
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

3-1-1999

Very Low-Complexity Digital Filters Based On
Computational Redundancy Reduction
Khurram Muhammad
Purdue University School of Electrical and Computer Engineering

Kaushik Roy
Purdue University School of Electrical and Computer Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Muhammad, Khurram and Roy, Kaushik, "Very Low-Complexity Digital Filters Based On Computational Redundancy Reduction"
(1999). ECE Technical Reports. Paper 38.
http://docs.lib.purdue.edu/ecetr/38

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages

TR-ECE 99-5
MARCH 1999

SCHOOL OF ELECTRICAL

AND COMPUTER ENGINEEIUNG
PURDUE UNIVERSITY

WEST LAFAY ETTE, INDIANA 47907-1285

Very Low-Complexity Digital Filters Based -,
On Computational Redundancy ~eduction-'

Khurram Muhammad and Kaushik Roy

Email: khurram@ecn.purdue.edu, kaushik@ecn.purdue.edu

School of Electrical and Computer Engineering,

Purdue University, West Lafayette, IN 47907

February 22, 1999.

Abstract

We present computation reduction t,echniques which can be used to obtain multiplierless implementa-

tions of finite impulse response (FIR.) digital filters. The ideas presented in this work are also applicable

to infinite i ~ ! p u l s e response (IIR) digital filters. The main idea is to remove computational redundancy

by reordering computation. Hence, the frequency response of the desired filter is unaltered. Various

approaches are presented which consider normal, diflerential and hybrid coefficients. It is shown that the

reordering prl2blem can be formulated using a graph in which vertices represent the coefficients and edges

represent resources required in a computation involving the coefficient. We present variou:: schemes which

reduce filter c:omplexity by specifically targeting computational redundancy inherent in normal filter im-

plementation,~. Simple polynomial run time algorithms are presented and their power and potential is

derllonstratecl by presenting results for large (up to 600 tap) filters which show significant reduction in

the number of add operations per coefficient. We also consider filter implementations i~n which shifted

values of computations can be obtained using simple interconnects without incurring extra computation.

We present a, methodology using which such computation can be re-used in subsequent computations

and show such operations further reduce computational redundancy resulting in extremelly simple filters.

It is shown that as low as 0.1 adders per filter coefficient are required to implement the multipliers in

such filters. Ilence, such filters can be used in very high-speed applications. Alternatively, using voltage

scaling, one can significantly reduce the power consumption of such filters for any desired, performance.

'This work was supported in part by DARPA (F33615-95-C-1625), NSF CAREER award (9501869-MIP), Rock-

well. AT&T arid Lucent foundation.

Future mobile radio and portable computing systems are expected t o provide increased services,

faster d a t a rates and higher processing speeds a t reduced power dissipation levels. This provides

us with a rr~otivation to explore new approaches in low-complexity design of high-performance

digital signczl processing (DSP) blocks which operate a t lower power levels. The classical ap-

proach [I], [2] in complexity reduction is the use of techniques such as recursion (e.g. RLS, FFT

algorithms), multi-rate signal processing and low rank approximation. The last technique is a

widely used approach which compromises accuracy by removing less significant computations

from a given computational algorithm. Low-complexity design not only improves the speed a t

which the a.igorithm can process da ta , but it also leads to low power design a t the highest level

of abstraction by reducing energy consuming operations.

In this paper, we explore complexity reduction from the point of view of reducing the number

of operations by reuse of computation. The new insight provided t o the subject of complexity

reduction is the reduction of computational redundancy which is defined as the excess compu-

tation over the minimum number of bit opera,tions needed for a given sequence of operations.

This approa.ch can be used t o compliment existing conlplexity reduction methods as it reduces

the number of energy consuming operations by reusing parts of computation. Although, the

idea of com]?utation reuse appears in many forms in typical DSP system implen~entations, this

paper develops and formalizes this approach t o the case of F IR filtering in order 1;o illustrate its

potential. The proposed techniques are also applicable t o direct form IIR filter implementations.

Many previous work have been reported on complexity reduction of FIR filters [3], [4], [5], [GI,

[7], [8], [9] a.hich consider simplified parallel implementations of FIR filters for signed powers-of-

two (SPT) implementations. The proposed methods star t from a known optimal filter solution

and search for quantizations in the vicinity of the solution which give lower implenientation cost.

Search algorithms have been proposed to obtain solutions t o the coefficient quantization

problem for canonical sign-digit (CSD) number representation 131, 141, [5], [GI , [7], [8], [9]. The

published results exist for filters of small lengths and 'indicate t ha t more than 2 adders are required

per coefficient using such search. One disadvantage of t,hese methods is tha t the,se compromise

the frequency response of the filter during their search for a lower cost implementation. This

deviation in frequency response may not be tolerable in wireless communications where such

deviations can increase multi-user interference. Further, methods which yield optimal solutions

are computationally expensive for large filters.

Low power F IR filter realizations have also been extensively studied in recent years [lo], [l l] ,

[12], [13]. The basic techniques used in power reduction constitute architectural transformations,

sub-structure sharing, quantizations, and computation reordering. The idea of computation re-

ordering was explored in [l l] in the differential coeficient method (DCM) which reduces energy

consumptioi~ by reducing the dynamic range of computation. The main idea is t o compute the fil-

ter output using coefficient differences instead of their original values. In FIR filters, the dynamic

range of difl'erential coefficients is smaller, hence, the width of multipliers can be reduced.

In this paper, we present various approaches t o reduce redundant computation in digital fil-

tering. In particular, we address methods which exploit computation reuse in thle example case

of F IR filtering. The main idea is t o find an ordering of coefficients which minimizes the number

of adders required in the filter implementation using graph theoretic approaches. We propose

differential coeficients multiplzerless implementation (DCMI) scheme which is sllown t o signif-

icantly reduce filter complexity. We also present optimal solution t o the DCMI problem which

we referred t o a s the optimal differential coeficients multiplierless implementation (ODCMI)

scheme. In general, less than 2 add operations per coefficient are required in 16-bit implemen-

tation of unscaled coefficients (3 for maximally scaled coefficients) using these approaches. We

also present a methodology which further reduces computational redundancy by re-using shifted

values of a computation in the evaluation of a subsequent computation. The shift operation can

be obtained free of computational cost by using interconnect wiring. We refer t o this technique

a s the minimally redundant parallel filters (MRPF) technique. Results indicate t ha t , in general,

less than 1 adder per coefficient is required for 16-bit maximally scaled coefficients using the

M R P F technique. The main contributions of this work are summarized below.

We identify the subject of computational redundancy and present methodologies which re-

duce irr~plementation complexity by specifically targeting this area. Consequently, the fre-

quency response of the given filter is not altered.

These techniques are independent of the choice of number representation scheme.

DCMI/ODCMI approaches are independent of the choice of coefficient word-length.

The frame-work presented in this work can account for more general problen~s which consider

memory overheads (by modifying edge costs), or: when given fixed resources (by solving a

graph partitioning problem).

The presented problems are mapped t o well-known and extensively studied g;raph/set theo-

retic problems. Hence, efficient heuristic based solutions can be used.

