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ABSTRACT 

The problem which motivated this research was that of stationary target identification 

(STI) with millimeter wave seekers in a heavy clutter environment. While investigating 

the use of neural networks to perform target discrimination phase for ST1 problem, we 

began to search for a method to reduce the computational overhead associated with 

training a neural network to recognize low probability events. Our search yielded the 

development of a likelihood ratio weighting function (LRWF), which is very similar to 

the weighting function used in importance sampling techniques employed in the 

simulation of digital communication systems. By incorporating the LRWF into the 

backpropagation algorithm, we were able to significantly reduce the computational 

burden associated with training a neural network to recognize events which occur with 

low probability. This reduction in computational overhead is realized due to the reduction 

in the size of the data sets required for training. 



CHAPTER 1 

INTRODUCTION 

1. 1 Introduction 

The stationary target identification (STI) problem can be divided into three distinct 

phases, namely: (1) detection, (2) discrimination, and (3) recognition. The detection 

phase is a term used to describe the process by which the presence of a target is sensed 

while the return signal from the target is embedded in the presence of background clutter, 

atmospheric noise, and/or noise generated within the radar receiver itself. Potential 

targets of interest are usually separated from the noise and clutter returns by various 

constant false alarm rate (CFAR) processing techniques. The discrimination phase 

distinguishes between actual target returns and strong target-like clutter returns which 

were passed as potential targets during the detection phase. The recognition phase, the 

most demanding of waveform and signal processor design, identifies the targets of 

interest from the features gathered from the return signal during the previous two phases. 

The research presented in this thesis focuses on the detection phase of the overall STI 

problem. As previously mentioned, the detection phase of the ST1 problem is usually 

implemented in the form of a CFAR processor. There are generally two classes of CFAR 

processors, parametric and non-parametric, which is sometimes called a distribution free 



CFAR processor. A parametric CFAR processor is one which is specifically designed for 

an assumed clutter distribution and which performs well with this type of interference. 

However, a non-parametric CFAR processor, which is not designed for a specific clutter 

distribution, works fairly well for a wide variety of clutter distributions. The parametric 

CFAR processor exhibits superior performance over non-parametric techniques if the 

clutter environment is known and uniformly homogenous. However, if the clutter 

environment is unknown or contains many transitions from one type of distribution to 

another, the non-parametric CFAR processor would be the better choice. 

The approach presented in this thesis involves using a neural network to construct a non- 

parametric CFAR processor. A neural network is used to form a weighted least squares 

estimate of the probability of a target being present or absent while the target return 

signal is embedded in a background clutter process. These estimates are used to construct 

a likelihood ratio test with a fixed threshold which is calculated in such a manner as to 

minimize the Bayes risk. 

1.2 Outline of Thesis 

Chapter 2 discusses parametric and non-parametric CFAR processing techniques in 

preparation of contrasting their performance to that of a neural-network based classifier. 

Chapter 3 presents the neural network non-parametric processor. Contained in this 

chapter are discussions regarding training procedures, adaptive thresholding, and data sets 

used in computer simulations. Chapter 4 contains the results of the computer simulations 

with the neural network classifier. Presented in chapter 5 are discussions contrasting the 

performance of the neural network classifier to that of a linear detector for the case of 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

This chapter is a review of the most common types of parametric and non-parametric 

CFAR processors, namely, the cell averaging CFAR processor and the sign detector 

CFAR processor. While the parametric CFAR processor performs superior to the non- 

parametric CFAR processor when operated in the assumed clutter environment, its 

performance rapidly degrades when the actual clutter environment does not correspond to 

the one assumed when the processor was designed. This is the advantage of the non- 

parametric CFAR processor which makes weak assumptions about the statistics of the 

clutter environment within which it will be operating. 

2.2 Parametric CFAR Processor 

One of the most common parametric CFAR processors is the cell averaging CFAR 

processor. The cell averaging CFAR processor provides estimates of the linear detection 

thresholds, T, by forming an estimate of the expected value of the decision statistic 

E[Dln], for the resolution cell under test while all potential targets are assumed absent. 

This estimate is formed by averaging the decision statistics, Dln, of the resolution cells 

leading, trailing, or surrounding the cell under test. 



In order to perform the required analysis to determine an expression for the detection 

threshold T, it is usually assumed that the targets of interest are being detected in an 

exactly known additive white Gaussian noise enviroment[5:1[6]. With this assumption, 

the output of the matched filters, which are matched to the in-phase and the quadrature 

components of the return signal, will also be Gaussian random variables in the case of 

target absence. These samples are then passed through an envelope detector to form the 

decision statistic for the i b  resolution cell (range-Doppler) as 

where Di, Ii, and Qi represent the envelope sample, in-phase component, and quadrature 

component associated with the i b  resolution cell respectively. 

From basic probability theory we know that Di will be a Rayleigh distributed random 

variable with a probability density function of 

where 02 is the variance of the Gaussian random variables Ii and Qj . Also, Di is a sample 

drawn from the clutter envelope given by Eq. (2.1) under the assumption of no target 

present. 

Under the assumption of a target present, the mean of the resulting process will generally 

be greater than the mean of the clutter only process.-This is depicted below in Figure 2.1 

where fDln(D) represents the conditional probability density function of the envelope 



sample D and fDjy@) represents the conditional probability density function of the 

envelope sample under the assumption of a target present. 

Decide target Decide signal present 
not present T 

P fa Pd 

Figure 2.1 False aiarm and detection probabilities. 

Hence, the threshold required to obtain a given value of false alarm probability can be 

calculated as 



The mean of a Rayleigh distributed random variable can be expressed as 

Hence, the result produced by Eq. (2.3) can be expressed as 

Thus, we have reduced the problem of finding an estimate of the optimum threshold, T, 

for a given value of Pfa to that of forming an estimate of E[Dln]. 

Since the in-phase and quadrature components are assumed to be drawn from an 

unvarying white Gaussian noise environment, the samples, Di, drawn from the clutter 

envelope are taken to be independent identically distributed (i.i.d.) random variables. 

However, in practical environments the Rayleigh parameter, a, will vary with time 

according to the terrain, weather conditions, etc. ... Therefore, the statistics of the clutter 

samples can only be viewed as locally stationary in the neighborhood of the resolution 

cell under test. An estimate of E[Dln], denoted as E1[D(n], is then formed as the sample 

mean of the resolution cells in the vicinity of the resolution cell under test. These 

estimates are then used to form an estimate of the value of the detection threshold, T, 

given by Eq. (2.5) as 

where E'[D(n] is formed as the sample mean given by 



single pulse detection in terms of the probability of detection, false alarm rate, and signal 

to noise ratio (SNR). Lastly, presented in chapter 6 is a discussion of future research. 



The value of K in the above equation represents the CFAR window size. That is , the total 

number of samples used to construct an estimate of E[D(n]. A block diagram 

representation of a cell averaging CFAR processor is shown below in Figure 2.2. 

