Journal of Human Performance in Extreme Environments

Volume 7 | Issue 2 Article 13

Published online: 10-1-2003

Mitigating the Negative Effects of Stress in Space
Flight: ATransactional Approach

Haydee M. Cuevas
University of Central Florida

Recommended Citation

Cuevas, Haydee M. (2012) "Mitigating the Negative Effects of Stress in Space Flight: ATransactional Approach,” Journal of Human
Performance in Extreme Environments: Vol. 7: Iss. 2, Article 13.
Available at: http://docslib.purdue.edu/jhpee/vol7/iss2/13

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.


http://docs.lib.purdue.edu/jhpee
http://docs.lib.purdue.edu/jhpee/vol7
http://docs.lib.purdue.edu/jhpee/vol7/iss2
http://docs.lib.purdue.edu/jhpee/vol7/iss2/13

Mitigating the Negative Effects
of Stress in Space Flight:
A Transactional Approach

Haydee M. Cuevas, (University of Central Florida, Orlando, Florida

The primary goal of this theoretical paper is to highlight how a transactional approach to investi-
gating stressor effects during space flight can lead to a greater understanding of the complex pro-
cesses by which humans adapt psychologically and physically to the adverse conditions
encountered in this extreme environment. Transactional approaches conceptualize stress as occur-
ring in the nature of the “transaction” (i.e., interaction) between the individual and the stimulus
environment, emphasizing the role of cognitive appraisal (i.e., perceived ability to cope with the
situation). Interventions that positively influence this cognitive appraisal process may, therefore,
lessen the experience of stress and optimize human performance in space. This paper begins with
a theoretical overview of the transactional model, followed by a brief review of several major envi-
ronmental, physiological, and psychological stress-provoking factors encountered during space
flight. The final section discusses interventions, within the context of cognitive appraisal, for selec-
tion, training, in-flight support, and design.

Introduction

Extreme environments are defined as “environments in which humans are not natu-
rally suited and which demand complex processes of psychological and physiological
adaptation” (Manzey & Lorenz, 1999, p. 8). Space flight is the prototypical example of
an extreme environment. During a space mission, humans are exposed to a plethora of
psychological, physiological, and environmental stressors (Suedfeld, 2001). Some of
these are common in other domains (e.g., fatigue, task load, time pressure). Others are
specific to that environment (e.g., microgravity, macrogravity, isolation). To optimize
human performance in such complex operational environments, such as space, it is
necessary to explore the underlying mechanisms by which these stressors may nega-
tively impact the human operator.

Toward this end, the primary dgoal of this theoretical paper is to highlight how adopt-
ing a transactional approach to investigating stress may identify potential interventions
to facilitate performance in these domains. This paper begins with a theoretical overview
of the transactional model. The following two sections, then, review several major envi-
ronmental, physiological, and psychological factors that may lead to stress during space
flight. Although the emphasis will be on domain-specific factors, stressors common to
most complex operational environments will also be discussed. The final section dis-
cusses interventions, within the context of cognitive appraisal, for selection, training, in-
flight support, and design.

Transactional Model

Approaches to investigating stress have traditionally revolved around three funda-
mental components: the individual, the environment, and the interaction between the
two (Salas, Driskell, & Hughes, 1996). Stress has been viewed in terms of the external
environmental stimuli (e.g., noise, motion) that cause the individual to experience stress
(stimulus-based approach) or in terms of the internal physiological and psychological
reactions (e.g., increased heart rate, anxiety) that an individual experiences in response
to a stressor (response-based approach). Though both these views have significance in
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terms of cause and effect, they do not address the critical
issue of why two individuals will respond differently to the
same situation or why the same individual will respond to
a situation one way on a given day and then respond dif-
ferently to the same situation on a different day (Wickens,
Gordon, & Liu, 1999).

To address this issue, relationship-based or transac-
tional approaches conceptualize stress as occurring in the
nature of the “transaction” (i.e., the interaction) between
the individual and the stimulus environment (Salas et al.,
1996; Stokes & Kite, 1994). Perhaps the most often cited
research on the transactional approach to understanding
stress is the work of Lazarus and Folkman (1984). They
defined psychological stress as “a particular relationship
between the person and the environment that is appraised
by the person as taxing or exceeding his or her resources
and endangering his or her well-being” (p. 19).

