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ABSTRACT

The problem which motivated this research was that of stationary target identification
(STI) with millimeter wave seekers in a heavy clutter environment. While investigating
the use of neural networks to perform target discrimination phase for STI problem, we
began to search for a method to reduce the computational overhead associated with
training a neural network to recognize low probability events. Our search yielded the
development of alikelihood ratio weighting function (LRWF), which isvery similar to
the weighting function used in importance sampling techniques employed in the
simulation of digital communication systems. By incorporating the LRWF into the
backpropagation algorithm, we were able to significantly reduce the computational
burden associated with training a neural network to recognize events which occur with
low probability. This reduction in computational overhead is realized due to the reduction

in the size of the data sets required for training.




CHAPTER 1
| NTRCDUCTI ON

1. 1 Introduction

The stationary target identification (STI) problem can be divided into three distinct
phases, namely: (1) detection, (2) discrimination, and (3) recognition. The detection
phase is a term used to describe the process by which the presence of a target is sensed
while the return signal from the target is embedded in the presence of background clutter,
atmospheric noise, and/or noise generated within the radar receiver itself. Potential
targets of interest are usualy separated from the noise and clutter returns by various
constant false alarm rate (CFAR) processing techniques. The discrimination phase
distinguishes between actual target returns and strong target-like clutter returns which
were passed as potential targets during the detection phase. The recognition phase, the
most demanding of waveform and signal processor design, identifies the targets of

interest from the features gathered from the return signal during the previous two phases.

The research presented in this thesis focuses on the detection phase of the overall STI
problem. As previously mentioned, the detection phase of the STI problem is usually
implemented in the form of a CFAR processor. There are generally two classes of CFAR

processors, parametric and non-parametric, which is sometimes called a distribution free



CFAR processor. A parametric CFAR processor is one which is specifically designed for
an assumed clutter distribution and which performs well with this type of interference.
However, a non-parametric CFAR processor, which is not designed for a specific clutter
distribution, works fairly well for a wide variety of clutter distributions. The parametric
CFAR processor exhibits superior performance over non-parametric techniques if the
clutter environment is known and uniformly homogenous. However, if the clutter
environment is unknown or contains many transitions from one type of distribution to

another, the non-parametric CFAR processor would be the better choice.

The approach presented in thisthesis involves using a neural network to construct a non-
parametric CFAR processor. A neural network is used to form a weighted least squares
estimate of the probability of a target being present or absent while the target return
signal isembedded in a background clutter process. These estimates are used to construct
alikelihood ratio test with afixed thresnold which is calculated in such a manner as to

minimize the Bayes risk.

1.2 Outline of Thesis

Chapter 2 discusses parametric and non-parametric CFAR processing techniques in
preparation of contrasting their performance to that of a neural-network based classifier.
Chapter 3 presents the neural network non-parametric processor. Contained in this
chapter are discussions regarding training procedures, adaptive thresholding, and data sets
used in computer simulations. Chapter 4 contains the results of the computer simulations
with the neural network classifier. Presented in chapter 5 are discussions contrasting the

performance of the neural network classifier to that of alinear detector for the case of



CHAPTER 2
LITERATURE REVI EW

2.1 Introduction

This chapter is a review of the most common types of parametric and non-parametric
CFAR processors, namely, the cell averaging CFAR processor and the sign detector
CFAR processor. While the parametric CFAR processor performs superior to the non-
parametric CFAR processor when operated in the assumed clutter environment, its
performance rapidly degrades when the actual clutter environment does not correspond to
the one assumed when the processor was designed. This is the advantage of the non-
parametric CFAR processor which makes weak assumptions about the statistics of the

clutter environment within which it will be operating.

2.2 Parametric CFAR Processor

One of the most common parametric CFAR processors is the cell averaging CFAR
processor. The cell averaging CFAR processor provides estimates of the linear detection
thresholds, T, by forming an estimate of the expected value of the decision statistic
E[DIn], for the resolution cell under test while al potentia targets are assumed absent.
This estimate is formed by averaging the decision statistics, D|n, of the resolution cells
leading, trailing, or surrounding the cell under test.