Target Present 

Target Absent 

Matched filter 
output for the ifi 
resolution cell 

Qi 

Figure 2.2 Single-pulse linear detector with cell-averaging CFAR. 
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2.3 Non-Parametric CFAR Processors 

The fundamental structure of non-parametric detectors involves the transformation of a 

clutter or noise only input data set into a decision statistic that can be compared against a 

fixed threshold to establish a constant false alarm rate under weak assumptions on the 

statistical character of the background noise or clutter environment. Transformations 

accomplishing this function generally out perform an optimal parametric detection 

strategy derived under more strict conditions imposed on the background clutter process 

when the more strict conditions are false. 

Generally, most non-parametric detection strategies are modifications of the sign detector 

[ 5 ] .  The sign detector operates by providing a test for the positive median shift in the 

return signal under the condition of a target being present. However, to accomplish this 

test, the sign detection strategy assumes that the phase of the return signal is known 

exactly. Since this is not possible in a practical radar system, most realizable non- 

parametric detection strategies are sub-optimal modifications of the sign detector. 

Since the sign detection strategy is used in conjunction with coherent and non-coherent 

pulse train signals, these signals can be defined as follows. Suppose that si(t), i = 1, ... , N 

is a coherent or a non-coherent pulse train of N received, narrow-band, radar signals of 

constant width and pulse repetition interval. Further suppose that si(t) represents the radar 

signature of the target of interest. The signal si(t) can be expressed as 



where, 

A = Amplitude of the im pulse for a non-coherent or coherent pulse train 

wd = Doppler frequency in the return signal 
$i = Phase of the ith pulse 
Tp = Pulse repetition interval 
t = Pulse width . 

Define the signal which is actually observed as vi(t), i = 1, ... , N, where vi(t) represents 

the ith observation taken in some range cell following the transmission of the ith pulse of a 

coherent or a non-coherent pulse train. This signal can now be expressed in terms of the 

return signal from a potential target, Si(t), as 

si(t) + ni(t) if a target signal is present in the 

= { range cell under test 

ni (t) if a target signal is absent in the 
range cell under test 

where ni(t) represents the background clutter process in the range cell under test over the 

ith single-pulse observation interval. 



wi = J vi (t bi (t) dt 

matched 

D r T Target Present 

Absent 

Figure 2.3 Block diagram representation of a sign detector. 



Refer to Figure 2.3, the block diagram representation of a sign detector. From Figure 2.3, 

it is seen that vi(t) is fmt  passed through a matched filter which is matched to the return 

signal from the target of interest, si(t). This matched filtering operation is equivalent to 

that of a running time correlator when the output of the filter is sampled at t = (i-l)Tp + t 

for i = 1, ... , N which effectively is sampling at times of maximum correlation with the 

signal si(t). For detection within the current test cell, let wi denote the ith sample of the 

matched filter output. This can be expressed as 

where K denotes the gain of the matched filter. The sampled signal, Wi, is then passed 

through the function p(wi) which is defined as 

i fw iz  0 

P(w~)=  { 0 else 

This function effectively quantizes the existence of a positive correlation between the 

observed signal vi(t) and the signal of interest si(t). These values are then summed over 

each pulse of the entire pulse train to form the decision statistic D. 

In order for the sign detector to be on optimal Bayes' detection strategy, the following 

assumptions must be made. 



1. wi(n, which denotes the i& sample of the matched filter output under the assumption 

of no target present, must be a set of independent identically distributed random 

variables. 

2. The probability density function of wiln has zero median value. 

x,(i-llTp +i 

sf(t) dt is constant for all i. 
(i-1)Tp 

Under the first assumption, the decision statistic, D, will on average be equal to N/2 in 

the case of si(t) being absent from the current range cell under test. This conclusion stems 

from the background noise process, ni(t), showing positive correlations with si(t) with 

probability 1/2. Hence for the case of si(t) being absent from the current range cell under 

test, the formation of the decision statistic D can be viewed as a "coin-flipping" situation. 

For a fair coin, which corresponds to the background noise process ni(t), the coin will 

show heads or tails (positive or negative correlation) with a probability of 1/2. 

Consider the following expression for wi and recall that it was assumed that the 

probability density function of wi(n has zero median value. 



Clearly from Eq. (2.11) it is apparent that the median value of wily will be greater than 

the median value of wiln which is assumed to be equal to zero. It is this positive shift in 

the value of wi which the sign detection strategy is designed to detect. 

Also under the first and third assumptions it can be shown [5] that the sign detector 

defined by Eq. (2.15) is equivalent to a Bayes' likelihood ratio test. Hence the sign 

detector depicted in Figure 3 is an optimal Bayes' detection strategy. 

The problem now becomes one of choosing the proper threshold T with which to 

compare to the decision statistic D in order to obtain some desired value of the false 

alarm rate Pfa. 

Since wi, i=l ,  ... , N, are assumed to be independent, identically distributed random 

variables, it follows that the decision statistic D can be characterized by a binomial 

distribution with parameter p as 

where the parameter p is defined as 

For the case of no target present, the values of wi will be greater than zero with 

probability 1/2. Therefore, the threshold T can be determined by the solution of 



Pa = Pr@ z T I no target present) 

With both the decision statistic D and the value of the threshold T determined, the 

presence or absence of a target within the range cell under test is determined as 

If D z T then decide a target is present (2.15) 
else decide a target is absent 



CHAPTER 3 

A NEURAL NETWORK APPROACH TO STATIONARY TARGET 
DISCRrMINA'rTON 

3.1 Introduction 

This chapter is organized seven sections, the second of which, Section 3.2, contains a 

description of the proposed target discrimination scheme. Issues addressed in this section 

includes the trainingftesting data sets, training of the neural network, what quantities are 

actually being estimated by the neural network, and how these quantities are used to 

implement an optimal Bayes detection strategy. Contained in Section 3.3 is the derivation 

of the likelihood ratio weighting function (LRWF) which, when incorporated into the 

training algorithm, allows for a reduction in the size of the data sets used for training. 

Presented in Section 3.4 is a description of the modifications made to the training 

algorithm which were required in order to incorporate the LRWF. Section 3.5 contains a 

discussion of the weak assumptions made regarding the conditional probability density 

functions of the return signal with target present or absent. These assumptions allow the 

LRWF to be expressed in terms of the a prwri probabilities of target presence or absence 

in the training and testing data sets. Presented in Section 3.6 is a discussion of the 

likelihood ratio test used to form an optimal Bayes detection strategy. This chapter 

concludes with Section 3.7 which contains a description of the data sets used to model the 

return signal from a range-only millimeter wave radar. 



3.2 System Overview 

Figure 3.1 Schematic diagram of the proposed target discrimination scheme. 

- P(Hllxk) 

In the above figure the input trainingtesting vectors of the neural network, xk, k = 1 ... n, 

consist of samples drawn from a statistical model of the return signal from a range only 

radar. This model, which is described in detail in Section 3.7, is based on the input vector 

xk and the desired output vector Uk. The data vector Yk generated by concatenating xk 

and Uk can be written as 

where, 

if 6 > 8 Target Present 

else Target Absent 

(0,l) Target Present 
Uk = (u!,u:) = Desired Output Vector = { 

(1,O) Target Absent 

P(blxk) 

1 B 
b 

-.. ++,I Mu1 tilayer 
Neural 
Network 



Also note that the conditional probability density function (p.d.f.) of xkJUk = (1,O) and the 

conditional p.d.f. of xL(Uk = (0,l) are distinct. 

