Re-access and Modify Manufacturing Engineering Curriculum to Meet the Requirements of Industry 4.0

David Ding, PhD
Program Director – Manufacturing Engineering
John Dzissah, PhD
Chair – Operations and Management Department
Charles Bomar, PhD
Dean - College of Science, Technology, Engineering, Mathematics and Management

Presentation Overview

- Industrial 4.0
- Overview of the current UW – Stout Manufacturing Engineering program
- Case/project study – Determine and Gaps between the current program curriculum and the needs of industry
- Changes and opportunities
Industrial 4.0

- Industrial 4.0
- Overview of the current UW – Stout Manufacturing Engineering program curriculum
- Case/project study – Determine and Gaps between the current program curriculum and the needs of industry
- Changes and opportunities

Industrial 4.0

- Industrial 4.0 – Germany
- Produce in China 2025
- NNMI – American Make
Industrial 4.0

- Replacing human work – System-based Automation
- Higher level of Human-Machine collaboration such as remote (long distance) control of production equipment
- Usage of cloud-computing and big data to optimize production, such as computer-based manufacturing system simulation
- Use of sensors to monitor/control equipment
- Paperless logistics
- Creation of new jobs for high skilled workers
- Increased individual flexibility (for both product and operations)

Current UW – Stout MFGE Program Curriculum

- ABET Accredited
- A comprehensive degree which incorporates aspects of many other engineering disciplines; such as, mechanical, industrial, electrical and materials science.
- Placement Rate of 100%
- Average starting salary around $60,000 (2015-2016 class).
A Case Study – Lee Kum Kee
A Case Study – Lee Kum Kee

• **Challenge:**
 • The Koji is the process bottleneck, time, quality and yield.

A Case Study – Lee Kum Kee

• **Solution:**
 • Transformation of collaboration
 • Cyber-physical production systems
 • Connection between virtual and real world
 • Processes
 • Embedded systems
 • Software components, which are integrated in machines
 • Production adjustments do not based on the commands from a central computer, but rather from a product
A Case Study – Lee Kum Kee
A Case Study – Lee Kum Kee

- Results
 - Energy consumption reduced to 20%
 - Yields increased from 80% to 98%
 - Cycle time reduced by 60%
 - Reduced labor cost
 - Higher quality with more customization options
Changes and Opportunities

- Contents required by Industry 4.0
 - Big Data related content
 - Cyber security
 - Network and Programming
 - System based automation

Changes and Opportunities

- Plan for changes
 - Eliminate/reduce credit hours for traditional manufacture engineering courses.
 - Create new courses that covers the content required by Industrial 4.0
 - Professional Certifications
Changes and Opportunities

- Challenges
 - Program accreditation requirements
 - General Education requirements
 - Faculty professional development
 - Online delivery
 - Education 4.0

Summary

- Industrial 4.0
- Overview of the current UW – Stout Manufacturing Engineering program
- Case/project study – Determine and Gaps between the current program curriculum and the needs of industry
- Changes and opportunities