Purdue University Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

1998

Development of Axisymmetric Finite Elements for Poroelastic Materials

J Stuart Bolton Purdue University, bolton@purdue.edu

Yeon June Kang Seoul National University, Korea

In Hwa Jung Seoul National University, Korea

Bryce K. Gardner Automated Analysis Corp.

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

Bolton, J Stuart; Kang, Yeon June; Jung, In Hwa; and Gardner, Bryce K., "Development of Axisymmetric Finite Elements for Poroelastic Materials" (1998). *Publications of the Ray W. Herrick Laboratories*. Paper 37. http://docs.lib.purdue.edu/herrick/37

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

DEVELOPMENT OF AXISYMMETRIC FINITE ELEMENTS FOR POROELASTIC MATERIALS

Yeon June Kang and In Hwa Jung School of Mechanical & Aerospace Engineering Seoul National University, Korea

J. Stuart Bolton

Ray W. Herrick Laboratories, Purdue University, U.S.A.

Bryce K. Gardner

Automated Analysis Corporation, Ann Arbor, MI, U.S.A.

- Introduction
- Axisymmetrical Foam Finite Elements
- Sound Transmission through Cylindrical & Conical Foam Plug
 - validation with 3-D Cartesian solution
 - comparison with experimental results
 - effect of finite termination impedance
- Sound Attenuation in Foam-Lined Duct
 - comparison with Morse's solution
 - comparison with experiment results
 - effect of circumferential boundary condition

INTRODUCTION

- Cartesian Finite Elements of Poroelastic Materials
 - Normal incidence absorbtion coefficient (Y. J. Kang and J. S. Bolton, *J. Acoust. Soc. Am.* **98**, 1995)
 - Normal incidence sound transmission loss
 (Y. J. Kang and J. S. Bolton, *J. Acoust. Soc. Am.* 99, 1996)
 (J. P. Coyette and H. Wynendaele, Inter-Noise 95)
 (N. Attala and R. Panneton, Inter-Noise 95)
 - Sound transmission through poroelastic wedges (Y. J. Kang and J. S. Bolton, *J. Acoust. Soc. Am.* **102**, 1997)
- Sound Propagation along Lined Ducts
 - Axisymmetric circular ducts, Locally reacting (Y. Kagawa *et al., J. Sound & Vib.* **53**, 1977)
 - Rectangular ducts, Extended & Locally reacting (R. J. Astley and A. Cummings, *J. Sound & Vib.* **116**, 1987)

AXISYMMETRIC FOAM FINITE ELEMENTS

• Uncoupled System Equations

$$\begin{bmatrix} [K_a] \\ [K_a] \\ [K_a] \\ [K_a] \\ [K_f] \\ [L_z] \end{bmatrix} \begin{bmatrix} p \\ u_r \\ u_z \\ U_r \\ U_z \end{bmatrix} = \begin{cases} -j\omega\rho_0 2\pi \int_{\Gamma} r\phi_i(n_arv_r + n_azv_z)d\Gamma \\ \int_{\Gamma^e} r\phi_i(n_r\sigma_r + n_z\sigma_z)d\Gamma \\ \int_{\Gamma^e} r\phi_i(n_r\sigma_r + n_z\sigma_z)d\Gamma$$

need to be coupled using appropriate boundary conditions at the interface of two systems

AXISYMMETRIC FOAM FINITE ELEMENTS

Boundary Conditions

- Velocity continuity :

$$\mathbf{v}_a = j\omega(1-h)\mathbf{u} + j\omega h\mathbf{U}$$

- Force equilibrium (fluid part): $hp\mathbf{n}_a = s\mathbf{n}_f$
- Force equilibrium (frame part): $(1-h)p\mathbf{n}_a = r(\sigma_r n_{fr} + \tau_{zr} n_{fz})\mathbf{i} + r(\tau_{zr} n_{fr} + \sigma_z n_{fz})\mathbf{k}$

AXISYMMETRIC FOAM FINITE ELEMENTS

Coupled Acoustic-Foam System Equations

SOUND TRANSMISSION THROUGH CYLINDRICAL FOAM PLUG

• Axisymmetric vs. 3-D Cartesian

* It takes 5500 times longer solution time at each frequency !

SOUND TRANSMISSION THROUGH CYLINDRICAL FOAM PLUG

• Validation with 3-D Cartesian Solution

SOUND TRANSMISSION THROUGH FOAM PLUG

• Experimental Setup

• Anechoic Termination

* Note:

Measured impedance data was phase - corrected when it was applied to the model.

SOUND TRANSMISSION THROUGH CYLINDRICAL FOAM PLUG

Effect of Circumferential Boundary Conditions

SOUND TRANSMISSION THROUGH CONICAL FOAM PLUG

• Effect Finite Termination Impedance

 Macroscopic Physical Properties of Foams Obtained by Measurement and Optimization

Foam Type Parameter	Foam A (polyester)	Foam B (polyether)	Foam C (polyester)	
Flow resistivity (mks Rayls/m)	13666	30814	46417	measured
Tortuosity (Structure factor)	3.58	4.28	6.13	optimized
Porosity	0.96	0.96	0.96	assumed
Bulk density (kg/m ³)	32	29	32	measured
Bulk Young's Modulus (Pa)	30400	25200	85800	optimized
Loss factor	0.3	0.3	0.3	assumed
Poisson's ratio	0.4	0.4	0.4	assumed

• Measured and Predicted Absorption Coefficient

• Experimental Setup

• Open Area Fraction (radius of airway / radius of tube)

• Performance of Anechoic Termination

• Comparison with Experimental Results (Foam A)

• Comparison with Experimental Results (Foam B)

• Comparison with Experimental Results (Foam C)

• Bulk Reacting Vs. Locally Reacting Liner

• Effect of Boundary Condition

CONCLUSION

- The AXISYMMETRICAL FOAM FINITE ELEMENTS has been formulated and validated for its accuracy and efficiency.
- It has many applications such as sound transmission and attenuation in axisymmetric configurations.
- Constraining the circumference of the foam plugs decreased the transmission loss at high frequencies.
- Finite termination impedance had rippling effect on sound transmission loss at low frequencies.
- Thicker liner does not always guarantee high sound attenuation.
- Locally reacting assumption is valid for some limited cases.