1998

Development of Axisymmetric Finite Elements for Poroelastic Materials

J Stuart Bolton
Purdue University, bolton@purdue.edu

Yeon June Kang
Seoul National University, Korea

In Hwa Jung
Seoul National University, Korea

Bryce K. Gardner
Automated Analysis Corp.

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

http://docs.lib.purdue.edu/herrick/37

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
DEVELOPMENT OF AXISYMMETRIC FINITE ELEMENTS FOR POROELASTIC MATERIALS

Yeon June Kang and In Hwa Jung
School of Mechanical & Aerospace Engineering
Seoul National University, Korea

J. Stuart Bolton
Ray W. Herrick Laboratories, Purdue University, U.S.A.

Bryce K. Gardner
Automated Analysis Corporation, Ann Arbor, MI, U.S.A.
OUTLINE

• Introduction

• Axisymmetrical Foam Finite Elements

• Sound Transmission through Cylindrical & Conical Foam Plug
 - validation with 3-D Cartesian solution
 - comparison with experimental results
 - effect of finite termination impedance

• Sound Attenuation in Foam-Lined Duct
 - comparison with Morse’s solution
 - comparison with experiment results
 - effect of circumferential boundary condition
INTRODUCTION

• Cartesian Finite Elements of Poroelastic Materials

 - Normal incidence absorption coefficient

 - Normal incidence sound transmission loss
 (J. P. Coyette and H. Wynendaele, Inter-Noise 95)
 (N. Attala and R. Panneton, Inter-Noise 95)

 - Sound transmission through poroelastic wedges

• Sound Propagation along Lined Ducts

 - Axisymmetric circular ducts, Locally reacting

 - Rectangular ducts, Extended & Locally reacting
Elastic Porous Material Theory based on Biot

3D \((r, \theta, z) \) \rightarrow 2D \((r, z) \)

Dynamic Relations

Stress-Strain Relations

Two Wave Equations

Weak Forms

Galerkin’s Approximations

Foam Finite Elements
• Uncoupled System Equations

\[
\begin{bmatrix}
[K_a] \\
K_f
\end{bmatrix}
\begin{bmatrix}
p \\
u_r \\
u_z \\
U_r \\
U_z
\end{bmatrix}
= \begin{cases}
- j\omega \rho_0 2\pi \int_{\Gamma} r \phi_i (n_{ar} v_r + n_{az} v_z) d\Gamma \\
\int_{\Gamma_r} r \phi_i (n_r \sigma_r + n_z \tau_{rz}) d\Gamma \\
\int_{\Gamma_r} r \phi_i (n_r \tau_{rz} + n_z \sigma_z) d\Gamma \\
\int_{\Gamma_r} r \phi_i n_r s d\Gamma \\
\int_{\Gamma_r} r \phi_i n_z s d\Gamma
\end{cases}
\]

need to be coupled using appropriate boundary conditions at the interface of two systems
• Boundary Conditions

- Velocity continuity: \[v_a = j \omega (1 - h)u + j \omega h U \]

- Force equilibrium (fluid part): \[h p n_a = s n_f \]

- Force equilibrium (frame part): \[(1 - h) p n_a = r (\sigma_r n_{fr} + \tau_{zr} n_{fz}) i + r (\tau_{fr} n_{fr} + \sigma_z n_f z) k \]
- Coupled Acoustic-Foam System Equations

\[
\begin{bmatrix}
K_a \\
K_{af}' \\
K_{af}
\end{bmatrix}
\begin{bmatrix}
K_{af} & K_f \\
K_{af} & K_f
\end{bmatrix}
\begin{bmatrix}
p \\
u_r \\
u_z \\
U_r \\
U_z
\end{bmatrix}
=
\begin{bmatrix}
Q \\
F^1 \\
F^2 \\
F^3 \\
F^4
\end{bmatrix}
\]
SOUND TRANSMISSION THROUGH CYLINDRICAL FOAM PLUG

- Axisymmetric vs. 3-D Cartesian

![Diagram showing axisymmetric and 3-D Cartesian models]

- Axisymmetric model:
 - 49 foam elements
 - 98 air elements
 - 192 nodes
 - Radius, $R = 1.45$ cm

- 3-D Cartesian model:
 - 1456 foam elements
 - 2912 air elements
 - 5082 nodes

* It takes 5500 times longer solution time at each frequency!
• Validation with 3-D Cartesian Solution

![Graph showing sound transmission loss through a cylindrical foam plug comparing an axisymmetric model to a 3-D model. The graph plots frequency in Hz on the x-axis and transmission loss in dB on the y-axis. The axisymmetric model shows a smooth increase in transmission loss, while the 3-D model has a peak at a specific frequency.]
SOUND TRANSMISSION THROUGH FOAM PLUG

• Experimental Setup

Dual Channel Signal Analyzer
B & K Type 2032

Computer

Signal Generator

Signal Amplifier

Microphones

Anechoic Termination

New Sample Holder

Two-Microphone Impedance Measurement Tube
B & K Type 4206

• Anechoic Termination

Normalized Impedance

Normalized Impedance

* Note:

Measured impedance data was phase-corrected when it was applied to the model.
SOUND TRANSMISSION THROUGH CYLINDRICAL FOAM PLUG

- Effect of Circumferential Boundary Conditions

free edge

![Diagram of free edge]

glued edge

![Diagram of glued edge]

- Loss (dB)

- Transmission

- Frequency (Hz)