The training of the multi-layered neural network is carried out with the backpropagation 

algorithm. The backpropagation algorithm is a supervised learning algorithm involving 

the presentation of inputloutput pairs (xk,Uk). The algorithm attempts to minimize the 

square error between the desired output vector, Uk, and the actual output vector. By so 

doing, the algorithm actually forms a mean squared error estimate of the conditional 

probabilities P(Hi(x) where the vector x is a sample drawn from the ensemble of all 

possible input vectors X .  

After the network has been trained, the weights matrices are held fixed, and the network 

is used to classify the current range cell of the input vector xk according to target presence 

or absence. This is done by using the estimates of the conditional probabilities P(Hllx) 

and P(Ho(x), where Ho and HI represent the hypothesis of target absence or presence 

respectively, to form a likelihood ratio test. The likelihood ratio test formed by taking the 

ratio of P(Hllx) to P(Holx) is actually a Bayes detector. If the losses associated with an 

incorrect decision are expressed as, 

b1 = Loss associated with deciding Ho when HI is in force 

Llo = Loss associated with deciding H1 when Ho is in force, 

and the losses associated with a correct decision are both set equal to zero, LKJO = Lll = 0, 

the resulting likelihood ratio test is actually an optimum Bayes detection strategy with the 

Bayes risk minimized for a threshold choice of 6 = b. 
Ll0 



There are, however, problems to be faced when implementing this scheme. The first and 

obvious problem is that of training the neural network. If the neural network is to be 

trained to operate in a realistic scenario, the size of the required data sets will become 

cumbersomely large. This is due to the low probability of target occurrence, PIH1], in any 

realistic scenario. This problem led to the development of a technique which allows one 

to train the neural network utilizing data sets with a much higher PIH1], but the same 

network can be used to classify data with a much lower value of PIHl]. This technique, 

which is very similar to importance sampling (IS) techniques used during the simulation 

of digital communication systems to estimate bit error rates (BER), will reduce the size of 

the required data sets and result in a substantial savings in the computational overhead 

during the training procedure. This technique involves constructing a likelihood ratio 

weighting function (LRWF) which, when incorporated into the backpropagation 

algorithm, forces the algorithm to form its estimates of the conditional probabilities of 

target presence and absence as if the targets were occurring with a probability of P'[H1] 

rather than the probability of target occurrence associated with the training data set, 

P[Hll. 

3.3 Derivation of the Likelihood Ratio Weighting Function For a Two Class 
Problem 

Assuming a two class problem, target presentlabsent, define the kth, k = 1, ..., n, 

complete data vector as 

where, 



o 1 (0,l) Target Present Ur = (Uk,Uk) = Desired Output Vector = ( 
(1,O) Target Absent 

Also note that the conditional probability density functions @.d.f.) of the input vectors 

xkl[Uk = (O,l)] and xk([Uk = (1,0)] are distinct. Furthennore, define the ensemble of all 

possible input data vectors as X, where the set { xk1[Uk = (O,l)] U xk1[Uk = (1,0)] ) E X.  

Define the outputs of nodes 0 and 1 of the multilayer neural network as 

0 Target Present 
Fo(xk'w) = { 1 Target Absent 

1 Target Present 
F1(x " w, = ( 0 Target Absent 

where Fi(xk,w) E %, 0 s Fi(xk,w) s 1, and w represents the weights matrices of the 

neural network. 

As an example of supervised learning based on least-squares, the backpropagation 

algorithm will be used. The backpropagation algorithm is a supervised learning algorithm 

involving the presentation of training and testing sets of input and output patterns. The 

algorithm attempts to minimize the square error given by the actual and the desired 

output values summed over the output nodes and all training pairs of input/output vectors 

[I]. Using the previously established notation, for a network with two output nodes this 

error can be expressed as [3] 



where n represents the total number of vectors contained in the training set. Eq. (3.7) 

represents the error to be minimized in the least squares sense. It will be modified below 

by the LRWF in the weighted least squares sense. 

Define the LRWF as 

where f,(x) represents the probability density function (p.d.f.) of x, x E X,  for the training 

set; g(x) represents the p.d.f. for the testing set; P[&] and PIH1] are the a priori 

probabilities of target being absent and present, respectively. Note that P*[H1] << PIH1] in 

the present application. 

The backpropagation algorithm will be modified by minimizing the new error function 

defined as 

In this way, the neural network can be forced to form its mean-square error estimates of 

PIHilx] according to the testing distribution g(x) rather than the training distribution 

f,(x). Below, it is shown theoretically why this is the case. 

The average error over the entire ensemble, &(w), can be defined as 



where 'n' represents the total number of vectors contained in the training set. Since the 

backpropagation algorithm seeks a minimum of the function s ( w ) ,  the algorithm will 

also form an estimate to the minimum value of E,(w). The accuracy of this estimate 

depends upon how accurately the training set models the actual statistics of the ensemble 

X. If the training set poorly represents the statistics of X, the minimization of g ( w )  will 

not correspond to a minimization of ES(w), and poor classification performance during 

testing will result. 

Eq. (3.10) can be rewritten using the number of vectors in each class as 

where no and nl represent the total number of vectors of the training set which are 

associated with target absence or presence respectively. Also note that &(.) represents a 

Dirac delta function used to segment the training set. By the law of large numbers, as n, 

no, nl increase, Eq. (3.11) can be rewritten as 



Using Bayes' formula, namely, 

The expression for &(w) can be rewritten as 

Expanding the first term and the first tenn of the second summand yields 



Rearranging terms and noting that [P(Hl(x) + P(Holx)] = 1 gives 

Noting that [Fi(x,w) - P(Hi(x)12 = Fi2(x,w) - 2Fi(x,w)P(Hi(x) + P2(Hi(x), Eq. (3.16) can be 

expressed as 

Since g(x) = G(x) as defined by Eq. (3.8), Eq. (3.17) can be expressed as 
rx(x) 



Since the neural network, when trained using the backpropagation algorithm, is made to 

minimize the error function $(w) with respect to w, it also attempts to minimize Es(w) 

.with respect to w with the given training set. Since the first term of Eq. (3.18) is the only 

term which is a function of w, clearly the network is forming a minimum mean squared 

error approximation to the a posteriori probabilities P(H:iJ~). Note also that this minimum 

mean squared error approximation is being computed as if the feature vectors x were 

drawn from f,(x) rather than fx(x). Therefore the network is trained to recognize targets 

occurring with a probability P* [HI] rather than PIH1] as desired. 