In summary, this paper presents many approaches which specifically target computational redun-

dancy reduction. One may note that there are two ways to obtain reduction in power dissipation

using these approaches. First, we get a direct reduction in power dissipation due to removal of

redundant computation. This advantage appears in the form of reduced switching activity [14]

because of relatively fewer computational operations. Second, we can obtain ml~ltiplierless im-

plementations, which are of immense interest in high-speed signal processing applications, and,

which can also be used to further reduce power levels by employing voltage scaling [14].

This paper is organized in six sections. Section I1 provides a general background on FIR

filtering ancl the D C M approach in [1:1.]. Section I11 presents the DCMI approach for removing

the computational redundancy from the filter computations. Section IV presents the optimal

DCMI solution. Section V presents solutions to the hybrid problem which considers both normal

as well as differential coefficients. Numerical results are presented in section VI t o quantify the

complexity reduction using the proposed methods. Section VII presents the MRPF technique.

In section VIII, we present further numerical results. Finally, section IX concludes this paper.

Consider a linear time-invariant (LTI) FIR filter of length M described by am input-output

relationship of the form
M-1 M-1

y (n) = C ci x (n - i) = C P!")

In this context, c; represents the i th coefficient and x (n - i) denotes the da t a ~jample a t time

instant n - i. P!") represents the partial product c i s (n - i) for i = 0 , 1 , . . . , M - 1 computed

a t time instant n. Figure 1 shows a graph G = {V, E) representation of a 4-tap (M = 4) FIR

filter in which each vertex represents a coefficient and the edge E;,j, i, j = 0 , 1 , 2 , 3 represents

the resources required to mult,iply a da t a sample with the preceding vertex (i.e. coefficient c,).

If an array multiplier is used to compute the products, E;, represents the number of rows of

adders requ~red to implement the multiplier and is given as the number of l-bits in c;. M parallel

multipliers are required t o obtain a parallel implementation of the A4-tap filter. E , , depends

only on the number representation scheme and the type of multiplier employed. Note tha t G is

undirected iind E; = Ei,; for all i, j = 0 , 1 , . . . , ,44 - 1.

w

Fig. 1. Graph representation of an example filter with M = 4.

With the above interpretation of the graph, the output in equation 1 can be calculated by a

tour along the graph a t time instant n. Figure 2(a) shows one such tour in G which consists

of edges E i , : i + l) m o ~ ~ , i = 0, 1 , . . ., M - 1 for an hf = 8 tap filter. The coefficients are applied

such that cj+l follows cj , j = 0, . . . , A4 - 2. The appropriate data sample with the corresponding

coefficient are shown next to the edges. The total resources required to compute the output

given by equation 1 a t time instant n is given by the sum of resources required t o compute the

partial products (P/")'s) along each edge in the tour. At the next time instant, n + 1, each data

sample x(i) : i = n , n - 1, . . . n - M + 1 in the graph is replaced by x(i + 1). The outputs of the

filter a t time instants n - 1 and n are given as

Next, let us view the first order diflerential coeficient meth,od (DCM) in the context of this

graph. The main idea in DCM approach is to compute coefficient differences Acif l = c;+1 - c;,

i = 0 , 1 , M - 2 and using these to compute the partial products. Let Ei,;+l represent the

resources required to compute the product of c ; + ~ - c; with the correspondi~ig data sample

x (n - i - 1) at time instant n for i = 0 , 1 , . . ., M - 2. Then each vertex can be rfeplaced by the

differential coefficient c;+l - c; except for co. The partial product P!") is computed by adding

("-1) ("+I) (ci - C ; - ~) X (~ - i) t o P,-, . P/") thus obtained is stored in memory for computing Pi+l

in future and removed subsequently. Hence, multiplication of c; with x (n - i) is replaced by

addition of P/_";') with the product (ci - c;-l)z(n - i). Figure 3 shows the implementation of

the esarnple filter. T h e overhead a.dd operations are performed by using memory which stores

the partial l~roducts . The cost of overhead add operations can be accounted for by adding 1 t o

each edge in G. Since, most filters of interest are symmetric, the later half of the filter "folds-

over" as shown in figure 3. Note tha t the implementation of figure 3 yields 2<("), therefore, one

can obtain i:("-l) from this value by a simple right shzft operation and storing these values in a

memory for use a t next time sample.

The authors noticed in [ll] tha t in shared-multiplier based implementations, this approach

reduced power due t o smaller word-lengths in the multiplication operation. Higher orders of

differences may also be considered, however, t o understand our approach for obtaining DCMI

filters, it is enough t o consider the first order DCM explained above.

Fig. 2. Graph representation of an example filter with M = 8.

Fig. 3 . Implementation of the 8-tap example filter.

111. THE D C M I APPROACH

Consider t he tour in figure 2(b) . Suppose t ha t this order yields differential coefficients which

are simpler t o implement than the order shown in figure 2(a) (e.g. they may be l~owers-of-two),

and hence, the implementation so obtained has lower complexity. Note t ha t in this example, the

ordering is given by co, c4, cg , cl , ca, cg, c7, cg. The corresponding d a t a sample x (?a - i) migrates

from the edge Eij t o E i , k , such tha t if T' is the new tour , E i , k E TI, k # j . This is shown in

figure 2 where x (n - i) now refers t o the new edge originating a t ci. With the new ordering

of figure 2(b) , we get t he partial products a t various time instants in t he order shown in table

I. For simplicity in notation, let K = {ko, k l l . . . , kMel} be the set representing the indices of

TABLE I

PARTIAL PRODUCTS A T DIFFERENT TIME I N S T A N T S .

coefficients in t he new ordering. Hence, for the exa.mple in figure 2(b) , K = (0: 4 ,5 ,1 ,2 ,6 ,7 ,3} .

Then, the new differential coefficients for the order sequence in K are given by At!; = ck,,, - ck,,

i = 0 , 1 , M - 1 and we can calculate the partial products using

(for i = 1 , . . .) M - 1 (the first partial product pkOn) is computed directly as ckox(n - Lo)) where
(n-4j

i = 0 , 1 , M- 1. As an example, consider the computation of pin) = (c4-co)r(n-4) + Po .
(n-5)

Similarly, we can compute P!"-~) = (c4 - co)x(n-5) + Po . Figure 4 shows the implementation

details of arl 8-tap filter using the DCMI approach assuming tha t it is asymmetric (in symmetric

filter case, half of t he filter "folds-over" similar t o the example shown in Figure 3.) . Figure 4(a)

reveals the s tructure of the DCMI filter. Note t ha t the implementation of this example filter

requires reference t o future values of partial products and P!"'~)). The partial products

required t o compute P/:(")'s for 1 = 0, 1 , . . . , M - 1 are shown in figure 4(b) . Clearly, a t any time

Overhead
Add

Network

Fig. 4. Implementation of the 8-tap example filter using DCMI.

instant n, only M such products are required.