Thus, Lazarus and Folkman’s (1984) definition of
stress emphasizes the role of cognitive appraisal in the
individual’s response to a potentially stress-provoking sit-
uation. Stress occurs when one perceives an event as
threatening and/or perceives one’s ability to cope with
the threat (i.e., resources available) as insufficient. Note
that it is the individual’s perception that leads to the
experience of stress (Baum, Singer, & Baum, 1981).
Therefore, this model views stress, not in terms of an
external set of causes or an internal set of symptoms, but
rather in terms of the psychological variables that influ-
ence the individual’s reaction in a given situation. The
focus is on the subjective nature of stress and the mental
processes that mediate one’s response (Stokes & Kite,
1994).

Adopting such an approach to investigating stressor
effects has significant implications for performance in
extreme environments. Interventions that positively
influence one’s cognitive appraisal of the situation may
improve performance by reducing the level of uncer-
tainty in one’s ability to cope with the stressor, and
thus, mitigate its potentially negative effect. The next
section briefly reviews several key stressors encoun-
tered in space flight, summarizing both the physiologi-
cal and psychological effects they may have on the
human operator. Interventions that may facilitate adap-
tation to these adverse conditions will then be dis-
cussed in the final section.

Physiological and Environmental Stressors
in Space Flight
Microgravity

The most obvious environmental stressor that humans
experience in space flight is microgravity or weightless-
ness (Manzey & Lorenz, 1999). This change in the force
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of gravity may produce space sickness (similar to nor-
mal motion sickness), with symptoms including vomit-
ing, nausea, dizziness, and sweating (Connors, Harrison,
& Akins, 1985; Griffin, 1997). As it takes between 2 to 4
days for astronauts to eventually adapt to these condi-
tions, scheduling of tasks may need to accommodate this
adaptation period (Albery & Woolford, 1997).

Physiological changes due to long exposure to micro-
gravity include a significant decrease in muscular strength
(Albery & Woolford, 1997; Jackson & Newman, 2000).
Countermeasures are necessary to minimize the physio-
logical stress imposed by the resulting decreased work
capacity. Another change is a shift of the body fluids to the
upper parts of the body, which may have adverse effects
on cardiovascular system functioning (Manzey & Lorenz,
1999). Further, in space, the body adopts a neutral body
posture, akin to a fetal position (Albery & Woolford, 1997).
This change considerably affects the design of equipment
used at workstations and, therefore, training is necessary
to work under these unusual posture conditions.

Microgravity may also affect other task-related function-
ing, such as information processing (via effects on vision,
vestibular changes, and proprioceptive processes),
although these effects are less well documented (Manzey &
Lorenz, 1999). Perceptual-motor tasks (e.g., tracking per-
formance) and tasks.that place comparatively high
demands on attentional processes (e.g., dualtask perfor-
mance) have also been shown to be susceptible to micro-
gravity-related changes, particularly during early
adaptation to the microgravity environment (Manzey,
2000).

Macrogravity

During launch or landing, astronauts are also exposed
to conditions of macrogravity, or sustained acceleration
of gravitational forces greater than one (G > 1) (Albery &
Woolford, 1997). Physiological effects under sustained
acceleration can be severe, the most common of which is
a decrease of blood flow to the brain (O’Hare & Roscoe,
1990). This can result in grayout, blackout, or G-induced
loss of consciousness (GLOC) (Howard, 1965). Confu-
sion and disorientation usually occur when recovering
from these episodes. Protective devices and techniques
have been developed to minimize these effects (e.g.,
Eiken, Kolegard, Lindborg, Mekjavic, & Linder, 2003;
Perez, Charles, Fortner, Hurst, & Meck, 2003).

In terms of psychological effects, macrogravity has
been shown to negatively affect the human visual system,
resulting in increased reaction times in visual discrimina-
tion, increased errors in instrument readings, and
decreases in contrast and color sensitivity (Albery &
Woolford, 1997; Howard, 1965; Whitton, 1992). Memory
and central processing impairment include increased
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errors in memory tasks and increased subjective ratings
of workload.

