Experimental Relationship Between Tire's Structural Wave Propagation and Sound Radiation

J Stuart Bolton
Purdue University, bolton@purdue.edu

Kwanwoo Hong

Kiho Yum
Hyundai Motor Company

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

http://docs.lib.purdue.edu/herrick/38

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Experimental relationship between tire’s structural wave propagation and sound radiation

Kiho Yum
Hyundai Motor Co

Kwanwoo Hong and J. Stuart Bolton
Ray W. Herrick Laboratories
Mechanical Engineering
Purdue university
Tire Noise

- Significance of Tire Noise

[SPL inside Passenger Cabin]

- Vibration Mode (Structure-borne)
- Cavity Noise

- Vibration
 - Structure-borne
 - Air-borne

- Pattern (Whine)
- Air Pumping (Sizzle)
- Horn Effect
Objectives and Contents

- Objectives
 - To identify structural wave propagation on tire surface and its sound radiation experimentally

- Contents
 - Structural vibration on tire surface
 - Experimental structural mobility distribution on tire surface
 - Structural wave propagation characteristics on tire surface
 - Sound radiation from a tire
 - Sound radiation measurement and calculation
 - Radiated sound power characteristics
 - Relationship between structural wave propagation characteristics and its sound radiation
Structural Vibration Measurement

- Structural vibration measurement on tire surface
 - Normal harmonic force was applied on the treadband center point of the slick tire (205/70R14 Tire).
 - Structural mobility was measured on whole tire surface. (except on wheel)
Structural Vibration Measurement

- Structural velocity (mobility) distribution

![Diagram showing velocity distribution at different frequencies](image-url)
Structural Wave Propagation

- Circumferential Wave Number Decomposition

- Structural velocity distribution in space domain

- Structural velocity distribution in wave number domain

- Treadband center line

- Ring mode (ring frequency)

- Flexural wave

- Longitudinal wave

- Cut-on freq of flexural wave mode

- \(m = 3 \)

- \(m = 5 \)

- \(m = 7 \)

- \(m = 1 \)

- \(\text{Frequency [Hz]} \)

- \(\text{Circumferential wave number [m}^{-1}\text{]} \)

- \(\text{Magnitude [dB]} \)
Structural Power Contribution

- **Structural input power**

\[E = \rho_0 c S_b \langle \bar{V}_b^2 \rangle \]

- Structural vibrations below 300 Hz, transferred to the interior cabin, appears mainly on treadband.
- Sidewall’s contribution on structural power is higher in the mid-frequency region.
Nearfield SPL and intensity measurement and calculation

- Nearfield sound radiation resulting from a tire’s structural vibration was measured and calculated.
- Sound radiation was measured in the hemi-anechoic chamber.
- Radiated sound calculation using D-BEM was based on the structural mobilities obtained in the structural vibration measurement.
Nearfield Radiation Model

- Nearfield Sound Radiation Model
 - To validate BE calculation by comparing with measurement results
 - Nearfield SPL and intensity were measured and calculated in front of treadband centerline.
 - Nearfield radiated sound power was measured and calculated on half-box recovery surface.
Nearfield Sound Radiation

- Nearfield SPL distribution

- Generally calculation results are matching well with measurement results.
- SPL at the ring frequency, 570 Hz, is higher all over circumferential positions.
- Region close to contact patch area has high SPL level above 1000 Hz: **Horn effect characteristics.**
Nearfield Sound Radiation

- Nearfield intensity distribution

 Generally calculation results are matching well with measurement results.
- Flexural motion on treadband contributes to nearfield sound radiation below 400 Hz.
- Intensity at the ring frequency, 570 Hz, is higher all over circumferential locations.
Sound Radiation from a Tire

- Nearfield intensity distribution at 570 Hz

- Generally calculation results are matching well with measurement results.
- Sound radiation from whole tire surface dominates at the ring frequency.
Structural Vibration/Radiation Relationship

- Relationship between structural wave propagation and its radiation
 - Radiated power peaks don’t match with those of structural power.
 - Structural input power peaks appear at cut-on frequencies of flexural wave mode.
 - Radiated power peaks appear when structural wave has low wave number.
 - The peak at 570 Hz relates to ‘ring frequency’.
 - Structural vibration below the ring frequency does not contribute to sound radiation effectively.

- Diagram showing input and sound power vs. frequency with marked frequencies and components.
Summary and Conclusions

• The sound radiation resulting from the structural wave propagation was investigated.

• The relationship between structural wave propagation on the tire surface and its radiation was identified empirically.

• Most of a tire’s structural vibration does not contribute to sound radiation.

• Effective radiation was found at the frequencies where low wave number components of the longitudinal wave appear.

• The fast longitudinal wave propagating through the treadband contributes on sound radiation at the tire’s ring frequency.
Q & A

~ Thank you ~