We can simplify t he implementation shown in figure 4(a) by re-timing the filter. T h e first s tep

is to move the delay elements to the multiplier inputs. Consequently, the ith branch containing

a multiplier has i delay elements on it after the first step is completed. Next, we can move

the delay elements further down such that the the multiplier precedes the delay elements, and

then, move them even further down such that the overhead add operations also precede these

delay elements as shown in figure 4(c). The entries in table I show the partial proclucts needed to

compute the output a t different time instants. These entries are helpful in determining the correct

partial product terms after moving the delay elements across the overhead partial product add

operations. Finally, the delay elements are moved out of these branches to get the iinplementation

shown in figure 4(d). Using the entries shown in table I we obtain the adder network for the

re-timed implementation shown in figure 4(d). Hence, the filter output is availablcl with an extra

delay equal to M-adders due to the overhead add network. However, the structure of figure

4(d) can be pipelined to eliminate this delay. The overhead memory needed to store the partial

product values is M for any coefficient ordering.

The DChII approach computes the set K = {ko, k l , . . ., kMPl), such that the coefficient

sequence ck,, ck, , ckM-, yields the least number of resources required in the implementa-

tion. In orcler to compute K , we use the graph G = (V. E) (see figure 1) in which the set V

represents vertices {co, cl , . . . , c ~ - l) for an M-tap filter and E represents the edges, E,,,, for

i, j = 0 , 1 , . . . , M - 1. The edge EklrklS1 connects vertex c(k,) t o c(k,+l) and represents the

number of adders required to represent the difference ~k~~~ - ck3 in a given number representa-

tion scheme. Hence, the values assigned to the edges take into consideration the scheme used

for number representation. As an example, if SM number representation is used, c(k,) = 17,

and, c(k,+l) = 33, then E k l r k l S 1 is assigned a value of 1 because ~k~~~ - ck3 = 33 - 17 = 16

requires only one adder in implementation of the multiplier. Note that G is undirected and com-

plete [15]. There are M elements in V and M (M - 1)/2 elements in E. Hence, IVI = M and

IEl = M (M - 1)/2 independent of the word-length or the number representation scheme used

in the filter implementation.

The implementation which constructs a tour with least number of resources (total number

of adders) can be obtained by computing the Hamiltonian path [15] with smallest weight in G.

A Hamiltonian path is defined as a path which visits each vertex exactly once. In our work, we

compute the Hamiltonian cycle instead of the Hamiltonian path. A Hamiltonian cycle is a simple

cycle [15] in which each vertex in G is visited. We can remove any link in a Hamiltonian cycle to

obtain a Hamiltonian path. This offers us added convenience as we can select the first coefficient

such that the first column computation (pi'), for j = 0, 1,. . . , n) requires only one adder, rather

than a full multiplier. This is always possible if one of the coefficients is always fixed to a known

power-of-two value and the remaining coefficients are calibrated with respect to it. For example,

if cq in the filter in figure 2 is fixed a t 215 in a 16-bit SM representation scheme, and the graph

in figure 2(1)) represents the minimum weight Hamiltonian cycle for this filter, then the DCMI

implementation would use the sequence {c4, c5, c1, c2, c6, CT, c3, cO), thereby, avoitling the use of

a full multiplier for the first partial product column computation. Hence, Hatniltonian cycle

computation is more advantageous.

The Ham~ltonian cycle can be solved by enlploying one of the known methods of solving the

traveling sa!esman problem (TSP) [15], [16]. In our work. we use two well-known approaches to

obtain the IIamiltonian cycle for a given graph. The first approach uses a greedy strategy which

starts a t a given node and extends the cycle in a depth-first search (DFS) manner. Initially, all

nodes are colored white and the start node is initialized to a given node. Next, it looks a t the

white colored neighboring nodes of the given start node and selects the one which can be reached

using the smallest weight edge (minimum resources). The selected node becomes the start node

in the next step and is colored black. This process is repeated till all the nodes are colored black.

Since the graph is complete, this method produces a tour by visiting each node exactly once.

The complexity of this algorithm is O(IVI + IEl) = O (M 2) [15]. This algorithm is repeated by

initializing the start node to each vertex in V. Hence, the complexity of the greedy approach

used in this work is O(M3) .

The second popular approach used for solving the TSP is the heuristic algorithm due to Lin

and Kernighan [16] (LK algorithm). The basic approach in this method is to complete a tour and

then perforrn a local search to improve the tour. When an improvement is found, the algorithm

does not necessarily use it immediately, but continues its search hoping to find a.n even greater

improvement.

A. Second Order DCkfI

Similar to the DCM [l l] , we can use higher order differential coefficients to defirie higher order

DCMI. Let 5i-l,i represent the first order coefficient difference, c; - ci-1, and b L , i represent the

second order coefficient difference, (ci - ci-1) - (c ; -~ - c ; - ~) = c; - 2 ~ ; - ~ + c;-2. Then, it can be

shown tha t the partial product P!") can be calculated as [ll]

where i = 2:, 3 , . . . , M - 1. Hence, using two overhead storage and two addition operations per

partial procluct, we can implement the second order DCM as explained in detail in [l l] . It can

be verified tha t the second-order DCMI can be obtained by computing

for i = 2 , 3 , . . . , M - 1, where 5;'s give the ordering sequence for the second-order DCMI. Hence,

the second order DCMI requires twice as much storage and add overheads as the first order

DCMI. Ho~vever, similar t o the first-order DCMI, by choosing ck, t o be a power-.of-two, we can

eliminate the full multiplication in the computation of the first column of partial products.

The second-order DCMI problem cannot be solved using the graph representation presented

in section 111. This is because in the second order DCMI, a second-order differential coefficient,

6L2,;, requires reference t o three coefficients, c;, c ; - ~ and c;-2. Hence, if we were t o use an edge

t o express the number of adders required t o implement a multiplier with 6f,j (i # j) a t one

input, we would require counting the number of adders required to implement 6T,j in the given

number rep1:esentation scheme. For a given M- tap filter, the second order differential coefficients

comprising (7; and c j as the end points would be cj-2ck+ci, where k = 0 , 1 , . . . , M--1, k # i , k # j
and, hence, it would require M - 2 edges between coefficients c; and c j in the gra,ph. Therefore,

the graph representation of section I11 needs t o be modified t o account for all possible (M - 2)

intermediate nodes between the given two nodes. Figure 5 shows the modified gr8aph for a 4-tap

(a) (b)

Fig. 5. Graph (G and G) Representations of an Example Filter with M = 4.

filter for second order DCN'I problem. The vertices are represented by continuous circles. Each

pair of coefficients has A,f - 2 edges between them. This is shown using dashed circles which

indicates the intermediate vertex corresponding to the edge. Note that the dashed circles do not

represent vertices, rather, these illustrate the vertex considered to be the intermediate vertex in

the particular edge. Hence, the modified graph, G = (V, E), for the second order DCMI can

be obtained from G by inserting M - 2 edges between each pair of edges. In the new graph,

IVI = M as in G, and, IE(= M (M - l) (M - 2)/2.

Next, we need t,o formulate rules for traversing G. Let the edge between ver~iices c; and cj,
-

with intermediate vertex ck be represented as E i ? k , j E E, i , j, k = 0 , 1 , . . . , A,f -- 1 , i # j # k .