It was mentioned in Section 3.2 that this method was very similar to importance sampling 

techniques used in conjunction with forming estimates of the bit error rate (BER) during 

the simulation of a digital communication system. The simulation being performed is of 

the standard Monte Carlo type. By employing IS techniques, the goal is to greatly reduce 

the simulation run time of the Monte Carlo simulation while achieving the same degree 

of accuracy in the estimate of the BER. This is done by biasing the input signal process to 

the system so as to artificially increase the BER. However, during the simulation this bias 

is removed from the estimate of the BER by weighting each error by a weighting function 

w(x) =f;o where fx(x) represents the multi-dimensional p.d.f. of the input vector x 
fx(x) ' 

associated with the biased input signal process and f,(x) represents the p.d.f. of the 

unbiased input signal process. Clearly there is a direct analogy between the IS weighting 

function and the LRWF g(x). In the case of the IS weighting function w(x) the input 

signal process is biased so as to increase the BER of the system being simulated and in 

the case of the LRWF the input signal process is biased so as to increase the probability 

of target occurrence. In both cases the end result is to decrease the amount of run time 

required by the simulation/training procedure. For an excellent review of IS the reader is 

referred to a recent text by Jeruchim, et. al. [2]. 



3.4 Modification of the Backpropagation Algorithm 

Contained in this section is the derivation of a modified form of the backpropagation 

algorithm which includes the LRWF. Here it is shown that the only modification which 

needs to be made is to include the weighting function, g(x), in the computation of the 

error terms associated with the final output layer of the neural network. 

Consider a specific weighted error, Ep, due to the presentation of the input vector p as 

where Ypj is the jth component of the desired output vector due to the presentation of 

input vector p. The output of node j of the output layer, which is the Nth layer, is denoted 

as F;,(X~,W). The LRWF, evaluated at the present input vector, is defined by Eq. (3.8). 

The dependence of FFj on the present input vector xp and the weights, denoted by w, will 

be suppressed in the following notation. 

The input to node j of the rnth layer due to the presentation of input vector p is defined as 



where wm denotes the weight matrix between the mth and the (m-l)th layers of the 

network. Furthermore, the output of node j in the m~ layer due to the presentation of the 

input vector p is defined as 

where f(.) is a continuously differentiable, nondecreasing, nonlinear activation function 

such as a sigmoid. 

The negative of the gradient vector components of the error Ep with respect to nev  are 

given by 

Applying the chain rule allows this partia1,derivative to be written as 

The second factor can be easily computed from Eq. (3.21) as 



which is simply the first derivative of the activation function evaluated at the present 

input to that particular node. 

In order to compute the first term consider two cases. The first case is when the error 

signal is developed at the output layer N. This can be computed from Eq. (3.19) as 

Substituting Eqs. (3.24) and (3.25) into Eq. (3.23) yields 

For the second case, when computing the error terms for some layer other than the output 

layer, the Gpjls can be computed recursively from those associated with the output layer as 

Combining this result with Eq. (3.24) gives 



These results can be summarized in 3 equations. First an input vector, xp, is propagated 

through the network until an output is computed for each of the output nodes of the 

output layer. These values are denoted as F;. Next, the error terms associated with the 

output layer are computed by Eq. (3.26). The error terms associated with each of the other 

m-1 layers of the network are computed by Eq. (3.28). Finally, the weights are updated as 

where q represents the learning rate of the network. Usually q is chosen to be some 

nominal value such as 0.01. 

From [I], it is seen that the only change to the backpropagation algorithm is the inclusion 

of the likelihood ratio weighting function in Eq. (3.26). All other steps of the algorithm 

remain the same. 

3.5 Evaluation of the Likelihood Ratio Weighting Function 

The problem associated with directly evaluating the likelihood ratio weighting function 

given by Eq. (3.8) is that fx(xlHo) and fX(x(H1) must be known. If fx(xlHo) and fX(xlH1) 

were known, one could use a variety of parametric constant false alarm rate (CFAR) 

processing techniques. These techniques employ certain assumptions about the target and 



clutter environment such as assuming that the p.d.f. of the return signal from clutter only 

can be modeled according to a Rayleigh, lognormal, or Weibull distribution[S]. Similarly, 

fluctuations in the target radar cross section (RCS) are often modeled according to one of 

the four Swerling fluctuating target models [S ] .  However, in this case, the generalization 

capabilities of the neural network are used to form estimates to these unknown 

conditional probability density functions based on the training data sets. Therefore, for 

this method it would be desirable to construct a way of evaluating the LRWF which 

makes as little a priori assumptions on the conditional probability density functions as 

possible. That is, develop a non-parametric processing scheme. 

In the remainder of this thesis, the problem is restricted to case depicted in Figure 3.2. 

Figure 3.2 Illustration of target and clutter p.d.f. overlap. 



In the scenario depicted in Figure 3.2, 

where Xf and represent the mean of the target distribution and the mean of the clutter 

distribution, respectively; of and a$ represent the target and the clutter distribution 

variance, respectively. It is assumed that the distributions are fairly well removed from 

one another as depicted above in Figure 3.2, such that Eq. (3.30) is true. This assumption 

is valid since this is the situation created by pulse integration techniques which are 

employed in most modern radar systems. Pulse integration techniques are based on the 

premise that the return signal from background clutter tends to be relatively uncorrelated 

pulse to pulse. By illuminating the target by many pulses and summing over these return 

signals the clutter response can be greatly reduced . With this assumption the evaluation 

of g(x) can be greatly simplified. 

With Eq. (3.30) satisfied, the following can be stated. 

f ~ ( x ~ ~ ) I x  E Target Presen~ a O 

This allows the weighting function to be written as 

, given x E Target Absent (3.34) 

= { P[Hol EI[IL3 , given x E Target Present 
P[HlI 



This expression is used to evaluate the LRWF in all of the computer simulations 

presented in Chapter 4. 

Therefore, the requirement of obtaining expressions for f,(xJ&) and fX(xJH1) has been 

reduced to requiring knowledge of the a prior? probabilities Pa [Ho] and P*[H1]. From Eq. 

(3.34) it can be seen that as the probability of target occurrence, P"[H1], tends to zero the 

function g(x) tends to 

{&  given x E Target Absent 4im g(x) = 
P [HI]->O 

0 given x E Target Present 

From the above observation one would expect a degradation in mapping performance as 

the mapping ratio, defined by 

P[HlI Mapping Ratio I - 
Pa[H1l 

tends towards infinity. This characteristic is depicted below in Figure 3.3. Note that the 

notation 'p - O.XX1 refers to the probability of target occurrance, PIHI] equal to O.XX. 



Mapping Characteristic 

Mapping Ratio ( 

Figure 3.3 Mapping characteristic for several different training distributions. 

From Figure 3.3, one would expect excellent performance for mapping ratios in the range 

of 1.0 to 5.0 due to the linear nature of the characteristic in this region. However, as the 

mapping ratio exceeds this range, the ability of this method to distinguish between 

adjacent mapping ratios becomes increasingly difficult. In the experirnants presented in 

chapter 4, it was found that for a training distribution with PIHl] = 0.248, proper 

mappings were achieved for mapping ratios as large as 31.0. Above this value, little 

control over the probability of detection or the false alarm rate was achieved. 



3.6 Determining the Decision Threshold 0 

Ideally, the decision threshold 8 would be determined in such a manner as to maintain a 

constant false alarm rate regardless of the clutter environment. Also, it would be desirable 

for 8 to be independent of the apriori probabilities PIHo] and PIHl]. 