In order to perform the required analysis to determine an expression for the detection
threshold T, it is usually assumed that the targets of interest are being detected in an
exactly known additive white Gaussian noise environment[5][6]. With this assumption,
the output of the matched filters, which are matched to the in-phase and the quadrature
components of the return signal, will also be Gaussian random variables in the case of
target absence. These samples are then passed through an envelope detector to form the

decision statisticfor the it resolution cell (range-Doppler) as
D;=+~I?+Q?, (2.1)

where Dj, I;, and Q; represent the envel ope sample, in-phase component, and quadrature

component associated with the it resolution cell respectively.

From basic probability theory we know that D; will be a Rayleigh distributed random
variable with a probability density function of

D2

%ie'(zé) ,D;20 2.2)

fo(D) = o
0 s Di <0

where o2 isthe variance of the Gaussian random variablesI; and Q; . Also, D; isasample
drawn from the clutter envelope given by Eq. (2.1) under the assumption of no target

present.

Under the assumption of a target present, the mean of the resulting process will generally
be greater than the mean of the clutter only process.-Thisis depicted below in Figure 2.1

where fp(D) represents the conditional probability density function of the envelope



sample D and fpjy(D) represents the conditional probability density function of the

envelope sample under the assumption of atarget present.

A 15 () | fpi(P)

—
j~- Decide target #™f=®— Decidesignal present D
not present T
Pfa Pd

Figure 2.1 False alarm and detection probabilities.

Hence, the threshold required to obtain a given value of false alarm probability can be
calculated as

o o]
Pg, = f (D) dD
T

(e
=-€ (203 )IT
_— e ———

T = +/-2 02Ln(Ps,)

(2.3)



The mean of aRayleigh distributed random variable can be expressed as

E[Dn] =\f%— . (2.4)

Hence, the result produced by Eq. (2.3) can be expressed as

T = E[Dfn]y/ ';I Ln(Ps.) - (2:5)

Thus, we have reduced the problem of finding an estimate of the optimum threshold, T,
for agiven value of Py, to that of forming an estimate of E[D|n].

Since the in-phase and quadrature components are assumed to be drawn from an
unvarying white Gaussian noise environment, the samples, D;, drawn from the clutter
envelope are taken to be independent identically distributed (i.i.d.) random variables.
However, in practical environments the Rayleigh parameter, o, will vary with time
according to the terrain, weather conditions, etc. ... Therefore, the statistics of the clutter
samples can only be viewed as locally stationary in the neighborhood of the resolution
cell under test. An estimate of E[D|n], denoted as E'[DJn], is then formed as the sample
mean of the resolution cells in the vicinity of the resolution cell under test. These
estimates are then used to form an estimate of the value of the detection threshold, T,

given by EqQ. (25) as

T = EYD; o]y 2 Lo(®s) , (2.6)

where E'[D|n] isformed as the sample mean given by



single pulse detection in termsof the probability of detection,false alarm rate, and signal

to noise ratio (SNR). Lastly, presented in chapter 6 is a discussion of future research.



K

E'[D|n] = f1<-2 D; . 2.7)
i=1

The value of K in the above equation representsthe CFAR window size. That is, the tota
number of samples used to construct an estimate of E[D|n]. A block diagram

representation of a cell averaging CFAR processor isshown below in Figure 2.2.

L Single Pulse
» Linear
Matched filter Detector

output for the ith D¢ | | D | | D,
resolution cell > Di='\/[i2+Qi2

Form Sample Mean
E'[D|n]
al=4 1 r—
v n Lll\rf Co —
—— mpare D=T Target Present
D
T D<T Target Absent

Figure22 Single-pulselinear detector with cell-averaging CFAR.



2.3 Non-Parametric CFAR Processors

The fundamental structure of non-parametric detectors involves the transformation of a
clutter or noise only input data set into a decision statistic that can be compared against a
fixed threshold to establish a constant false alarm rate under weak assumptions on the
statistical character of the background noise or clutter environment. Transformations
accomplishing this function generally out perform an optimal parametric detection
strategy derived under more strict conditions imposed on the background clutter process

when the more strict conditions are false.