Now, if E i , k , j is traversed, this implies that we have selected the coefficient order c; followed by

ck followed by cJ. Hence, c; and ck have already been visited and no subsequent edge may be

visited which has c; or ck as an intermediate or terminal node. The only exceptioin to this rule is

when all vertices have already been visited and the tour is completed by one more step. In that

case, the firljt node from which the tour computation was initially started must b,e visited as the

terminal vertex.

Consider the bold path in figure 5, for example. This path shows a valid tour represented

by the coefficient sequence co, cl , c2, cg and contains two edges E0,1,2 and E2,3,0. Then, after

arriving a t (22, we cannot visit cl because it has already been visited through Eo,l,2. Further, co

can only be visited as the terminal node in order to complete the tour, but it cannot be used as

an intermediate node. Hence, E2,3,0 is the only edge which can be visited without violating G

traversal rules. Therefore, for any k E O , 1 , . . . , A,f - 1 , if ck has been visited, this implies that

before the next edge is traversed, all edges in the graph with ck as the interrnediaie vertex must

be disallowed. Similarly all edges originating from the vertex ck must also be disallowed.

With the above rules, it is possible t o devise a greedy algorithm which would start a t a given

initial node s tar t and constructs a tour which visits all the vertices in the graph based on the

best selection a t the given time. At each step, the algorithm keeps track of three vertices, s tart ,

middle and last. This corresponds to the coefficient order c,tart1 crniddle, clast. Iniliially, all nodes

are colored white and a user selected node, initial, is taken as the start node. hlext, a decision

is taken a t cStart and the best edge Estart,middle,last is selected such that cmiddle and cl,,t are

white node:;. Next, cmiddle is marked black and it becomes the next start node. Similarly, cl,,t

becomes the new middle node and search for the next best ciast is performed such that the start

and middle nodes are already known and Ciast must be a white node other than initial. If no

such node can be found, then the tour is completed by selecting claSt = C ; , ; ~ ; , [. In terms of

figure 5 , if the tour shown in bold were to be the best tour, the edge sequence visited will be

Ea,l,2, E1,2,3 and E2,3,0 which corresponds to the coefficient order co? c l , c2 and cg. The algorithm

is repeated by initializing the start node to each vertex in V.

We can also use a better tour computation scheme such as the LK-algorithm. In this case,

the basic LIC-algorithm must be modified such that it does not violate the graph traversal rules

outlined above. The main idea is to perform a local search around a given tour to find a better

tour. This is done by forming a S-path shown in figure 6. Starting a t a node u, the algorithm

tries improvement on both its neighboring edges. When a node w is located such that the cost of

S-path shown in figure 6(b) is smaller than the cost of the initial tour T , the S-path is converted

into another tour which updates the best tour found so far. Figure 6(c) shows the improved tour

obtained using the S-path. We note that the modification required in this algorithm is to move

the intermediate nodes p and r so that no rules are violated while improving the tour. note

that this is :not the only possible approach. Better solutions may be obtained by considering the

best edge E.,,,,,, where q may be any node in T other than u and UI. The tour may be completed

such that none of the graph traversal rules are violated on G. The approach presented in this

paper is the simplest way to modify the LK-algorithm such that it can execute on 6.

(b)

Fig. 6 . Tour improverrlent in modified LK-algorithm.

In the previous sections, we considered DCMI solution based on cycles in the graphs G and

G. The pri~nary motivation to pursue cycle based solutions was the observation that DCM can

be viewed a:j a special case of the general framework provided in the previous sec1;ions. A major

advantage of cycle based solution is the regularity of the resulting solution and implementation.

This can be advantageous in soIrle filter implementations. For example, one may consider an

application where filter exhibits some degree of adaptation so tha t coefficients are differenced

"on-the-fly" and multiplications are performed by serial additions using a few fixed number of

adders. Then, the coefficients can be stored in the order dictated by K and sequentially accessed

from a coefficient memory of size M. Hence, cycle based solution offers an advantage of smaller

overhead of coefficient storage.

In the case of a parallel implementation of filter, coefficients are pre-compul.ed and P:")'s

are obtained by adding appropriate previously computed partial products. Hence, we are not

restricted t o cycle based solutions, since, a differential coefficient involving a given c, can be

obtained using any c, - c,, J # 1 . With this observation, we explore the optimal solution to

the DCMI problem using the mznzmum spannzng tree (MST) [15] on G. The MST of a graph

G = {V, E) is defined a s a n acyclic subset of edges zn E which connects all of the vertices zn V

such that the sum of weights of these edges is minimized. Hence, MST on G gives a coefficient

order such tha t all the vertices of the graph are visited once and the total resources required to

implement the differential filter are minimum.

The best linown algorithm t o compute the LIST executes in O(IE1 + IVllog(VI) z =:0()1,'(2) run

time by employing Fibonacci heaps [15]. A simple algorithm by Prim runs in O(IV(210gl~I) time

[15]. Hence, the coefficient ordering obtained through an MST requires the least amount of add

operations t o compute the output . We refer t o this solution as the optimal dijferential coeficients

for multip1ic:rless implementation (ODChlI) technique. For the problem of using least amount

of resources in forming the partial products in equation 1, MST yields the optinial solution t o

the proble~rl of ~nini~nizing the number of add operations given all the coefficients are differential

coefficients. The major advantages of this approach is the simplicity of the algorithm and small

run-time. Further, it inherits all the benefits of graph representation outlined in section I.

Figure 7 ~ ~ O W S the implementation of an F IR filter using the MST solution (MST shown

in figure 7(1))). The coefficient sequence applied using the MST of G is obtained by applying

the differential coefficients cchild - cparent, where cchild and cpa,,,t pair consists of all possible

parent-child pairs in the MST (leaf-nodes have no child). The parent of the root node of the

MST is defined a s 0. For example, the MST in figure 7(b) yields the coefficients co, cl - co, cz -

c3, cs - cg, cq - c1, cg - car cs - c3, c7 - c3, as shown in figure 7(a) . Let P = {PO pl , . . . , ~ M - I)

and & = {go, ql, . . . , q ~ - ~) denote the index sets of parent and child nodes, respectively. In t,he

above example, P = { 0 , 0 , 3 , 0 , 1 , 2 , 3 , 3) and Q = {O,l , 2 , 3 , 4 , 5 , 6 , 7) . Then, the partial products

can be calculated using

(n) - n-q, tp ,)
pi - (cq, - cp,) x (n - 9i) + p;, (7)

for i = 0 .1 , . . . , M - 1, i # root. P!,"~ is directly calculated. As explained earlier, we ensure

t ha t a t leazt one coefficient is set to a power-of-two, and therefore, this operation does not

(require full multiplication. Figure 7(c) shows the relationship of P,:)'s, i = 0, 1,. . ., M - 1 with

the previou:;ly calculated partial product values in terms of memory storage. Kote t ha t the

implementahion obtained is non-causal and hence output can be available after delay equal to

max(p, - q,, 0) for i = 0 , 1 , . . ., M - 1. Figure 7(a) shows the implementation of the ODCMI

filter for the MST solution shown in 7(b) . The partial products required t o compute P!"),

i = 0 , 1 , . . ., M - 1 are shown in MST solution shown in 7(c) .