With the type of likelihood ratio test described in the overview, Section 3.2, these ideals 

are difficult if not impossible to achieve. In order to design a parametric type of CFAR 

processor as discussed in Section 2.2, the probability density function of the likelihood 

ratio itself would have to be known. If this were known one could develop a threshold 

according to Eq. (3.37) below. 

where, 

fll&(.) = Conditional probability density function of the ratio P(Hllx) with 

Ho in effect. 
P(H0lx) 

Z = P(Hllx) Output of Node 1 
P(Holx) Output of Node 0 ' 

This would accomplish our first goal of maintaining a constant false alarm rate invariant 

to the clutter environment, assuming that the data set from which z is drawn adequately 

represents the statistics of the clutter process our CFAR processor encounters. However, 

from Bayes formula it is seen that z is a function of priors. This is illustrated by Eq. 

(3.38). 



Another disadvantage of developing a decision threshold, 8, via Eq. (3.37) is that 

assumptions would have to be made concerning the statistics of the clutter environment in 

order to arrive at a tractable result for the p.d.f, filHo(.). This directly conflicts with one of 

our stated advantages of the neural network technique. Namely, that no such assumptions 

are required regarding the clutter environment. However, the neural network technique 

would be expected to exhibit a more graceful decay in performance as compared to the 

cell averaging CFAR processor when it is operating in a clutter environment which does 

not represent the one assumed during its design. 

From Eq. (3.38) it is straight forward to see that the actual problem faced is that of 

optimizing the threshold choice for a Bayes detector. From previously established theory 

[8], the risk or cost associated with performing a hypothesis test of Hg vs. HI can be 

written as 

R N =  { b P o o  + LloPlo, H = & in effect 

LolPol + LllPll, H = HI in effect 

where, 

Pij = Probability of choosing hypothesis i when hypothesis j is in effect. 

Lij = Loss associated with choosing hypothesis i when hypothesis j is in effect. 



Normally the loss function Lj is set equal to zero for i = j since no loss is incurred for a 

correct decision. 

Averaging the risk function presented by Eq. (3.39) over H = {Ho, HI) and setting Lii = 0 

yields the Bayes risk as 

where pi = P[Hi]. 

The optimum choice of 8 which will minimize Eq. (3.40) is found by first noting the 

following relations. 

Plo = fXlb(x) dx = Probability of False Alam I' (3.4 1) 

Pol = 1 - Probabilityof Detection = 1- fxlH,(x) dx I' (3.42) 

Gathering Eqs. (3.41) and (3.42) into Eq. (3.40) gives 

Eq. (3.43) is minimized by including those measurement vectors x in the range 8 to 

which reduce the Bayes risk, R@). This is done whenever the integrand of Eq. (3.43) is 

negative. Hence the test becomes choosing those vectors such that 



As with this and most other problems it is difficult to assign numerical values to Lol and 

Llo. Opting for the frequent assumption of Lol = Llo = 1 gives a decision threshold 8 = 1. 

3.7 Data Sets Used In Simulations 

In this section, the data sets used to model the return signal from a range-only millimeter 

wave (MMW) radar operating in a heavy clutter environment are described. The specific 

scenario being modeled is that of a lock-on-after-launch (LOAL) air-to-surface missile 

employing the MMW radar to provide high resolution target discrimination for the task of 

stationary target identification (STI) [6 ] .  Our STI model is a simple two-class problem in 

which the objective is to determine which range cells within the maximum unambiguous 

range of the radar contain target returns. 

The operating frequency of the radar was chosen to be 35 GHz due to the increased 

attention to this portion of the electromagnetic spectrum in air-to-surface applications. 

This attention is due to the favorable characteristics of the MMW frequency band such as 

smaller antenna beam-width and higher gain as compared to microwave frequencies, high 

resolution in range and Doppler, reduced electronic countermeasures (ECM) 

vulnerability, and a reduction in multipath and ground clutter at low elevation angles [6 ] .  

The pulse repetition frequency (PRF) of the radar was chosen as 30 lcHz in order to set 

the maximum unambiguous range of the radar to be equal to 5 km. The radar waveform 

itself was chosen as a coherent pulse train with the pulse bandwidth of the radar set equal 

to 30 MHz. The pulse bandwidth of the radar was chosen so as to enable the radar to 



resolve individual point scatterers separated by distances as small as 5 meters. For 

simulation purposes, these specifications fix the size of the array which represents the 

range returns for a single radar pulse to be 2000 elements. Therefore, each element of this 

array represents a single range cell with each cell being 2.5 meters in length. Recall that 

in this application it is assumed that the targets are stationary and as such exhibit zero 

Doppler shift in the return signal. Also, it is assumed that the Doppler shift in the return 

signal caused by the motion of the platfonn upon which the radar is mounted has been 

negated. Hence, every element of our array will be a random variable, r E 8, drawn from 

a probability distribution representing the retum signal from clutter only or target only. 

The terrain which the MMW seeker is traversing is assumed to be that of a heavily 

forested region containing deciduous trees during summer. As such, the region 

illuminated by the radar is assumed to consist of a large number of equally sized point 

scatterers. In accordance with the results of classical radar analysis, the amplitude 

statistics of the return signal from clutter.only are assumed to be Rayleigh distributed. 

Though this is the classical model used at microwave frequencies, it should be used with 

caution in the MMW band. Due to the shorter wavelengths of the MMW band, individual 

point scatterers sometimes appear to have a larger radar cross section (RCS). This 

manifests itself as a longer "tail" in the clutter p.d.f leading to the assumption of a 

lognormal p.d.f. for the higher frequency portion of the MMW band. However, for our 

radar operating in the lower frequency portion of the MMW band, 35 GHz, modeling the 

clutter p.d.f. according to a Rayleigh distribution is still a valid assumption since data 

gathered at this frequency and presented in [4] appears to be closely approximated by a 

Rayleigh distribution. 



The Marcum and Swerling models have been widely used for modeling fluctuating 

targets. However, due to the shorter wavelengths of the MMW band, the target RCS will 

be very sensitive to the viewing aspect angle of the radar. This will cause the target RCS 

to fluctuate rapidly with time. Due to this sensitivity to the viewing aspect angle, the 

Marcum and Swerling models are usually inadequate for the MMW band. Experimental 

results in the MMW band indicate that ground vehicles exhibit a lognormal probability 

distribution of RCS values when all viewing aspect angles are considered [4:1[6]. 

Therefore, we chose to model the cell-to-cell amplitude statistics of the return signal from 

target only according to a lognormal probability distribution. 

The occurrence of targets in range were modeled using a marked point process [9]. At 

every occurrence of a target, a group of four random variables drawn from a lognormal 

distribution were inserted into the array representing the return signal. Therefore, the 

array representing the return signal consists of Rayleigh distributed random variables 

which represent the return signal from clutter only and groups of random variables drawn 

from a lognormal distribution which represent the return signal from target only. Since 

the target return is assumed to be dominant in the presence of clutter, no intermixing of 

the target and clutter returns within an individual range cell was done. Adding the clutter 

return to the target return within an individual range cell would complicate the analysis 

while adding little accuracy to the return signal model. 