Motor functioning is also affected, as shown by
increases in tracking errors (Albery & Woolford, 1997;
Howard, 1965). Clear impairments in single-task tracking
and dual-task performance have been demonstrated and
explained as resulting from disturbances in psychomotor
processes and higher attentional processes produced by
the space environment (Manzey, Lorenz, Schiewe, Finell,
& Thiele, 1995). Further, high levels of sustained accelera-
tion, such as those encountered in space flight, have also
been shown to produce somatogravic and oculogravic
illusions that result in misperceptions and spatial disorien-
tation, which in turn may lead to a rapid deterioration in
performance and accidents, often fatal (USAF, 1995; Whi-
teside, 1965; Whitton, 1992).

Noise and Ambient Stressors

In additional to gravity, other environmental factors
such as noise, thermal temperature, and air quality also
place stress upon the human operator in space. Noise lev-
els onboard the space shuttle, arising from equipment or
others, can disrupt communications, decrease working
memory capacity, interfere with sleep, and generally
cause a feeling of annoyance (e.g., Albery & Woolford,
1997; Gomes, Martinho Pimenta, & Castelo Branco,
1999). Such stressor effects may disrupt the operator’s
concentration, hindering performance on critical cogni-
tive tasks. Other noise-induced stressor effects include
hearing loss, headaches, and fatigue (Crocker, 1997;
Jones, 1983).

Hypoxia (i.e., lack of oxygen) and thermal stress (i.e.,
excessive heat or cold) are additional ambient factors that
represent potential threats in extreme environments
(Bensel & Santee, 1997; Ramsey, 1983). Although space
transport vehicles offer astronauts a controlled atmo-
sphere, breakdowns in air conductance may affect air
quality (e.g., oxygen levels) and breakdowns in thermal
regulation may adversely affect the climate for these oper-
ators (e.d., the extreme cold experienced by the Apollo 13
mission). Such unfavorable conditions have been associ-
ated with performance degradation and health problems
(Ramsey, 1983; Wickens et al., 1999).

Circadian Rhythm Disruptions

Other stressors unique to the space environment
include changes in the natural dark-light cycle, which
affect the individual’s circadian rhythm (or internal clock)
(Albery & Woolford, 1997; Connors et al., 1985). Normal
sleep patterns are disrupted, resulting in a decrease in
sleep quality and quantity (Connors et al., 1985). This is
an issue of significant concern as sleep loss has been
found to adversely affect task performance (Wickens et
al., 1999). Another related factor is altered work-rest
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schedules, that is, how rest breaks are incorporated into
the work schedule (Connors et al., 1985; Holland, 2000).
Inadequate work-rest schedules, when combined with
sleep loss, have also been shown to result in degraded
performance (e.g., Connors et al., 1985; Smith, Totterdell,
& Folkard, 1995).

Fatigue

Fatigue is another factor that must be considered in the
space environment. Space missions are often of long
duration. Studies have shown that fatigue produces decre-
ments in motivation, subjective reports of psychological
stress, performance degradation on monotonous tasks,
and skill deterioration (Connors et al., 1985; Holding,
1983; Wickens et al., 1999). Fatigue can result as much
from task overload during a critical mission phase as
from monotony and boredom during a vigilance task,
both common situations in space flight (Manzey &
Lorenz, 1999).

Psychological Stressors in Space Flight

Social Stressors

Due to the tremendous cost and planning involved,
most space missions are planned for long duration, any-
where from several weeks to six months or longer. Conse-
quently, astronauts may experience psychological stress
arising from extended isolation from their family and
friends. For example, crewmembers may feel that they
are ‘losing touch’ with what is happening back home on
Earth, and as a result, may become withdrawn or experi-
ence episodes of depression (Manzey & Lorenz, 1999;
Suedfeld, 2001). . :

The space habitat also presents psychological or social
stress in terms of the lack of privacy and restricted or
forced interpersonal contact (Manzey & Lorenz, 1999;
Suedfeld, 2001). When two or more people must share an
environment, they must coordinate their individual needs
for resources, interpersonal interaction, and the physical
space occupied (Epstein, 1983). Thus, crowding stress
stems from the drain on attention caused by the presence
of others, the potential problem in coordination of con-
flicting goals, and the scarcity of available resources (e.g.,
limited personal space) (Epstein, 1983).