As explained in section 111, we can considerably simplify the implementation of 7(a) by carrying

out t he same re-timing steps. T h e resulting filter implementation is shown in 7(d) . We note tha t

the overhead memory needed to store the previous partial products is M as seen in figure 7(d) .

Due to t he tree s tructure of the solution, the sequence of overhead add operations is smaller than

the implementation of 4(c) where we always get a sequence of M - 1 overhead add operations.

In general, the sequence is O(1og-Ad) in a tree solution. Again, similar t o section 111, we can

pipeline the series of overhead add operations which arise due to the use of differential scheme.

The number of registers required t o pipeline ODCNII filter is smaller than the ones required for

DCMI filter.

T h e methods presented in earlier sections considered implementations which ernploy only dif-

ferential coefficients. However, one may also consider a combination or hybrid solution which

combines various orders of solutions. For example, one may consider the smallest cost tour in G

which consiclers not only the first differential coefficients, but also the original coefficients (zeroth

order coefficient) values. We will refer t o this solution as a 01-hybrid solution. This approach

would yield a solution which is better than the single order differential coefficients. T h e imple-

mentation of the 01-hybrid solution is simpler than the first order filter. T h e hybrid solution

partitions the best solution in two sets. The first one containing coefficients which are imple-

mented normally (i.e. directly) as multiplier inputs. The second set contains only differential

Fig. 7 . Implementation of the 8-tap example filter using ODCMI.

coefficients which are implemented in the same manner as in DCMI.

The basic approach used in obtaining a 01-hybrid tour is given as follows. Given the original

coefficients, we obtain the first order DCMI coefficients using the greedy or LK-a:lgorithms. The

cost of the t,our is stored and for all vertices on the tour we check if the triangular inequality (Q)

described i n figure 8 is satisfied. This inequality checks if tour cost can be improved by removing

vertices f r o ~ n the tour. The algorithm is given below

1. P = Original Problem with M coefficients. Set i = 0.

2. Obtain first order DCN'I for P and store the tour in T (~) and cost of tour in best cost.

3. Remove all nodes satisfying condition Q from ~ (~ 1 . If no node in T (') satisfies Q, then goto

step 6, otherwise, set i = i + 1.

Fig. 8. Tour Improvement Using Condition T.

4. P u t removed nodes in R[;]. Call the remaining tour P[;].

5. If cost of P[~] + cost of R[;] < best cost, then, best cost = cost of P[;] + cost of R[;]

6. 01-hybrid solution is the union of R[j17s for j = 0 ,1 , . . . , i and ~ (~ 1 . Cost = sum of ~ [j l ' s +
cost of T (~) .

In the above algorithm cost of R[3] refers t o the sum of cost of each element in ~ [j l , where the

cost of an element in R is the number of adders required if the original coefficient value is used

as one input of the multiplier. Hence, this approach removes all vertices from -the tour which

satisfy Q and improve the solution. The ODCMI solution is tried again on the sinaller problem

and the cycle is repeated till no more improvement in solution is possible.

The 01-hybrid solution for ODCMI filter is simpler t o implement. The basic approach is t o

obtain modified graph G from G by inserting a new vertex c ~ , which connects t o all the other

vertices c;, i = 1 , 2 , . . . , M - 1, such tha t the weight of EM., is assigned a value equal t o the

number of adds required if the original coefficient c; were used as one input of the multiplier.

Clearly, G is undirected and complete. The MST on G will be the optimal 01-hybrid ODCMI

solution which requires the least number of adders t o implement the multiplication. The final

solution can be partitioned into two sets; the first set constituting differential coefficients in which

CM is a parent or a child, and, the second set containing the remaining pairs. The elements in the

first set are the coefficients which must be applied without differencing. All pair:; in the second

set are employed using the first order difference using the approach in section I'd. The cost of

final solution is simply the sum of edge weights on all the parent-child pairs in the MST of G.

As a final note the readers attention is diverted t o the observation tha t the schemes for com-

puting DChiII (ODCMI) along with all the variant solutions are significantly diff'erent from the

previous at tempts on designing multiplierless filters [3], [4], [5], [6], [7], [8], [9] as it uses com-

putational reordering t o reduce computational redundancy. Since, reordering does not result in

any further quantization, this approach does not compromise filter performance. Hence, these

schemes yield significantly simpler and more practical and effective means of obtaining lower

complexity Filter implementation.

VI. NUMERICAL RESULTS

We now present some numerical results to demonstrate the power and potential of the proposed

approaches. Both SM and SPT number representations for implementing differen-tial coefficients

are considered. Without any loss of generality, we will assume that coefficients are normalized by

the largest c;. Two sets of results are provided to accomrnodate coeficient scaling technique which

is widely used in digital filter implementation [17]. The first one uses the original co'efficient values

quantized to fit in a preselected u~ord-length, W. The second one expresses each c; as c: x 2-k,

such that k 2 0 and cl 2 2W-2. This scheme will be referred t,o as mazimally scaded coefficients.

The main advantage of such scaling is that in parallel filter implementation the distortion due

to quantization is minimal and this scheme yield a floating point type of filter implementation

without actually using a full floating point unit. The powers of two can be trivially obtained by

shifting data by appropriate amount using interconnecting wires.

Table I1 shows a relative comparison of filter implementations obtained using, the proposed

DChiII approach when the coefficients are expressed with N = 16 bit unscnled numbers using SM

and S P T number representations2, respectively3. None of the solutions presented in this section

required more than a few minutes of CPU time on a Sun Ultra 30 workstation. 'The values en-

closed in parenthesis show the results for the same filters using S P T number representation. The

overhead adds are excluded in this table with the purpose that the reader can focus on computa-

tion sharing obtained for the first and second order DCMI (DCMI-1 and DCMI-;!, respectively)

using the proposed algorithms. In addition, the M - 1 add operations in equa1,ion 1 are also

excluded since these operations are identical in both norrnal as well as ODCMI implementation.

A close observation of the data in the the table reveal some interesting results. The difference in

the solution:; using the greedy strategy and the LK-algorithm are negligible. Hence, near-optimal

solutions are obtainable using the greedy strategy alone, as LIi-algorithm is known to yield a

' ~ o t e that by "[Symmetric]" in the specification of filter F in the table, we mean that it is symmetric about

f = 0.5.

f, and f, represents normalized assb band and stopband frequencies, respectively. Rp and R, represent the

passband ripple and stopband attenuation, respectively.

tour which is very close t o the optimal solution [16]. The da t a in the table al;so reveals tha t

the second-order DChlI does not offer any significant advantage as compared t o the first-order

DCMI. In many cases, it provides a slightly worse solution. One may conjecture tha t higher-order

DCMI could be more useful if one were t o investigate a hybrid solution which combines zeroth,

first and second-order solutions. We also note tha t the S P T representation offers significant

advantage over SM representation in many cases. Finally, we note tha t the number of adders per

coefficient required in DCMI implementation is less than 2, in general, for SPT representat,ion.

