The Use of a Four-Microphone Standing Wave Tube to Estimate the Anisotropic Properties of Fibrous Noise Control Materials

J Stuart Bolton
Purdue University, bolton@purdue.edu

Taewook Yoo

Jonathan H. Alexander
3M Corp.

Follow this and additional works at: http://docs.lib.purdue.edu/herrick
The use of a four-microphone standing wave tube to estimate the anisotropic properties of fibrous noise control materials

Taewook Yoo
J. Stuart Bolton
Jonathan H. Alexander
Overall Approach

1. Measuring TL and absorption coefficient in square tube

2. Estimating material properties (COMET/Trim)
 - Flow resistivity, Characteristic lengths, tortuosity, porosity, bulk density, Young’s modulus, Poisson’s ratio, loss factor

3. Predicting performance using FEM (COMET/SAFE)
 - Partially filled cases
Introduction & Objectives

• Fibrous material
 – Blown in certain direction: Thus are anisotropic
 – Level of anisotropy depends on density of fiber, fiber’s material and physical dimensions

• Anisotropy
 – Performance differs with respect to wave direction with respect to fiber orientation
 – When is the performance better?
 – Estimation of material properties in different fiber orientations
 – Prediction of performance with the estimated properties
Material Properties I

- Nine properties represent a material

1. Flow resistivity
 - Pressure drop from low velocity flow in material
 - One of the most sensitive properties to performance

2. Viscous characteristic length
 - Depth of viscous boundary layer
 - Sensitive properties
 - Range: 1×10^{-5}~9.99×10^{-4} m

3. Thermal characteristic length
 - Depth of thermal boundary layer
 - Sensitive properties
 - Range: 1×10^{-5}~9.99×10^{-4} m
Material properties II

4. Tortuosity
 – Complexity in structure (usually 1.1 for fibrous material)

5. Porosity
 – Ratio of open to closed volume in bulk material
 – Usually 0.99 for fibrous material

6. Bulk density
 – Weight per unit volume

7. Young’s modulus
 – Axial stiffness of bulk material (usually less than 20 kPa for fibrous media)

8. Poisson’s ratio
 – Ratio of change in dimension in two different directions

9. Loss factor
 – Energy dissipation in solid material
Materials

<table>
<thead>
<tr>
<th></th>
<th>THL</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness [cm]</td>
<td>3.7</td>
<td>4</td>
</tr>
<tr>
<td>Mass per unit area [g/m²]</td>
<td>156</td>
<td>376</td>
</tr>
<tr>
<td>Material</td>
<td>Polyester</td>
<td>Polypropylene + Polyester</td>
</tr>
<tr>
<td>Fiber size</td>
<td>Normal</td>
<td>Fine</td>
</tr>
</tbody>
</table>
Measurements of TL – square or round

1. Measuring sound pressure:

\[P_1 = (A e^{-jkx_1} + B e^{jkx_1}) e^{j\omega t} \]
\[P_2 = (A e^{-jkx_2} + B e^{jkx_2}) e^{j\omega t} \]

2. Calculate complex amplitude of waves:

\[A = \frac{j(P_1 e^{jkx_1} - P_2 e^{jkx_1})}{2 \sin k(x_1 - x_2)} \]
\[B = \frac{j(P_2 e^{-jkx_1} - P_1 e^{-jkx_1})}{2 \sin k(x_1 - x_2)} \]
\[C = \frac{j(P_1 e^{jkx_3} - P_2 e^{jkx_3})}{2 \sin k(x_3 - x_4)} \]
\[D = \frac{j(P_2 e^{-jkx_3} - P_1 e^{-jkx_3})}{2 \sin k(x_3 - x_4)} \]

3. Estimate transfer matrix elements:

\[T_{11} = \frac{P_{|x=d}^{P} |V|_{x=d} + P_{|x=0}^{P} |V|_{x=0}}{P_{|x=d}^{P} |V|_{x=d} + P_{|x=0}^{P} |V|_{x=0}} \]
\[T_{12} = \frac{P_{|x=d}^{P} |V|_{x=d} - P_{|x=0}^{P} |V|_{x=0}}{P_{|x=d}^{P} |V|_{x=d} + P_{|x=0}^{P} |V|_{x=0}} \]
\[T_{21} = \frac{V_{|x=d}^{P} |V|_{x=d} - V_{|x=0}^{P} |V|_{x=0}}{P_{|x=d}^{P} |V|_{x=d} + P_{|x=0}^{P} |V|_{x=0}} \]
\[T_{22} = \frac{P_{|x=d}^{P} |V|_{x=d} + P_{|x=0}^{P} |V|_{x=0}}{P_{|x=d}^{P} |V|_{x=d} + P_{|x=0}^{P} |V|_{x=0}} \]