These factors are compounded by the intercultural is-
sues associated with multi-national crews (Kraft, Lyons, &
Binder, 2003; Kring, 2001; Lozano & Wong, 2000). The
cultural and language differences inherent in such hetero-
geneous crews may impede the development of group co-
hesiveness and trust as well as a shared understanding of
member roles and the mission’s goals (e.g., Gushin,
Pustynnikova, & Smirnova, 2001).

Stress outcomes arising from social stressors run the
gamut from physiological (e.g., increases in skin conduc-
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tance level) and behavioral (e.g., lowered task perfor-
mance) to social (e.g., lower tolerance for frustration and
aggressiveness) and emotional (e.g., more negative
mood and discomfort reported) (Epstein, 1983; Manzey
& Lorenz, 1999). In sum, such psychological stressors
may affect the mental and emotional well being of the
crewmembers as well as their interpersonal relationships
(Epstein, 1983; Kraft et al., 2003; Manzey & Lorenz,
1999).

Task Characteristics and Decision Making

Common to all complex, high-risk, high-demand
domains are the presence of threat, time pressure, a
degree of uncertainty, and the criticality of effective task
performance (Salas et al., 1996; Suedfeld, 2001). During
space flight, factors such as time pressure or threat may
induce a strategic shift to simplify information process-
ing, that is, prompt a sense of urgency in taking some
action, resulting in a speed-accuracy tradeoff (Kring,
2001; Wickens, 2000). In other words, critical decisions
may be made quickly at the expense of accuracy. Yet, the
consequences of such errors are often times immediate
and catastrophic and potentially fatal. There is little mar-
gin for error in space. As such, astronauts are under con-
siderable psychological as well as physical stress due the
precarious nature of the environment in which they oper-
ate (Holland, 2000; Suedfeld, 2001).

Further, under stressful conditions, operators may
experience a loss in working memory capacity (though
long-term memory is less affected), leaving them less
able to perform the complex, attention-demanding men-
tal processes required for expert decision making (Bad-
deley, 2000; Wickens, 2000). Poor performance under
these conditions may also often be the result of percep-
tual and/or attentional narrowing leading to cognitive
tunneling (i.e., the tendency to focus attention on only
one explanation of the situation) (Baddeley, 2000). Since
attention is restricted to a limited number of central cues,
cognitive tunneling may result in poor decision making
when faced with a stressful situation (Baddeley, 2000;
Klein, 1996; Stokes & Kite, 1994; Wickens, 2000).
Mitigating the Effects of Stress

As made evident in the previous discussion, extreme
environments such as space present human operators
with a multitude of demanding conditions to which they
must adapt, both psychologically and physiologically. As
indicated by the transactional model, mitigating the nega-
tive effects of stress in space flight entails first achieving a
better understanding of the human operator’s cognitive
appraisal of the situation in order to predict and/or
explain how he or she will react. Once we discern the psy-
chological processes underlying the stress response,
interventions can then be introduced to reduce the level
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of uncertainty in the operator’s perceived ability to cope
with the event. Simply stated, the goal is to minimize the
individual’'s perceived experience of stress. Ideally, this
would improve performance, resulting in fewer errors and
greater overall job satisfaction.

Two forms of interventions can be undertaken, focused
either on fitting the individual to the task (e.g., personnel
selection, training) or fitting the task to the individual (e.g.,
in-flight support, design) (Welford, 1973). However, what is
central to any intervention is that it positively influences the
cognitive appraisal process. Perhaps the single most
salient mediator to accomplish this objective is enhancing
the level of control the individual perceives that he or she
has over the situation (Cox & Ferguson, 1991). This final
section will, therefore, discuss interventions in the areas of
selection, training, in-flight support, and design, focused on
engendering a perception of control over one’s response to
these putative stressors. Although the focus is on facilitat-
ing performance in extreme environments such as space,
many of these techniques can also be employed in other
complex task domains.