Generally, most non-parametric detection strategies are modifications of the sign detector
(5] The sign detector operates by providing a test for the positive median shift in the
return signal under the condition of atarget being present. However, to accomplish this
test, the sign detection strategy assumes that the phase of the return signal is known
exactly. Since this is not possible in a practical radar system, most realizable non-

parametric detection strategies are sub-optimal modifications of the sign detector.

Since the sign detection strategy is used in conjunction with coherent and non-coherent
pulse train signals, these signals can be defined asfollows. Suppose that si(t), i =1, ... , N
Is a coherent or a non-coherent pulse train of N received, narrow-band, radar signals of
constant width and pulse repetition interval. Further suppose that s;(t) represents the radar

signature of the target of interest. Thesignal s;(t) can be expressed as

sih=Acos (gt +¢;)) (-DIpsts((-DIp+t (2.8)



10

where,
A = Amplitudeof thei® pulsefor a non-coherent or coherent pulsetrain
wq = Doppler frequency in the return signal
¢; = Phaseof theith pulse
T, = Pulserepetition interval

Pulsewidth .

|
I

Define the signal which is actually observed as vi(t), i = 1, ... , N, where v;(t) represents
the ith observation taken in some range cell following the transmission of theith pulseof a
coherent or a non-coherent pulse train. Thissignal can now be expressed in termsof the

return signal from a potential target, si(t), as

s()+n() if atargetsignal ispresentin the (2.9
vi(t) = range cell under test
l n;(t) if atarget signal isabsentin the

range cell under test

where n;(t) represents the background clutter processin the range cell under test over the

ith single-pul se observation interval.
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r(i-l)Tpox
w; = vi(t)si(t) dt
vi(t) "
i=1,..,N Filter
| matched /. | Form u(w;)
to 5;(t) sample at
t=0-DT, + 1
i=1,..,N
Dz=T Targa Present
Compare
D
T
Solve D<T | Target Absent
N —N!
- N
Pra = (1/2) 2, K(NK)!
for T

Figure 2.3 Block diagram representation of a Sgn detector.
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Refer to Figure 2.3, the block diagram representation of a sign detector. From Figure 2.3,
it is seen that vi(t) is first passed through a matched filter which is matched to the return
signal from the target of interest, si(t). This matched filtering operation is equivaent to
that of arunning time correlator when the output of thefilter issampled at t = (i-1)T, + <
for i =1, ..., N which effectively issampling a times of maximum correlation with the
signal s;(t). For detection within the current test cell, let w; denote the ith sample of the

matched filter output. This can be expressed as

(-1)Tp+ 1
w; = K f vi(Ds;(t) dt, 2.9

i-1)Tp

where x denotes the gain of the matched filter. The sampled signal, w;, is then passed

through the function u(w;) which isdefined as
1 ifw;2 0 (2.10)
u(wy = 0 dse

This function effectively quantizes the existence of a positive correlation between the
observed signa vj(t) and the signal of interest s;(t). These values are then summed over

each pulse of the entire pulsetrain to form the decision statistic D.

In order for the sign detector to be on optimal Bayes' detection strategy, the following

assumptions must be made.
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1 wj|n, which denotes thei* sample of the matched filter output under the assumption
of no target present, must be a set of independent identically distributed random

variables.

2. The probability density function of w;n haszero median value.

(i-1)Tp+~
3. Kf s¥(t) dt is constant for all i.
(

i-1)Tp

Under the first assumption, the decision statistic, D, will on average be equal to N/2 in
the case of s;(t) being absent from the current range cell under test. This conclusion stems
from the background noise process, n;(t), showing positive correlations with s;(t) with
probability 1/2. Hence for the case of s;(t) being absent from the current range cell under
test, the formation of the decision statistic D can beviewed asa "coin-flipping" situation.
For afair coin, which corresponds to the background noise process n;(t), the coin will

show headsor tails (positive or negative correlation) with a probability of 1/2.