A portion of the return signal array at different points in its construction is shown below. 

Note that the targets were modeled to occur at a PIH1] = 0.248 rate with a mean value of 

10.0 and a variance of 25.25. The background clutter process was modeled with a mean 

value of 4.4 and a variance of 5.50. These values give a SCR of 5.0 (6.98 dB). 
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Figure 3.4 Target only return signal. 
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Figure 3.5 Clutter only return signal. 



Radar Signature Simulation 
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Figure 3.6 Target plus clurrer return signal. 



Therefore, the complete data vector can be expressed as 

Yk = (xk, Uk) 7 

where, 
(0,l) Target Present 

Uk = (u~,u:) = Desired Output Vector = { 
(1,O) Target Absent 

xk1[Uk = (0,131 = Sample vector the components of which were drawn from a 
lognormal distribution. 

xk1[Uk = (1,0)] = Sample vector the components of which were drawn from a 
Rayleigh distribution. 

Sample vectors were formed from this data set by including the range sample 

immediately before and after'the present range sample. Thus, each sample vector, xk, was 

formed as 

where xk represents the kth sample vector drawn from the ensemble of all input data 

vectors, X ,  and sk represents the kth range sample which is a random variable drawn 

either from a Rayliegh distribution, representing the return signal from clutter only, or a 

lognormal distribution which represents the return signal from target only. 

As discussed before, the desired output vector which the neural network trains towards is 

denoted as Uk = { q, Ui ) where U; equals 1 when the target is absent, 0 otherwise, 

and Uk equals 1 when a target is present, and 0 otherwise. This fixes the number of 

output nodes of the neural network to be equal to two. The training data set was formed 



by employing a majority voting scheme imposed on the range samples making up a 

sample vector xk. If the majority of the range samples, sk, making up some particular 

sample vector, xk, belong to the class associated with a target present, then Uk = {0,1). 

Otherwise, Uk = {1,0), signifying that a target is absent. 



CHAPTER 4 

RESULTS 

4.1 Introduction 

This chapter begins with Section 4.2 entitled, "Computer Simulations," which discusses 

the computer simulations used to illustrate the performance of the LRWF as well as the 

overall performance of the neural network to correctly detect targets embedded in the 

background clutter process. Presented in Section 4.3, "Performance Testing of the 

LRWF," are the results used to illustrate the success of the LRWF to force the neural 

network to detect targets occurring with probability Pm[H1], probability of target 

occurrence associated with the testing data set, rather than PIH1], which is the probability 

of target occurrence associated with the training data set. Lastly, Section 4.4, "Network 

Performance in a Varying SCR Environment," contains simulation results used to 

illustrate the performance of the neural network trained with and without the LRWF to 

detect targets embedded in a varying SCR environment. 

4.2 Computer Simulations 

The data sets used for training and testing of the neural network were constructed 

according to the descriptions given in Section 3.7. Accordingly, the clutter only signal 

was modeled as a sequence of independent random variables drawn from a Rayleigh 



distribution with a variance of 5.50. Likewise, the target only signal was modeled as a 

sequence of independent random variables drawn from a log-normal distribution with a 

mean value of 10.0 and a variance of 25.0. 

The training of the neural network was canied out using the backpropagation algorithm 

modified as discussed in Section 3.2. Training was continued until the mean square error 

(MSE) between the desired and the actual outputs decreased to some sufficiently low 

value. Testing was done by fixing the weights of the neural network and using the 

network to classify similarly modeled data, similar in terms of the PDFs used to represent 

the target only signal and the clutter only signal. Classification of the individual feature 

vectors, xi, was done by allowing the feature vector Xi to propagate through the network 

until an output is developed at the two nodes of the final output layer. As previously 

shown in Section 3.2, the output of these two nodes represent estimates of the a posteriori 

probabilities PIHo(x] and PIHllx] for nodes 0 and 1, respectively. A ratio test was then 

constructed as shown by Eq. (3.44) and repeated below for the reader's convenience, 

( x :  ~ X I H J X )  PIH11 , -} L10 
fx~b(x) P[HOl Lo1 

where the ratio was set equal to 1.0. The detection rate (PD) was determined as the 
L o 1  . . 

percentage of target range cells which were classified as containing target returns. 

Similarly, the false alarm rate (FAR) was determined as the percentage of the total 

number of range cells falsely declared as containing target returns. 

In order to obtain some degree of confidence in the values of PD and the FAR, the testing 

simulations were allowed to continue until the values of PD and FAR were known to 

three significant figures. This was done by simulating a vast number of radar pulses and 



using the neural network to classify the individual range cells until the following 

condition was satisfied for both PD and FAR [7], 

where, 

N = Total number of pulses simulated thus far 

02 = Variance of either PD or FAR 

E[X2] = Mean squared value of either PD or FAR 

E = Confidence interval 

Since three significant figures were desired in the values of PD and FAR, E was set equal 

to 0.001. 

In the beginning, many different neural network architectures were investigated, ranging 

in complexity from single hidden layer networks containing as few as 47 weights to as 

many as 302. However, the experiments with single hidden layer networks were 

unsuccessful in that reasonably low values of PD and FAR were unable to be achieved, 

with or without the use of the LRWF, for events occurring with low probability ( Ppo] s 

0.03 ). However, by using networks with 2 hidden layers, where the number of weights 

ranges between 65 and 317, reasonably stable results for PD and FAR were obtained. 

The experimantal results which follow were obtained using a network with 3 nodes in the 

first layer, 12 nodes in the second and third layers, and 2 nodes in the final layer output 

layer. This network was chosen since we found little improvement in the values of PD and 

FAR for networks of higher complexity. 



4.3 Performance Testing of the LRWF 

Presented in this section are the simulation results contrasting the performance of a 

conventionally trained neural network (i.e., no LRWF incorporated in the training 

algorithm) to a neural which incorporated the LRWF into its training algorithm. Table 4.1 

illustrates the failure of the conventionally trained neural network to correctly classify 

targets occurring with low probability when the network was trained using a data set for 

which PIH1] = 0.248. The total number of feature vectors making up the training set was 

set equal to 2000. 

Table 4.2 presents results which illustrate the performance of a conventionally trained 

network for which P*[H1] = PIH1]. Note that during the training of each network the total 

number of range cells representing the target signature was held constant at 496. In order 

to do this, the total number of feature vectors making up the training set ranged from 

2000 to 31,000 so as to generate the desired value of PIH1]. Note that we were unable to 

train the network to recognize targets for which the probability of target occurrence was 

less than 0.016. 

Table 4.3 illustrates the performance of the network which results from incorporating the 

LRWF into the backpropagation algorithm. The training distribution was one for which 

PIH1] = 0.248 and the LRWF was used to perform the mapping to a space with a low 

value of Pa[H1]. The initial training distribution was made up of 2000 feature vectors. 

Note that these results were obtained while attempting to maintain a constant value of PD. 