Selection

In complex operational environments, several factors
(i.e., intervening variables) may influence an individual’s
cognitive appraisal of a potentially stressful or threatening
event, including task-relevant skill level and experience as
well as individual differences in personality characteristics
and coping strategies (see Table 1). Awareness of such
variables would be useful in personnel selection and train-
ing for certain high-risk occupations in an effort to fit the
individual to the task (Welford, 1973).

On the one hand, selection may involve identifying per-
sonnel that are both psychologically and physically able
to successfully sustain performance under the typical
stressor effects experienced in high risk operational envi-
ronments, such as space flight (Hogan & Lesser, 1996;
Holland, 2000; Suedfeld, 2001). For example, studies
have found that personnel who demonstrated high levels
of self-efficacy (i.e., the self-belief in one’s ability to achieve a
certain level of performance; Bandura, 1986) and hardiness
(characterized by commitment, perceived control, and a
positive attitude toward change) tend to exhibit a greater tol-
erance or resistance to the effects of stress (e.g., Allred &
Smith, 1989; Cox & Ferguson, 1991; Steptoe, 1991; Stokes
& Kite, 1994). Findings suggest that such personality vari-
ables may favorably influence one’s perceived level of con-
trol over a potentially stressful event, both in terms of the
degree of threat posed and in terms of one’s resources to
deal with the demands of the situation. Consequently, the
resulting positive outcome of the cognitive appraisal process
would be expected to mitigate the experience of stress and
favorably impact performance.
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Table 1: Individual Difference Factors Influencing the

Cognitive Appraisal Process

Greater Vulnerability

Relevant Citations

introversion

external locus of control

low tolerance of ambiguity

Type A behavior pattern

emotion-focused coping
strategies (e.g., denial, seek-
ing emotional support)

Strelau (1989)
Stokes & Kite (1994)

Strelau (1989)
Welford (1973))

Bowers et al. (1996)
Milgram (1991)
Stokes & Kite (1994)

Folkman et al. (1979)
Stokes & Kite (1994)

Baum et al. (1981)
Bowers et al. (1996)
Stokes & Kite (1994)

Carver et al. (1989)
Folkman et al. (1979)
Steptoe (1991)

Greater Tolerance

extraversion

internal locus of control

high self-efficacy

“hardy” behavior pattern

problem-focused coping
strategies (e.g., planning, in-
formation-seeking)

Strelau (1989)
Welford (1973)

Bowers et al. (1996)
Milgram (1991)
Stokes & Kite (1994)

Bandura (1986)
Bowers et al. (1996)
Steptoe (1991)

Alired & Smith (1989)

Cox & Ferguson (1991)

Steptoe (1991)
Stokes & Kite (1994)

Carver et al. (1989)
Folkman et al. (1979)
Picano (1990)
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On the other hand, selection may involve developing
specific training interventions for personnel that are found
to exhibit personality characteristics (e.g., high trait anxi-
ety, external locus of control) and coping strategies (e.g.,
emotion-focused) associated with a greater vulnerability
to stress (e.g., Bowers, Weaver, & Morgan, 1996; Carver,
Scheier, & Weintraub, 1989; Strelau, 1989). Such inter-
ventions would focus on helping these individuals develop
a more positive cognitive appraisal of their ability to cope
with the situation, thereby facilitating a greater level of
control over how they respond, leading to better perfor-
mance. Examples of these training strategies will be dis-
cussed in the next section.

Careful personnel selection may also be warranted to
minimize the effects of social stressors, such as crowding
and interpersonal differences. For crews assigned to long-
duration missions, in particular, it may be advisable to se-
lect crewmembers that are psychologically compatible
with each other (e.g., in terms of emotionality, motiva-
tion) to foster positive interpersonal relationships (Hol-
land, 2000; Kraft et al., 2003; Manzey & Lorenz, 1999).