Consider the following expression for w; and recall that it was assumed that the

probability density function of w;ijn haszero median value.

(-DTp+7
(*D)Tp+ < Kf(i-l)T ni(t)si(t) dt (2.11)
w; = K I vi(si(t)dt = P
-DTp (i-l)Tp +T (i-l)Tp +T
xf s2( dt.x j n;(Vs;(2) dt
(-DTp G-DTp
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Clearly from Eq.(2 11) it is apparent that the median value of wily will be greater than
the median value of wi|n which is assumed to be equal to zero. It is this positive shift in

the value of w; which the sign detection strategy is designed to detect.

Also under the first and third assumptions it can be shown [ 5] that the sign detector
defined by Eq.(2 15 is equivalent to a Bayes' likelihood ratio test. Hence the sign
detector depicted in Figure 3 is an optimal Bayes detection strategy.

The problem now becomes one of choosing the proper threshold T with which to
compare to the decision statistic D in order to obtain some desired value of the false

alarm rate Pg,.

Since wi, i=1, ... , N, are assumed to be independent, identically distributed random
variables, it follows that the decision statistic D can be characterized by a binomial

distribution with parameter p as
Pr(D =k) = k!(%fpka-p)h'-k k=0,1, .-, N, (2.12)
where the parameter p isdefined as
p = Pr(w;>0) . (2.13)

For the case of no target present, the values of w; will be greater than zero with

probability 1/2. Therefore, the threshold T can be determined by the solution of
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P, = Pr(D = T | notarget presnt)
= z k'(N k)' pk(l-P)Nik

E —Lk)'—(lﬁ)"‘

(2.14)
(1/2)N2 o (N o

With both the decision statistic D and the value of the threshold T determined, the

presence o absence of atarget within the range cell under test is determined as

If D =T then decide atarget ispresent (2.15)
elsedecideatarge isabsent



16

CHAPTER 3

A NEURAL NETWORK APPROACH TO STATIONARY TARGET
DISCRIMINATION

3.1 Introduction

This chapter is organized seven sections, the second of which, Section 3.2, contains a
description of the proposed target discrimination scheme. |ssues addressed in this section
includes the training/testing data sets, training of the neural network, what quantities are
actually being estimated by the neural network, and how these quantities are used to
implement an optimal Bayes detection strategy. Contained in Section 3.3 isthe derivation
of the likelihood ratio weighting function (LRWF) which, when incorporated into the
training algorithm, allows for a reduction in the size of the data sets used for training.
Presented in Section 3.4 is a description of the modifications made to the training
algorithm which were required in order to incorporate the LRWF. Section 35 contains a
discussion of the weak assumptions made regarding the conditional probability density
functions of the return signal with target present or absent. These assumptions alow the
LRWF to be expressed in terms of the a prwri probabilitiesof target presence or absence
in the training and testing data sets. Presented in Section 3.6 is a discussion of the
likelihood ratio test used to form an optimal Bayes detection strategy. This chapter
concludes with Section 3.7 which contains a description of the data sets used to model the

return signal from arange-only millimeter wave radar.
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32  System Overview

P(H, |xy)

Multilayer y B if B> 6 Target Present

Xy = [Sj - Sk ++ Sian)
_— Neurd
Network
: else Target Absent

P(Hy|x,)

Figure 3.1 Schematic diagram of the proposed target discrimination scheme.

In the above figure the input training/testing vectors of the neural network, xx, k=1... n,
consist of samples drawn from a statistical model of the return signal from a range only
radar. This model, which is described in detail in Section 3.7, isbased on the input vector
xx and the desired output vector Ug. The data vector Yy generated by concatenating xx

and Uy can be written as
Yi = (xx, Uk), (3.1)

where,

(0,1) Target Present (3.2)

Uk = (U, Uk) = Desired Output Vector = {
(1,0) Target Absent
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Also note that the conditional probability density function (p.d.f.) of x,|Ux = (1,0) and the
conditional p.d.f. of x¢|Ux = (0,1) are distinct.