This compares favorably t o the published results of mult~iplierless filters in 1iterat.ure.

Figures 9 and 10 show a relative comparison of the average number of adders per differential

coefficient obtained using the first-order DCMI solutions for SM and S P T number representations,

respectively. We compare the number of adders per differential coefficient, for 8, 16 and 24 bit

coefficients. The example filters considered were 28-tap PM, 41-tap LS, 119-tap P M , 172-tap LS,

131-tap P M , 170-tap LS, 151-tap P M , 217-tap LS, respectively, with specifications shown in table

11. These results were obtained using the greedy strategy for first-order DCNII. We note tha t

S P T implementations require less adders than SM implementations for all word-lengths. We also

observe a linear relationship bebween t,he average number of adders per differential coefficient

with the word-length. This relabionship is exhibited in all the cases considered (note tha t the

overhead ac!ds are not included t o demonstrate this point.). Further, the average number of

adders per differential coefficient reduces, in general, as the length of the filter incrl-ases. We note

tha t traditional approaches of finding multiplierless implementations for word-lengths > 16 would

take enormclus computational effort and may not yield good solutions. In contrast, our technique

takes polynomial time, is independent of the word-length and the number representation scheme,

and can be used t,o obtain good DChlI solutions for large filters within a few minutes of CPU

time.

In the sequel, all results presented consider the overhead add net,work but exclude bhe M - 1 add

operations in equation 1 since these operations are idenbical in both normal as well as proposed

implementa~;ions. Figures 11 and 12 show comparisons of the average number of adders per

coefficient obtained using 01-hybrid ODCMI scheme for maximal ly scaled coefficients with for

SM and S P T number representations, respectively. The abscissa shows the filter number used to

obtain the results shown. The filters are described in table 111. In both of these figures, the plot,

on top shows a relative comparison of the average number of adds per coefficient. These numbers

Example M Total DCMI-1

A: Low-pass (fp = 0.25, f, = 0.3, Rp = 3 d B , R, = -50 dB)

B: Low-pass (fp = 0.27, f, = 0.2875, R, = 2 dB, R, = -50 dB)

1 1 C: Low-pass (f, = 0.27, f, = 0.29, Rp = 2 d B , R, = -100 dB) 1 I

(f, = 0.25, f, = 0.2625, Rp = 2 dB, R, = -73 d B

PM 165 774 (.598) 173 (157) 170 (155) 185 (164) 178 (159)

L S 236 912 (7Fj2) 187 (172) 185 (170) 216 (194)

biotch (fpl = 0.3, fsl = 0.32, f , ~ = 0.68, fp2 = .7)

1 1 F: Notch [Symmetric] (fpl = 0.2, fsl = 0.22, fS2 = 0.38, fp2 = .4) I 1

TABLE I1

2[hf/2] FOR DCMI-2) OBTAINED USING DCMI FOR UNSCALED 16 - bit SM A N D SPT NUMBER

Example F~ller No

Fig. 9. Average Number of Adders per Coefficient for First-Order DCMI With Unscaled SM Number

Representation. Add Overhead of \MI21 Excluded.

Example Filler No

Fig. 10. Average Number of Adders per Coefficient for First-Order DCMI With Unscaled SPT Number

Represe.ntation. Add Overhead of \MI21 Excluded.

are obtained by normalizing the number of add operations of the 01-hybrid ODCMI solution with

the normal filter implementation. The plot on bottom shows the actual number of average add

operations per coefficient for the ODChlI solution. Results are shown for W = 8,12,16 and

23 maximally scaled coefficients. Clearly, SPT requires less computational resources. Further,

we observe that the relative savings is better in SM number representation as compared to

SPT. This is intuitive because SPT representation reduces the required resources i n the normal

implementation and this is reflected as lesser gains in complexity reduction. Again, we also

observe a linear relationship between the average number of adders per differential coefficient

with the word-length (note that last two bars span wider range of W) .

It is also evident that the 01-hybrid ODCMI filters require less than 1 adderlcoefficient for

filters with M roughly > 20 in the case of maximally scaled coefficients. In the case of an IIR

filter implementation where maximal scaling is of paramount importance for stability reasons,

the proposed solutions yield practical and viable solutions. In F IR filters, these methods yield

low-complexity filters with very small quantization noise. The numerical results presented in this

section also show t h a t the first s tep in complexity reduction of digital filters is computational

redundancy reduction rather than the conventional approach of compromising the frequency re-

sponse characteristics. Significant gains can be achieved by using simple approaches as presented

in this paper.

" 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Filter No.

u u
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Filter No.

Fig. 11. Relative Comparison of the Number of Adders per Coefficient Obtained Using ODCMI for

maximally scaled SM Number Representation.

VII. L ~ I N I M A L L Y REDUNDANT PARALLEL FILTERS

We now present an approach which is specific t o implementations where shifts of computed

values are available without any computational cost. In particular, this assumption is mean-

ingful in parallel filter implementations which can trivially implement a shift operation using

interconnectiing wires. Alternatively, if the cost of shift operation is significantly lower than the

cost of computation, the idea presented here can be easily extended t o a serial SAA multiplier

based implementation. To understand this approach, we consider the following example. The

- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Filter No.

U "
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Filter No.

Fig. 12. Relative Comparison of the Number of Adders per Coefficient Obtained Using ODCMI for

maximally scaled SPT Number Representation.

DESCRIPTION OF FILTERS USED IN ODCMI EXAMPLES. E P , B T , P M A N D LS REPRESENT

I I F i l t e r N o .

E P

L P

AND LP REPRESENT BAND-PASS AND LOW-PASS FILTERS, RESPECTIVELY.

binary number 101100 ca.n be obtained by shifting 001011 twice to the left. Henc.e, the product

TABLE I11

2

L O

E P

L P

101100 - x(n) can be obtained free of cost from the product 001011 - x (n) , if the latter has been

computed e,%rlier. Hence, we can extend the fra.me-work developed in the previous sections to

1

i

E P

L P

take advant,%ge of this observation. Since these filters a.re obtained by considering, differential as

well as sha r~ng of shifted pre-computed values, the computational redundancy in these filters is

2

20

B T

L P

significantly lower than the filters obtained using the previous approaches. We will refer to these

filt,ers as minimally redundant parallel (M R P) filters.