4. Obtain Transmission loss:

\[TL = 20 \log_{10} \left(\frac{1}{|T|} \right) \]

Where,

\[T = \frac{2 e^{jkd}}{T_{11} + (T_{12} / \rho_0 c) + \rho_0 c T_{21} + T_{22}} \]

* Measurements are averaged over 10 sets of samples
TL’s in Two Orientations

• Averaged over ten measurements
 • Normal: using 4 layers
 • Parallel: samples were cut to have same weight as normal cases

THL: Not much difference
TC: Large difference
Measurement of Absorption coefficient

1. Sound pressures

\[P_1 = \left(A e^{-jkx_1} + B e^{jkx_1} \right) e^{j\omega t} \]
\[P_2 = \left(A e^{-jkx_2} + B e^{jkx_2} \right) e^{j\omega t} \]

2. Measuring transfer function

\[H_{21} = \frac{A e^{-jkx_2} + B e^{jkx_2}}{A e^{-jkx_1} + B e^{jkx_1}} \]
\[H_{21} = \frac{e^{-jkx_2} + \text{Re} e^{jkx_2}}{e^{-jkx_1} + \text{Re} e^{jkx_1}} \]

3. Solve for R

4. Absorption coefficient

\[\alpha = 1 - |R|^2 \]

* Measurements are averaged over 10 sets of samples
Absorptions in Two Orientations

- Averaged over ten measurements
- Normal: using 4 layers
- Parallel: samples were cut to have same weight as normal cases

\[\alpha_n \text{ of 4 layers of THL in square tube} \]

\[\alpha_n \text{ of 4 layers of TC in square tube} \]
Estimation of TC Properties

Using inverse characterization in COMET/Trim

<table>
<thead>
<tr>
<th>Material</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber direction</td>
<td>Normal</td>
</tr>
<tr>
<td>Thickness [mm]</td>
<td>40</td>
</tr>
<tr>
<td>Porosity</td>
<td>0.99</td>
</tr>
<tr>
<td>Flow resistivity [Rayls/m]</td>
<td>5500</td>
</tr>
<tr>
<td>Tortuosity</td>
<td>1.1</td>
</tr>
<tr>
<td>Viscous characteristic length [m]</td>
<td>7.90E-05</td>
</tr>
<tr>
<td>Thermal characteristic length [m]</td>
<td>1.52E-04</td>
</tr>
<tr>
<td>Bulk density [kg/m³]</td>
<td>9.4</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>Loss factor</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Estimation of THL Properties

Using inverse characterization in COMET/Trim

<table>
<thead>
<tr>
<th>Material</th>
<th>THL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber direction</td>
<td>Normal</td>
</tr>
<tr>
<td>Thickness [mm]</td>
<td>37</td>
</tr>
<tr>
<td>Porosity</td>
<td>0.99</td>
</tr>
<tr>
<td>Flow resistivity [Rayls/m]</td>
<td>2300</td>
</tr>
<tr>
<td>Tortuosity</td>
<td>1.1</td>
</tr>
<tr>
<td>Viscous characteristic length [m]</td>
<td>3.00E-04</td>
</tr>
<tr>
<td>Thermal characteristic length [m]</td>
<td>8.29E-04</td>
</tr>
<tr>
<td>Bulk density [kg/m3]</td>
<td>4.16</td>
</tr>
<tr>
<td>Young's modulus [Pa]</td>
<td>3000</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>Loss factor</td>
<td>0.3</td>
</tr>
</tbody>
</table>

![Graph 1](image1.png)

![Graph 2](image2.png)
Finite Element Method

- Dimensions are same as experiment setup

\[\frac{\lambda}{4} = \frac{c}{4 \cdot f} = \frac{340}{4 \cdot 2700} = 0.0315 \quad > 0.01 \]
Partially Filled Cases

- Using single layer of TC and THL

1. Traveling in empty space
2. Traveling inside the material
 - Wave moves in z and y directions
 - Anisotropy affects the results
Test and FEM results

Good agreement between test and prediction with both materials
- THL shows a small difference with different fiber orientations
- TC shows large difference with different fiber orientations
Variation in Lining Thickness

As the sample fills the duct, TL increases.

The prediction and test show good agreement.
Conclusions

• There were large differences in performance and in estimated material properties
 – When the fiber orientation was normal to the wave direction, higher flow resistivity. Thus higher transmission loss and absorption were found
 – Depending on fiber orientation, TC material has much larger difference in performance than THL because of finer fiber size and scrims

• Homogeneous model predicts anisotropic materials when proper material properties are used
 – Material properties were successfully estimated
 – Performances in partially filled tube were accurately predicted using finite element model