The training of the multi-layered neural network is carried out with the backpropagation
algorithm. The backpropagation algorithm is a supervised learning algorithm involving
the presentation of input/output pairs (xx,Ux). The algorithm attempts to minimize the
square error between the desired output vector, Uy, and the actual output vector. By so
doing, the algorithm actually forms a mean squared error estimate of the conditional
probabilities P(H;|x) where the vector x is a sample drawn from the ensemble of all

possibleinput vectors x.

After the network has been trained, the weights matrices are held fixed, and the network
isused to classify the current range cell of the input vector xy according to target presence
or absence. This is done by using the estimates of the conditional probabilities P(H;|x)
and P(Holx), where Hy and H; represent the hypothesis of target absence or presence
respectively, to form alikelihood ratio test. The likelihood ratio test formed by taking the
ratio of P(H;|x) to P(Ho|x) is actually a Bayes detector. If the losses associated with an

incorrect decision are expressed as,

Ly = Loss associated with deciding Hy when Hy isinforce

L10 = Loss associated with deciding H; when Hg isinforce,

and the losses associated with a correct decision are both set equal to zero, Log = L33 =0,

the resulting likelihood ratio test isactually an optimum Bayes detection strategy with the

Bayes risk minimized for a threshold choiceof 8 = iil
10
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There are, however, problems to be faced when implementing this scheme. The first and
obvious problem is that of training the neural network. If the neural network is to be
trained to operate in a realistic scenario, the size of the required data sets will become
cumbersomely large. Thisis due to thelow probability of target occurrence, P[H;], in any
realistic scenario. This problem led to the development of a technique which allowsone
to train the neural network utilizing data sets with a much higher P[H;], but the same
network can be used to classify data with a much lower value of P[H;]. This technique,
which isvery similar to importance sampling (1S) techniques used during the simulation
of digital communication systemsto estimate bit error rates (BER), will reduce the size of
the required data sets and result in a substantial savings in the computational overhead
during the training procedure. This technique involves constructing a likelihood ratio
weighting function (LRWF) which, when incorporated into the backpropagation
algorithm, forces the agorithm to form its estimates of the conditional probabilities of
target presence and absence asif the targets were occurring with a probability of P*[H;]
rather than the probability of target occurrence associated with the training data set,
P[H;].

3.3 Derivation of the Likelihood Ratio Weighting Function For aTwo Class
Problem

Assuming a two class problem, target present/absent, define the kth, k = 1, ..., n,

complete data vector as

Yk = (%, U » 3.3)

where,
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Ur = (UL, U}) = Desired Output Vector = { (0:1) Target Present (3.4)
(1,0) Target Absent

Also note that the conditional probability density functions (p.d.f.) of the input vectors

xk|[Ux = (0,1)] and x|[Ux = (1,0)] are distinct. Furthermore, define the ensemble of all
possible input data vectors as ¥, where theset { xi|[Ux = (0,1)] U x4|[Ux =(1,0)] } <x.

Define the outputs of nodes 0 and 1. of the multilayer neural network as

0 Target Present (3.5)
Fo(xi;w) = { 1 Target Absent

1 Target Present (3.6)

Fi(xew) = { 0 Target Absent

where Fi(xx,w) € R, 0 s Fi(xx,w) s 1, and w represents the weights matrices of the
neural network.

As an example of supervised learning based on least-squares, the backpropagation
algorithm will be used. The backpropagationalgorithmis a supervised learning algorithm
involving the presentation of training and testing sets of input and output patterns. The
algorithm attempts to minimize the square error given by the actual and the desired
output values summed over the output nodesand all training pairs of input/output vectors
[1]. Using the previoudly established notation, for a network with two output nodes this

error can be expressed as[3]

n

By =L 3 [Folsow) - U’ P+ Bilw) - U ' P (37)
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where n represents the total number of vectors contained in the training set. Eq. (3.7)
represents the error to be minimized in the least squaressense. It will be modified below

by the LRWF in the weighted least squares sense.