Moreover, it is becoming critically important to under-
stand the influence of cultural differences on the interper-
sonal group dynamics evolving among members of multi-
national crews, and how these factors impact crew perfor-
mance (e.g., Gushin et al., 2001; Kraft, Inoue, Mizuno,
Ohshima, Murai, & Sekiguchi, 2002; Kraft et al., 2003;
Kring, 2001). For example, the crew assembly process
may need to consider not only technical expertise, but
also crew members’ past experience with and attitudes
toward personnel from differing cultural backgrounds
(Holland, 2000; Kraft et al., 2003; Kring, 2001).

Training

Training for performance in extreme environments
needs to be targeted at both the individual and team level.
As previously discussed, personnel who may possess
greater susceptibility to the negative effects of stress
would be candidates for individual-level interventions
aimed at fostering a more positive cognitive appraisal of
their ability to cope with a difficult situation. But, such
training interventions would be beneficial at the team level
as well, as part of crew members’ comprehensive prepa-
ration for a critical high-risk mission.

For example, stress reduction programs such as
Stress Exposure Training (SET) have been shown to
effectively mitigate the adverse effects of stress on per-
formance in high-demand, high-risk conditions
(Driskell & Johnston, 1998; Johnston & Cannon-Bow-
ers, 1996). SET follows the general stress inoculation
paradigm espoused by Meichenbaum and Cameron
(1983) involving a specific set of operations organized
around three phases: (1) education, where trainees are
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presented with relevant knowledge about typical reac-
tions to stressors (e.g., physiological, cognitive, behav-
ioral, emotional, etc); (2) skills training, where trainees
develop and practice effective stress coping skills with
extensive feedback; and, (3) application, where train-
ees are given the opportunity to apply their newly
acquired skills in simulated scenarios, exposing them
to the stressors that they would encounter in real world
situations (Driskell & Johnston, 1998; Johnston & Can-
non-Bowers, 1996).

By providing crew members with the knowledge, skills,
and abilities needed to perform under stressful situations,
such training may reduce the uncertainty and ambiguity
associated with complex task performance, and as such,
foster greater confidence and self-efficacy, leading to the
development of positive performance expectations (i.e.,
positive cognitive appraisal) (Driskell & Salas, 1991;
Johnston & Cannon-Bowers, 1996). This greater sense of
control and positive appraisal of one’s ability to cope with
the demands of the situation would be expected to pro-
mote more successful task performance under stress
(Driskell & Salas, 1991). For example, astronauts would
be more attuned to detecting any changes in their mood
prompted by social stressors, such as isolation from fam-
ily or the lack of privacy in the space habitat, and would,
therefore, by more likely to engage in positive activities to
counteract these negative effects (Manzey & Lorenz,
1999).

Training for performance in extreme environments
also needs to focus on team processes such as communi-
cation, coordination, decision making, and teamwork
(Manzey & Lorenz, 1999). Such team process training is
particularly critical to ensure the successful performance
of multi-national crews, in light of the potential conflicts
that may arise from intercultural differences in, for exam-
ple, communication and management styles (Kring,
2001). As such, proven teamwork training programs such
as Crew Resource Management (CRM) (Kanki, 1996)
need to be adapted for and evaluated within a broader
multicultural context (Kraft et al., 2003).

In-flight Support ‘

The previous discussion highlighted interventions
aimed at fitting the individual to the task, either via selec-
tion and/or training. Mitigating the negative effects of
stress can also be achieved by fitting the task to the in-
dividual, namely via in-flight support and/or design. In
this case, the task and/or task environment is modified to
remove the source of the problem (Welford, 1973).

In-flight support primarily involves interventions devel-
oped to maintain the psychological well being (e.g., moti-
vation and emotional stability) of crewmembers during
prolonged space flight (Manzey & Lorenz, 1999). To mini-
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mize the psychological stress arising from extended isola-
tion from their family and friends, astronauts are often
provided with: news and information from home to allow
crews to connect with familiar people and places; per-
sonal and private communications from family member
or friends; and, choice of music or video selections (Hol-
land, 2000; Manzey & Lorenz, 1999).