5

2 s

P M

L P

6

I

LS

L P

5

i

B T

LP

19

o

P M

B P

6

119

P M

L P

11

7 0

LS

B P

9

3 1

P M

B P

12

189

P M

L P

13

250

LS

L P

14

3 0

LS

B P

1 5 1 1 6 1 1 7 1 1 8 l

3 2 7 m

LS P M

LP BP B P B P

Recall the ODCMI scheme presented in section IV. A close observation of figure 7 reveals

t ha t computational redundancy in the filter shown can be further reduced if computation can

be shared a,mongst the products, (A ~ ;) ~ ~ ~ x (n) = {cqz - cp,)x(n), i = 0 , 1 , 2 , . . . , M - 1, 9;'s

and pi's refer t o t he parent and child nodes of the MST. Without loss of gen~erality, we will

assume tha t t he filter coefficients have been maximally scaled such t h a t ci 1 2M-2 for each

i = 0 , 1 , . . . , M - 1. We will let W represent t he coefficient word-length. Then, the generalized

differential coefficients are given as (A c ~) ~ , ~ ~ ~ ~ ~ = cq, - 2 - L ~ p , , where 0 < L < W and i =

0 , 1 , . . . , M - 1. Note t h a t maximal scaling results in maximum number of distinct values of

(AC;)L ,MR~F for 0 < L 5 W . Next, suppose t ha t we were t o implement a solution in figure 7

where each (A c i) ~ , y T is replaced by some (A c ;) ~ , , ~ ~ ~ ~ for i = 0, I , . . . M - 1, where 0 5 L; <
W . Then, !:In) = (Aci) L , ,AvRPF~(n) + 2 - L ~ c p z x (n) , and hence, a correction term of 2TLicP,z(n)

needs t o be added t o obtain the correct value of the partial product. We note t ha t this term

is readily available from cp lz (n) by a shift operation of L; bits. Consequently, we can obtain

pjn) through any one of (A C ~) ~ , M ~ ~ F , i = 0, 1, . . . , M - 1, L = 0 , 1 , . . . , W, if the cost of shift

operation is negligible in terms of computation.

T h e above is represented in the modified graph of figure 13 for the 4-tap exam.ple filter. This

graph is directed, and there are W + 1 edges directed from c; t o c j for all i, j and rlepresenting the

difference ~ , - - 2 - ~ c j , L = 0 , 1 , . . . , W . We will let D [~ denote the edge representing the differential

coefficient as shown in figure 13. Consequently, each vertex has (W+1) (M- 1) incident

edges. In contrast t o t he graphs obtained for the problems presented in previous sections, the

edges in the graph of figure 1 3 represent the actual value of of and not the number

of resources required t o obtain a product with this generalized differential coeffici~ent. We let the

value of t he (A c ~) ~ , ~ ~ ~ ~ represent the color of the corresponding Edge. Hence, each vertex has

a maximum of W + 1 distinct colored edges entering it from another vertex and there are a total

of (W + 1) (M - 1) distinct colored edges in the graph.

Let each vertex represent a set of incident colored edges. Then, we can obtain 121 such sets for

an M - t a p filter. In order t o implement the filter, we need t o visit each vertex once only. Hence,

the solutior~ requiring least amount of resources t o implement this filter comprises of a set of

colors whose edges visit each vertex a t least once, such tha t the cost of implementation of these

colors is minimum. Further, if a particular color edge is selected, all edges of the same color

can be obtained free of computational cost for all other vertices visited by these edges. We can

Fig. 13. Modified graph for MRP filter.

also cast this problem t o an alternative equivalent problem in which all possible edge colors for a

particular set of scaled coefficients define a color set. The elements of a given color set comprises

the vertices visited by the edges of the respective color as shown in figure 14. The total number

of vertices which are visited by color; are stored in count, field. Each color requires a particular

cost of implementation which is the amount of resources required to form a product of a data

value by the value represented by the color. This cost, for a given number representation scheme

is stored with the color. As explained above, if color, is selected in the final solution, the product

color, . x(n) (equal to A c , ~ , ~ ~ ~ ~ - x(n) for some i and L) can be shared using interconnecting

wires to obtain any other vertex in the set free of computational cost. Then, our goal is to find

least cost set of colors such tha t the edges in these sets cover all of the vertices in the graph.

This is a well known NP-complete problem called weighted min imum set cover. Hence, it can be

solved using a good heuristic approach.

A. Solutiofi: for the MRP Filter

A greedy algorithm employed to solve the above minimum set cover problem is outlined below.

It takes scaled input coefficients and computes a greedy solution for the MRP filter.

1. (Pre-process) Remove all vertices cj = 2-'c;, for some 1 such that j # i.
Repeat for all j such that 0 5 j 5 M - 1.

2. Construct Vertex Sets for all vertices (coefficients) in the modified graph.

Vertex Set; is defined as the set of all incident edges on c;.

1

Color Cost Coun I.-! v ~ , l I I m
Fig. 14. The da ta structure for color sets.

3. Construct Color Sets from Vertex Sets. Color-Set; is defined as the set of all vertices which

can be visited by the color of Color-Set;.

4. Compute the minimum cost weighted set cover problem.

(a) Initialize MSC-Solution t o empty set.

(b) while (Color Sets are not empty) do

i. Choose and the lowest cost color which visits the maximum number of vertices. Add it

t o the set MSC-Solution.

ii. Recnove all vertices visited by the chosen color from the Color Sets.

(c) end ,while

(d) Gref:dy minimum set cover solution is the set of chosen colors in MSC-Solution

5. If any c; = 2-kcolorj, for i = 0, 1, . . . , M - 1 and colorj E MSC-Solution, remove the

overhead ADD operation for t ha t coefficient. For all others, add overhead cost of 1.

6. Add cost of colors in MSC-Solution t o obtain t,he total implementation cost.

In the first s tep, all vertices which can be obtained by simple shifts of other vertices are removed

from the p1,oblern. Only one of these vertices is kept (i.e. c;). There is no computation or

overhead add operation required t o implement partial products involving the rernoved vertices.

Hence, cj's are obtained with cost 0. We note that. since the removed edges are c j = 2-'c;, the

incident colors on cj7s would have been identical t o the incident colors on c;, had we chosen not

t,o remove these vertices. Hence, the final solution will not be affected, as the choice of colors is

not. increased if cj's are not removed, and visiting c; automatically visits each cJ. It follows tha t

s tep 1 does not alter the optirnality of the solution obtained for the smaller problem.

Steps 2 and 3 compute the Vertex and Color Sets as explained earlier. In step 4, any heuristic

approach may be used to compute the minimum cost weighted set cover solution. In our work,

we use a simple greedy approach which selects the most likely color as the one which visits most

vertices and has the smallest cost. Finally, we need to account for the overhead adcl operations for

the differential coefficients and step 5 removes all the overhead add operations for the coefficients

which can be directly be obtained from the colors selected in the solution color sets. Finally, the

total implementation cost is computed for the MRP filter.

VIII. FURTHER NUMERICAL RESULTS

Figures 15 - 18 show a comparison of MRPF filter complexity with the normal filter implemen-

tation for Sbl and S P T number representations, respectively. These results were obtained using

the greedy solution presented in the previous section. The example filters used in obtaining these

results are clescribed in table 111. The results clearly indicate that MRP filters h.ave lower com-

plexity as compared to ODCMI filters. We also note that the relative savings in a,verage number

of adds required to implement the given filter are greater for SM representation. Again, this is

because the average number of adds per coefficient are smaller for the normal ilnplementation

with S P T representation.