Lastly, Table 4.4 illustrates the performance of the network which results from 

incorporating the LRWF into the backpropagation algorithm while attempting to maintain 

a constant value of FAR. As before in Table 4.3, the initial training distribution is made 

up of 2000 feature vectors with a value of PIHl] = 0.248. 
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Table 4.1 Failure of conventionally trained network for the case P0[Hl] << PIHl]. 

t 

P[Hl I 

0.248 

0.248 

0.248 

0.248 

0.248 

0.248 

0.248 

0.248 

P* [H 11 

0.248 

0.124 

0.048 

0.024 

0.016 

0.012 

0.010 

0.008 

PD 

0.766 

0.844 

0.921 

0.948 

0.967 

0.971 

0.981 

0.981 

FAR 

0.079 

0.140 

0.264 

Training 
Information 

'1 - 0.01 
MSE = 0.0789 

q - 0.01 
MSE = 0.0789 

'1 - 0.01 
MSE = 0.0789 

0.375 

0.453 

0.490 

0.544 

0.566 

q - 0.01 
MSE = 0.0789 

'1 ' O.O1 
MSE = 0.0789 

q - 0.01 

MSE = 0.0789 

q - 0.01 

MSE = 0.0789 

'1 - 0.01 
MSE = 0.0789 



5 0 

Table 4.2 Performance of conventially trained network for the case P*[Hl] = PIHl]. 

Training Information 

q - 0.01 
MSE = 0.0789 

q = 0.01 
MSE = 0.0269 

q - 0.01 
MSE = 0.0468 

? - 0.01 

MSE = 0.0239 

q = 0.01 

MSE = 0.0171 

FAR 

0.079 

0.075 

0.076 

0.079 

0.122 

 HI] 

0.248 

0.120 

0.048 

0.024 

0.016 

P*[HII 

0-248 

0.120 

0.048 

0 ~ 0 2 ~  

0.016 

P~ 

0.766 

0.740 

0.737 

0.724 

0.797 



Table 4.3 Network performance with -LRWF while attempting to maintain a 
constant value of PD. 

FAR 

0.079 

0.091 

0.096 

0.115 

0.115 

0.115 

0.114 

0.112 

PD 

0.766 

0-767 

0.761 

0.762 

0.770 

0.761 

0.756 

0.751 

Training 
Information 

q - 0.01 

MSE = 0.0789 

q - 0.01 
MSE = 0.0905 

?I-0.01 
MSE = 0.1172 

q = 0.01 
MSE = 0.1460 

q - 0.01 
MSE = 0.1596 

r1 = 0.01 

MSE = 0.1709 

q = 0.01 
MSE = 0.1704 

q-0.01 
MSE = 0.1823 

P[HI 1 

0.248 

0.248 

0.248 

0.248 

0.248 

0.248 

0.248 

0.248 

P*[%IWOI 

1 .OOO 

1.165 

1.264 

1.298 

1.308 

1.314 

1.316 

1.319 

P* [H,] 

0.248 

0.124 

0.048 

0.024 

0.016 

0.012 

0.010 

0.008 

P*[HIYP[HI I 

1 .OOO 

0.500 

0.193 

0.0968 

0.0645 

0.0484 

0.0403 

0.0323 



Table 4.4 Network performance with LRWF while attempting to maintain a 
constant value of FAR. 

P[HI 1 

0.248 

0.248 

0.248 

0.248 

0.248 

0.248 

0.248 

0.248 

P* [HI I 

0.248 

0.124 

0.048 

0.024 

0.016 

0.012 

0.010 

0.008 

P*[HOIP[HOI 

1 .OOO 

1.165 

1.264 

1.298 

1.308 

1.314 

1.316 

1.319 

P*[HIP[HI I 

1 .OOO 

0.500 

0.193 

0.0968 

0.0645 

0.0484 

0.0403 

0.0323 

P~ 

0.766 

0.753 

0-737 

0.715 

0.705 

0.703 

0.695 

0.688 

FAR 

0.079 

0.080 

0.076 

0.081 

0.080 

0.082 

0.079 

0.078 

Training 
Information 

q - 0.01 
MSE = 0.0789 

q - 0.01 
MSE = 0.0867 

tl-0.01 
MSE = 0.1258 

q - 0.01 
MSE = 0.1556 

q - 0.01 
MSE = 0.1668 

q - 0.01 
MSE = 0.1789 

q - 0.01 
MSE = 0.1876 

q - 0.01 
MSE = 0.1849 



Figure 4.1 Contrasting performance in terms of thePo values presented in Tables 4.1 
thru 4.4. 



Figure 4.2 Contrasting performance in terms of the FAR values presented in Tables 4.1 
thru 4.4. 



4.4 Network Performance in a Varying SCR Environment 

The results presented in this section illustrate the classification performance of the 

network with and without the LRWF in a varying SCR environment. For each case, the 

training distribution was constructed in such a manner as to a SCR equal to 5.0 (6.98 dB). 

This value of SCR the assumptions made in Section 3.5 concerning the simplification of 

the LRWF, g(x), are valid. Values of SCR below below 5.0 were found to give 

unsatisfactory performance in both the training and testing phases. The training data set 

was also constructed to produce have the probability of target occurance equal to PIHl] = 

0.248. As before in Section 4.3, the network itself was structured to have 3 nodes in the 

first layer, 12 nodes in the second and third layers, and 2 nodes in the fourth layer. 

The results presented in Table 4.5 illustrate the performance of the convetionally trained 

neural network in a varying SCR environment for the case P8[H1] = PIHl]. 



Table 4.5 Performance of convetionally trained neural network in a varying 
SCR envirionment. 

The results presented in Table 4.6 illustrate the performance of the neural network in 

varying SCR environment while incorporating the LRWF to perform a mapping from the 

training distribution for which PIH1] = 0.248 to the testing distribution for which P'[HI] 



Table 4.6 Performance of the neural network in a varying SCR environment 
while incorporating the LRWF. 

1 For these values of SCR the FAR was less than 0.001 

2 For these values of SCR the FAR was equal to zero, 
i-e., no false alrams occured during the entire simulation. 
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Figure 4.3 Contrasting conventional and LRWF performance in terms of Po 
over a 30 dB range of SCR. 



CHAPTER 5 

CONCLUSIONS AND RECOMENDATIONS 

5. 1 Discussion 

The results presented in Table 4.1 were obtained by training the network on a data set 

where the probability of target occurrence, PIHI], was set equal to 0.248. This same 

network was then used to classify an identically modeled data set where the probabilities 

of target occurrence, Pe[H1], are those listed in Table 4.1. For the classification scheme 

described by Eq. (3.44), these results indicate that, as the value of P*[H1] decreases, the 

values of PD and FAR increase. This result is to be expected by considering the likelihood 

ratio given by Eq. (3.44) and repeated below as Eq. (5.1). 