Further, studies have found that the extent to which
individuals are forced into contact and interdependence
upon one another determines the severity of the effects of
crowding stress (i.e., limited personal space) (Epstein,
1983; Welford, 1973). As such, to deal with the social
stress triggered by the lack of privacy and the restricted
or forced interpersonal contact inherent in space flight, it
is critical that astronauts perceive some level of control
over their ‘personal’ time and private space. These issues
can be addressed during the pre-mission planning phase
to ensure that adequate procedures are in place to handle
privacy issues and allow sufficient ‘down’ time for relax-
ation. Astronauts also need to have ready access to coun-
seling, before, during, and after missions, to ensure
successful coping.

Design

In-flight support can also take a more human factors
approach. The expertise offered by specialists in human
factors and environmental design is critical to ensure that
the crew’s physical environment is habitable and follows a
user-centered design (Holland, 2000). For example, to
counteract the effects of microgravity or weightlessness,
exercise equipment is often incorporated into the space
habitat for use during in-flight exercise regimens. Such
activities give astronauts some control over minimizing
the decrease in muscular strength associated with
extended exposure to microgravity environments (Albery
& Woolford, 1997; Connors et al., 1985).

Additionally, countermeasures for the effects of macro-
gravity would include the appropriate design of protective
equipment and techniques (e.g., G-suit, active straining
maneuver) that enable astronauts to maintain perfor-
mance during launch and descent (Albery & Woolford,
1997). Design considerations must also be given to mis-
sion documents regarding the scheduling of both wake-
sleep and work-rest cycles (Connors et al., 1985). Not
only would this help counteract the effects of sleep loss
and fatigue, but such planning would also mitigate the
effects of social stress by providing astronauts with much-
needed personal time (Holland, 2000; Manzey & Lorenz,
1999).

Finally, mission success is critically dependent upon
the sound ergonomic design of controls, displays, and
procedures that are compatible with the environmental
conditions in which the human must operate (Albery &
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Woolford, 1997; Connors et al., 1985; Wickens, 2000).
For example, the weightless nature of this work environ-
ment dictates the unique design of controls to allow astro-
nauts to successfully perform their task under such
unnatural conditions (Albery & Woolford, 1997). Also dur-
ing a stressful event, operators need displays designed to
provide salient, task-relevant information, without over-
loading their working memory capacity or diverting their
attention away from the task (Wickens, 2000).

And, as pointed out earlier, the success of missions in-
volving multi-national crews is critically dependent upon
the impact of cultural differences among crew members.
This factor is just as critical for the design of the technol-
ogy used during the mission as it is for understanding the
group dynamics involved in crew interactions (Kring,
2001). Special consideration must be given to how well
crew members with different cultural backgrounds are
able to understand and utilize technologies developed by
countries foreign to them. (Kring, 2001). Neglecting this
factor would result in a great deal of frustration, higher lev-
els of human error, and ultimately compromise mission
success.

Conclusion

The primary goal of this theoretical paper was to high-
light how the transactional model of the stress response
may provide insight as to humans are able to adapt, both
psychologically and physiologically, to environments in
which they are not naturally suited. As made evident
throughout this paper, the critical factor underlying this
complex process of adaptation is one’s cognitive ap-
praisal of a potentially stressful event, with regard to both
the level of threat posed and the resources one has avail-
able to deal with these demands.

Consequently, to positively influence this cognitive ap-
praisal process and foster favorable performance expecta-
tions in extreme environments, interventions need to ensure
that the individual perceives a strong sense of control over
the situation. This can be accomplished through personnel
selection, training, in-flight support, and design. Additionally,
this paper also highlighted the importance of considering the
impact of cultural factors on mission success.

In sum, enhancing human performance in the extreme
environments, such as space flight, necessitates a thor-
ough understanding of how stress emerges from the inter-
action between the individual and the stimulus
environment. Stress is not an isolated cause or effect. It is
not an end state, but rather a process, involving percep-
tion of the stressor, appraisal of the situation, coping re-
sponses, and outcomes (Lazarus, 1966). Many factors
can potentially impact each stage of this process and
may dramatically alter the course of the stress response.
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In conclusion, my goal with this paper was to demonstrate
how the transactional model can guide the development
of-interventions to mitigate the negative effects of stress in
space flight. | hope the ideas set forth here will inspire oth-
ers to explore further ways to achieve this goal.
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