Figures 15 and 17 show that NIRP filters decrease the filter complexity roughly by a factor

of 2 for most cases. Of particular interest is the observation that MRPF approach is also use-

ful in reducing the complexity of small filters. For long filters, complexity reduction is almost

by a factor greater than 3. These savings result from reuse of shifts of computation. Figures

16 and 18 show that for long filters, the average number of adders required per multiplication

is less than 0.2 for 8-bit maximally scaled coefficients. Hence, a fully parallel ilnplementation

of an 8-bit maximally scaled 200 tap filter requires 20-40 adders to implement the full multi-

plication network. Consequently, the complexity of the filter is dominated by the M - 1 add

operations in the sum of equation 1 rather than multiplications. We observe that this dramatic

reduction in filter complexity does not compromise the filter transfer function response and is

obtained using a simple polynomial run-time algorithm. Hence, MRPF technique offers a power-

ful methodo'logy to obtain very low-complexity and fast digital filters for applications requiring

very high-performance and/or low power.

Fig.

No. Of Filter Taps

15. Relative Average Number of Adders per Coefficient in MRP filters Using maximally scaled Shl

Number Representation.

v
6 10 13 20 28 41 71 119131 150170189250301327401500601

No. Of Filter T ~ D S

Fig. 16. Average Number of Adders per Coefficient in MRP filters Using maximally scaled SM Number

Represelltation.

IX. CONCLUSION

We preser.ted computation reduction techniques which can be used t o obtain multiplierless im-

plementations of F IR digit,al filters. The ideas presented in this paper are also applicable t o IIR

digital filters. We addressed the problem of complexity reduction for high-speed and low power

No. Of Filter Taps

Fig. 17. Relative Average Number of Adders per Coefficient in MRP filters Using maximally scaled SPT

Number Representation.

"
6 10 13 20 28 41 71 119131 150170189250301327401500601

No. Of Filter Taps

Fig. 18. Average Number of Adders per Coefficient in MRP filters Using maximally scaled SPT Number

Represe.ntation.

applicationt, by proposing systematic methodologies for reducing computational redundancy using

computation reordering and sharing. Various approaches were presented which consider normal,

differential and hybrid coefficients. The reordering problem was formulated using a graph in

which vertices represent the coefficients and edges represent resources required in a computa-

tion involving the coefficient. Various schemes were presented which reduce filter complexity

by specifically targeting computational redundancy inherent in normal filter implementations.

Simple polynomial run time algorithms are presented and their power and potential was demon-

strated by presenting results for large filters (lengths up to 600) which showed significant gains

in the number of add operations per coefficient. We also considered filter implementations in

which shifted values of computations can be obtained using simple interconnects without in-

curring extra computation. We presented a methodology using which such conlputation can

be re-used in other computations and showed such operations significantly reduce further com-

putational redundancy, thereby yielding extremely simple filters. One major advantage of the

proposed schemes is it that the frequency response of the desired filter is unaltered. It was

shown that as low as 0.1 adders per filter coefficient are required to implement the multipliers

in such filters. Hence, such filters can be used in very high-speed applications. Alternatively,

using voltage scaling, one can significantly reduce the power consumption of such f lters for any

desired performance.

[I] L. L. Schai-f, "Statistical Signal Processing: Detection, Estimation, and Time Series Analysis," Addison Wesley,

1991.

[2] S. Haykin, "Adaptive Filter Theory," Prentice Hall, NJ, 1996.

[3] R. Jain, P. T . Yang and T . Yoshino, "FIRGEN: A computer-aided design system for high performance FIR

filter integrated circuits," IEEE Transactions on Signal Processing, Vol. 39, No. 7, pp. 1655--1668, Jul. 1991.

[4] Y. C. Lirn and S. R. Parker, "FIR filter design over a discrete powers-of-two coefficient space," IEEE Trans.

Acoust., Speech C4 Signal Processing, VoI. ASSP-31, No 3, pp. 583-591, Jun. 1983.

[5] D. Li. and Y. C. Lim, "Multiplierless realization of adaptive filters by nonuniform quantization of input signal,"

1994 IEEI? International Symposium on Circuits and Systems, Vol. 2, pp. 457-459, 1994.

[6] B. R. Horng, H. Samueli and A. N. Wilson, "The design of low-compIexity in linear-phase FIR filter banks

using powers-of-two coefficients with an application to subband image coding," IEEE Trans. Circuits Syst.

Vzdeo Tec,$nology, Vol. 1, No. 4, pp. 318-324, Dec. 1991.

[7] B. R. Hoi-ng, H. Samueli and A. N. Wilson, Jr . , "The design of two-channel lattice structure perfect-

recorlstruction filter banks using powel-s-of-two coefficients," IEEE Trans. Circuits and Systems-IrFundamental

Theory and Applications, Vol. 40: No. 7, pp. 497-499, July 1993.

[8] H. Samueli. "An improved search algorithm for the design of multiplierless FIR filters with powers-of-two

coefficient:;." IEEE Trans. Circuits and Systems, Vol. 36, No. 7, pp. 1044-1047, July 1989.

[9] M. Yagyu, A. Nishihara and N. Fujii, "Fast FIR Digital Filter Structures Using Minimal Number of Adders

and its Application to Filter Design," IEICE Trans. Fundamentals, Vol. E79-A, No. 8, pp. 1120-1128, Aug.

1996.

[lo] D. A. Parker and K. K. Parhi, "Low-arealpower parallel FIR digital filter implementations," Journal of V L S I

Signal Processing, Vol. 17, No. 1, Sept. 1997.

[l l] N. Sankarayya, K . Roy, and D. Bhattacharya, "Algorithms for low power and high speed FIli filter realization

using differential coefficients," I E E E Trans. Circ,uits and Systems, Vol. 44, No. 6, pp. 488-4517, Jun. 1997.

[12] K. Muhammad and K. Roy, ''Low Power Digital Filters Based On Constrained Least Squixes Solution," In

Proc. S l s t As i lon~ar Conference O n Signals, Systems, & Con~puters! Nov. 2-5, 1997.

[13] M. Mehendale, S. B. Roy, S. D. Sherlekar and G. Venkatesh, "Coefficient transformations for area-efficient

implementation of multiplier-less FIR filters," Proceedings Eleventh International Conference o n V L S I Design,

pp. 110-115, 1997.

[l4] J . M. Rabaey, "Digital Integrated Circuits: A Design Perspective," Prentice Hall, New Jersey, 1996.

[15] T . H. Cormen, C. E. Leiserson and R. L. Rivest, "Introduction to Algorithms," The MIT Press, 1990.

[16] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank and A. Schrijver, "Combinatorial Optimization," John

m'iley & Sons, Inc., 1998.

[17] E. Cooper, "Minimizing Quantization Effects Using the TMS320 Disgital Signal Processor Family," Applica-

t ion Repor.t, http://www.ti.corn/sc/docs/psheets/ab~tracflapps/spraOS5.htn~, Texas Instruments, 1994.

	Purdue University
	Purdue e-Pubs
	3-1-1999

	Very Low-Complexity Digital Filters Based On Computational Redundancy Reduction
	Khurram Muhammad
	Kaushik Roy