From Eq. (5.1) it is easily seen that when the network is used to classify targets occurring 

with probabilities Pe[H1] given in Table 4.1, the likelihood ratio will become positively 

biased. This is due to the network expecting to classify data for which the probability of 

target occurrence is equal to PIH1] when in fact the probability of target occurrence is 

equal to Pb[HI], where P*[HI] << PIHl]. This positive bias is reflected in Table 4.1 by 



The results presented in Table 4.2 were obtained by training and testing the neural 

network utilizing data sets with a low probability of target occurrence. In order to 

correctly contrast these results to those presented in Tables 4.3 and 4.4, the training set 

was expanded to consist of many simulated radar pulses so as to keep the total number of 

range cells containing target returns constant at 496 which equals the total number of 

range cells containing target returns for the case P8[Hl] = PIHl] = 0.248. These results 

were obtained so as to provide a benchmark of performance against which the results 

obtained utilizing the (LRWF) could be compared. However, we were unable to 

successfully train the network to recognize events occurring at rates below 0.016 using 

this method. Note the increase in memory requirements as the value of P8[HI,] is 

decreased from 0.248 to 0.016 which corresponds to an expansion in the size of the 

training data set from 2000 to 31,000 input vectors. 

The results presented in Tables 4.3 and 4.4 illustrate the performance of the network 

when trained utilizing the LRWF. The results presented in Table 4.3 represent an attempt 

to maintain a constant value of PD equal to that obtained for the case PIHl] = P8[Hl] 

while noting the resulting values of FAR. Similarly, the results presented in Table 4.4 

represent our attempt to maintain a constant value of FAR equal to that obtained for the 

case PIHl] = P8[Hl] while noting the resulting values of PD. Ideally, we desire to be able 

to train the network utilizing the LRWF so as to be able to classify data with a much 

lower value of P8[H1] while still preserving the performance of the baseline case PIH1] = 

P8[H1] in terms of the values for both PD and FAR. By examining the results presented in' 

Tables 4.3 and 4.4, one can see that we were able to accomplish our goal only partially in 

that we were able to achieve the desired value of PD at the expense of an increase in the 

value of FAR. Similarly, we were able to achieve the desired value of FAR at the expense 



of a reduction in the value of PD. Therefore, a tradeoff situation exists between the values 

of PD and FAR. If training was allowed to continue in search of the minimum achievable 

value of MSE between the desired and the actual outputs, the value of PD will be 

comparable to the baseline case of PIH1] = P*[H1] at the expense of an increase in the 

value of FAR. However, if training of the neural network was suspended once the MSE 

between the desired and the actual outputs ceases to change by an appreciable amount, 

the weights matrices which result would be to maintain a value of FAR comparable to the 

baseline case of PIH1] = Pe[H1]. 

When contrasting the results presented in Tables 4.1 through 4.4, it is interesting to note 

the close similarity between the results presented in Tables 4.2 and 4.4 as well as their 

associated plots in Figures 4.1 and 4.2. These results show that by including the LRWF in 

the backpropagation algorithm it is possible to achieve relatively the same performance as 

the conventionally trained network with far less training time due to the reduced size of 

the training set. Also, it was mentioned that we were unable to successfully train the 

conventionally trained network to recognize targets occurring at rates below 0.016. This 

is due to the reduced number of target samples as compared to the size of the entire data 

set. Therefore, as illustrated in Tables 4.3 and 4.4 the LRWF offers the means to train a 

neural network to recognize targets which occur with low probability by keeping the ratio 

of targets samples to clutter samples relatively independent of the desired value of 

P*[HlI. 

Upon comparing the curves labeled Table2 - Pd' and 'Table4-Pd' in Figure 4.1, we see 

that we actually have superior performance in terms of PD for mapping ratios in the range 

zero to five. This conesponds directly to the performance predicted by the curves 

presented in Figure 3.3. 



The results pertaining to network performance in a varying SCR environment presented 

in Section 4.4 seem to indicate that the network trained utilizing the LRWF produces 

higher values of PD and lower values of FAR as compared to the conventionally trained 

network over most of the 30 dB SCR range for which results were obtained. However, 

examination of Figure 4.3 reveals disturbing results obtained from the LRWF trained 

network for SCRs less than 6.98 dB, the value of SCR for the training data set. Recall 

that in order to simplify the evaluation of the LRWF it was assumed that little overlap 

existed between the PDFs of the target and clutter distributions. As the SCR is decreased, 

this assumption is no longer valid explaining the degradation in network performance for 

decreasing SCR. 

For the conventionally trained network, we see that the probability of detection increases 

with decreasing SCR. By refemng to Figure 4.4 it can be seen that this increase in PD is 

accompanied by a substantial increase in the FAR. Therefore, as the noise level is 

increased the conventionally trained network is unable to differentiate between the target 

and clutter distributions. For the network trained utilizing the LRWF some degree of 

discrimination between target and clutter distributions is preserved, though a marked 

increase in FAR still occurs. 

For increasing values of SCR it is seen that the LRWF trained network produces zero 

false alarms during simulations for SCRs in the range 21 dB to 30 dB while the 

conventionally trained network produced a FAR equal to 0.001 over this same range of 

SCR. Note, however, that these results were obtained to three significant figures only. In 

order to properly evaluate values of FAR less than 0.001 more exhaustive simulations 

would be required. 



5.2 Conclusions 

The results presented in Section 4.3 clearly indicate the value of LRWF as a tool capable 

of significantly reducing the training time of a neural network to detect targets (or events) 

occurring with low probability. The capability of a neural network to perform the task of 

stationary target discrimination is also evident in Figures 4.3 and 4.4. The network is 

capable of maintaining a reasonably high detection rate and a relatively low FAR over a 

wide SCR environment. 



CHAPTER 6 

FUTURE RESEARCH 

6.1 Discussion 

Our future research will be primarily directed towards generalizing the LRWF to an N 

class pattern recognition problem with each class occurring at an equally likely rate. As 

the number of classes, N, increases the probability of some ih class occurring decreases. 

This, of course, increases the size of the training data set for the neural network. We hope 

to show that by incorporating the LRWF into the backpropagation algorithm for a general 

N class problem, we will be able to increase the ability of the neural network to correctly 

classify each of the N classes while at the same time reduce the computational overhead 

of the entire training procedure. 

Specifically, we plan to first generalize the proof presented in Section 3.3 of this thesis to 

that of an N class problem. Modification of the backpropagation algorithm to incorporate 

the LRWF will remain the same. Next, we plan to simulate the performance of the 

generalized LRWF (GLRWF) by first generating a sixteen class data set, each class being 

distributed according to a Gaussian distribution with a distinct mean and variance. A 

neural network with an appropriately chosen architecture will then be trained to classify 

this data set using our modified version of the backpropagation algorithm. Once the 

neural network has been trained, it will be tested on a similarly generated data set in the 



manner described in Section 4.2 of this thesis. These results will then be compared to 

those obtained from a similarly structured neural network whose training algorithm does 

not incorporate the GLRWF. These results will be compared in terms of classification 

performance and required CPU time for training. Note that two figures will be obtained 

for the classification performance and the required CPU time for training. The first will 

be for the case where the training data set will be identical to that used for the network 

which incorporates the GLRWF. The second will be for the case where the training data 

set is expanded so as to increase the classification performance to the level obtained 

utilizing the GLRWF. 
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