<table>
<thead>
<tr>
<th>measured</th>
<th>FEM</th>
</tr>
</thead>
</table>

AXISYMMETRIC POROELASTIC FINITE ELEMENTS

Seoul National University
SOUND TRANSMISSION THROUGH CONICAL FOAM PLUG

Free edge

Transmission Loss (dB)

Frequency (Hz)

measured
FEM

AXISYMMETRIC POROELASTIC FINITE ELEMENTS

Seoul National University
SOUND TRANSMISSION THROUGH CYLINDRICAL & CONICAL FOAM PLUG

- Effect Finite Termination Impedance

![Graph showing transmission loss vs frequency for measured and ideal terminations with different terminations: cone, glue, free.](graph.png)
SOUND ATTENUATION IN FOAM-LINED CIRCULAR DUCT

- Macroscopic Physical Properties of Foams Obtained by Measurement and Optimization

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Foam A (polyester)</th>
<th>Foam B (polyether)</th>
<th>Foam C (polyester)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow resistivity (mks Rayls/m)</td>
<td>13666</td>
<td>30814</td>
<td>46417</td>
<td>measured</td>
</tr>
<tr>
<td>Tortuosity (Structure factor)</td>
<td>3.58</td>
<td>4.28</td>
<td>6.13</td>
<td>optimized</td>
</tr>
<tr>
<td>Porosity</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>assumed</td>
</tr>
<tr>
<td>Bulk density (kg/m3)</td>
<td>32</td>
<td>29</td>
<td>32</td>
<td>measured</td>
</tr>
<tr>
<td>Bulk Young's Modulus (Pa)</td>
<td>30400</td>
<td>25200</td>
<td>85800</td>
<td>optimized</td>
</tr>
<tr>
<td>Loss factor</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>assumed</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>assumed</td>
</tr>
</tbody>
</table>
SOUND ATTENUATION IN FOAM-LINED CIRCULAR DUCT

- Measured and Predicted Absorption Coefficient

Foam A

Foam C

Measured
- Optimized by analytical approach

Optimized by FEM
SOUND ATTENUATION IN FOAM-LINED CIRCULAR DUCT

• Experimental Setup

![Diagram of experimental setup](image)

- Impedance Tube B&K 4206
- Microphone
- Foam lining
- Anechoic Termination
- Amplifier B&K type 2690
- Frequency Analyzer HP35670A

• Open Area Fraction (radius of airway / radius of tube)

<table>
<thead>
<tr>
<th>Open Area Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.6</td>
</tr>
<tr>
<td>0.7</td>
</tr>
<tr>
<td>0.8</td>
</tr>
</tbody>
</table>
• Performance of Anechoic Termination

![Graph showing impedance real and imaginary parts for anechoic termination and normalized impedance.](image)

Axes:
- X-axis: Frequency (Hz)
- Y-axis: Normalized Impedance

Lines:
- Solid line: Anechoic termination
- Dashed line: Impedance real part
- Dashed-dotted line: Impedance imaginary part
Comparison with Experimental Results (Foam A)

- Open area fraction 0.5: FEM, measured
- Open area fraction 0.6: FEM, measured
- Open area fraction 0.7: FEM, measured
- Open area fraction 0.8: FEM, measured

SOUND ATTENUATION IN FOAM-LINED CIRCULAR DUCT

AXISYMMETRIC POROELASTIC FINITE ELEMENTS

Seoul National University
• Comparison with Experimental Results (Foam B)

Open area fraction 0.5: Open area fraction 0.6: Open area fraction 0.7: Open area fraction 0.8:

OPEN AREA FRACTION

0.5

0.6

0.7

0.8
• Comparison with Experimental Results (Foam C)
SOUND ATTENUATION IN FOAM-LINED CIRCULAR DUCT

- Bulk Reacting Vs. Locally Reacting Liner

Foam A

<table>
<thead>
<tr>
<th>Method</th>
<th>0.5, 0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM:</td>
<td></td>
</tr>
<tr>
<td>Morse’s sol:</td>
<td>0.5, 0.8</td>
</tr>
<tr>
<td>Measured:</td>
<td>0.5, 0.8</td>
</tr>
</tbody>
</table>

Foam C

<table>
<thead>
<tr>
<th>Method</th>
<th>0.5, 0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM:</td>
<td></td>
</tr>
<tr>
<td>Morse’s sol:</td>
<td>0.5, 0.8</td>
</tr>
<tr>
<td>Measured:</td>
<td>0.5, 0.8</td>
</tr>
</tbody>
</table>

AXISYMMETRIC POROELASTIC FINITE ELEMENTS

Seoul National University
SOUND ATTENUATION IN FOAM-LINED CIRCULAR DUCT

- Effect of Boundary Condition

Foam A

- FEM (constrained): 0.5, 0.8
- FEM (lubricated): 0.5, 0.8
- Measured: 0.5, 0.8

Foam C

- FEM (constrained): 0.5, 0.8
- FEM (lubricated): 0.5, 0.8
- Measured: 0.5, 0.8

Axisymmetric Poroelastic Finite Elements

Seoul National University
CONCLUSION

- The AXISYMMETRICAL FOAM FINITE ELEMENTS has been formulated and validated for its accuracy and efficiency.

- It has many applications such as sound transmission and attenuation in axisymmetric configurations.

- Constraining the circumference of the foam plugs decreased the transmission loss at high frequencies.

- Finite termination impedance had rippling effect on sound transmission loss at low frequencies.

- Thicker liner does not always guarantee high sound attenuation.

- Locally reacting assumption is valid for some limited cases.