 1999.
[6] T. Cayirli and E. Veral. Outpatient scheduling in health care: a review of literature. Production
and Operations Management, 12{4):519-549, 2003.
[7} T. Cayirli, E. Veral, and H. Rosen. Designing appointment scheduling systems for ambulatory
care services. Health Care Management Science, $:47-58, 2008.
[8] R. Chatwin. Multiperiod airline overbooking with a single fare class. Operations Research,
46(6):805-819, 1998,
[9] R. Chatwin. Continuous-time airline overbooking with time-dependent fares and refunds.
Transportation Science, 33:182-191, 1999.
(10} J. Coughlan. Airline overbooking in the multi-class case. The Jowrnal of the Operational
Research Society, 50(11):1098-1103, 1999,
[11] P-C. DeLaurentis, R. Kopach, M. Lawley, K. Muthuraman, L. Ozsen, X. Qu, R. Rardin, and
H. Wan. A configurable framework for open access scheduling with continuous improvement

in outpatient clinics. Working paper, 2006.



Muthuraman and Lawley: Overbooking Model fer Qutpatient Clinical Scheduling 23

[12]

(13]

[14]

(18]

B. Denton and D. Gupta. A sequential bounding approach for optimal appointment scheduling.
HE Transactions, 35(11):1003-1016, 2003.

J. V. Dervin, D.L. Stone, and C. H. Beck. The no-show patient in the model family practice
unit. Journal of Family Praciice, 7(6):1177--1180, 1978.

R. A. Deyo and T. S. Tnui. Dropouts and broken appointments. Medical Care, 18{11):1146-
1157, 1980.

Y. Feng and B. Xiao. A dynamic airline seat inventory control model and its optimal policy.
Operations Research, 49(6):938-949, 2001.

Centers for Medicare and Office of the Actuary Medicaid Services. National health care
expenditures projections: 2005-2015.

Samuel N. Forjuoh, William M. Averitt, Don B. Cauthen, Glen R. Couchman, Barbalee Symm,
and Mike Mitchell. Open-access appointment scheduling in family practice: Comparison of
4 demand prediction grid with actual appointments. Jowrnal - American Board of Family
Practice, 14{4):259-265, 2001.

L. Goldman, R. Freidin, E. I. Cock, J. Eigner, and P. Grich. A multivariate approach to
the prediction of no-show behavior in a primary care center. Archives of Internal Medicine,
142(3):563-567, 1982.

P.R. Harper and H, M. Gamlin. Reduced outpatient waiting times with improved appointment
scheduling: A simulation modelling approach. OR Spectrum, 25:207-222, 2003.

C. Ho and H. Lau. Minimizing total cost in scheduling outpasient appointments. A anagement
Science, 38(12):1750-1764, 1992.

C. Ho, H. Lau, and J. Li. Introducing variable-interval appointment scheduling rules in service
systems. [nternational Journal of Operations & Production Management, 15(6):59-68, 1995.
J. B. Jun, S. H. Jacobson, and J. R. Swisher. Application of discrete-event simulation in
health care clinics: a survey. The Journal of the Operational Research Society, 50(2):109-123,
1998,

I Karaesmen and G. Van Ryzin. Overbooking with substitutable inventory classes. Operations
Research, 52(1):83-104, 2004,

J. G. Kennedy and J. T. Hsu. Implementation of an open access scheduling system in a
residency training program. Family Medicine, 35(9):666-670, 2003.

K. J. Klassen and T. R. Rolleder. Outpatient appointment scheduling with urgent clients in
a dynamic multi-period environment. International Journal of Service Industry Management,

15(2):167-186, 2004.



24

Muthuraman and Lawley: OQuerbooking Model for Oulpatient Clinical Scheduling

[26]

27]

H. Lau and A. H. Lau. A fast procedure for computing the total system cost of an appointment
schedule for medical and kindred facilities. IIE Transactions, 32(9):833-839, 2000.

L. Liu and X. Liu. Block appointment systems for outpatient clinics with multiple doctors.
Journal of the Operational Research Society, 29(12):1254-1259, 1998.

J. McGlll and G. Van Ryzin. Revenue management: research overview and prospects. Trens-
portation Science, 33(2):233-256, 1999.

8. V. Mondschein and G. Y. Weintraub. Appointment policies in service operations: A critical
analysis of the economic framework. Production and Operations Management, 12(2):266--286,
2008.

M. Murray, T. Bodenheimer, and D. Rittenhouse. Improving timely access to primary care.
The Journal of the American Medical Association, 280:1042-1046, 2003.

C. D. O'Hare and J. Corlett. The outcomes of open-access scheduling. Family Practice
Management, Feb:35-38, 2004.

Proctor P. Reid, W. Dale Compton, Jerome H. Grossman, and Gary Fanjiang, editors. Building
a Better Delivery System: A New Engineering/Health Care Parinership. National Academies
Press, 2005. |

L. Robinson. Optimal and approximate control policies for airline booking with sequential
nonmonotonic fare classes. Operations Research, 43(2):252-263, 1995.

L. W. Robinson and R. R. Chen. Scheduling doctors’ appointments: optimal and empirically-
based heuristic policies. IIE Transactions, 35(3):295-307, 2003.

T. R. Robleder and K. J. Klassen. Rolling horizon appointment scheduling: A simulation
study. Health Care Management Science, 5(3):201-209, 2002.

M. Rothstein. OR and the overbooking problem. Operations Research, 33(2):237-248, 1985.
J. Subramanian, S. Stidham, and C. Lautenbacjer. Airline yield management with overbook-

ing, cancellations, and no-shows. Transportation Science, 33(2):147-167, 1999.



	Purdue University
	Purdue e-Pubs
	2-22-2007

	Stochastic Overbooking Model for Outpatient Clinical Scheduling with No-shows
	Mark Lawley
	Kumar Muthuraman