Define the LRWF as

_fx(®) _ P*[Ho] fx(x/Ho) + P"[H;] fx(x[H1)
8X) = £ ()~ P[Holt(xHo) + PH] fx(xH) 3-8

where f,(x) representsthe probability density function (p.d.f.) of x, x < x, for the training
set; fx(x) represents the p.d.f. for the testing set; P[Hg] and P[H;] are the a priori
probabilities of target being absent and present, respectively. Note that P*[H;] « P[H;] in

the present application.

The backpropagation algorithm will be modified by minimizing the new error function

defined as

[(Folxi,w) - Uy’ )? + (Fi(xuw) - Uy *)1g(xy) - 3.9

(W L]

Eyw)=1

k

1

In thisway, the neural network can be forced to form its mean-square error estimates of
P[H;|x] according to the testing distribution fx(x) rather than the training distribution

fx(x). Below, it is shown theoretically why thisis the case.

The average error over the entire ensemble, E¢(w), can be defined as



Eq(w) = Lim Ex(w),

e (3.10)
where 'n' represents the total number of vectors contained in the training set. Since the
backpropagation algorithm seeks a minimum of the function E’s‘(w), the algorithm will
also form an estimate to the minimum value of Eg(w). The accuracy of this estimate
depends upon how accurately the training set models the actual statistics of the ensemble
x. If the training set poorly represents the statistics of ¥, the minimization of E‘s‘(w) will
not correspond to a minimization of E¢(w), and poor classification performance during

testing will result.

Eq. (3.10) can be rewritten using the number of vectorsin each classas

B = e B iy, 2, [(Folsew)- 12 + Fixom)]g(e0d(Uy)
=t (3.11)
R 3 R + FiGoow) - D803}

where ng and n; represent the total number of vectors of the training set which are
associated with target absence or presence respectively. Also note that 8(.) represents a
Dirac delta function used to segment the training set. By the law of large numbers, as n,

no, ny increase, Eg. (3.11) can be rewritten as
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Es(w) = P[Ho ] f [(Fo(x,w)-1)? + F2(x,w)]g(x)fx(x|Ho) dx

x

+ P[H; ]f [F3(x,w) + (F1(x,w)-1)?|g(x)fx(x[H;) dx

= i jF%-i (x,wW)g(X)fx(x|H)P(H;) dx (3.12)
i=0

+ io f [Fj(x,w)-1]2P(H;)g(x)fx(x[H;) dx .
=y

Using Bayes formula, namely,
fx(x[Hi) P(H) = PHix)ix(x) . (3.13)

The expression for Eq(w) can berewritten as

1

Ev)= 3 f F2, (g P @) dx
=0 A (3.14)

+._§0 f [Fj(x:w)-1128(®)fx(X)P(H|x) dx .
= X

Expanding thefirst taam and thefirg term of the second summand yields
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E(w) = f F3(x,w)g(x)fx(x)P(Holx) dx
+ f F3(x,w)g()fx(X)P(Hyx) dx

+ f F3(x,w)g(x)fx(X)P(Ho|x) dx

(3.15)
+ f F3(x,w)g(X)fx(x)P(H;|x) dx

_éo [2F;(x,w)-1]g(x)fx(x)P(H;[x) dx .
J_

Rearranging terms and noting that [P(H;|x) + P(Ho|x)] = 1 gives

Eg(w) = ‘—io [ f F?(x,w)g(x)fx(x) dx - f [2Fi(x,w)-1]g(x)fx(X)P(H;|x) dx ] (3.16)

X

Noting that [Fi(x,w) - P(Hi|x)]? = F;2(x,w) - 2F;(x,w)P(H;|x) + P2(H;|x), Eqg. (3.16) can be

expressed as
1

Em)=3 [ f (Fi(x;w)-P(H;[x))2g(x)fx(x) dx
A (3.17)

+ f [P(Hi[x) - P2(H;[x)]g(x)fx(x) dx ]

Since g(x) = % asdefined by Eq. (3.8), EQ. (3.17) can be expressed as

Ew)= 3 [ f (Fi(x;w)-PCH))25" (%) dx + f [P@E) - PEHE® ] (318)
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Since the neura network, when trained using the backpropagation algorithm, is made to
minimize the error function 'EE(W) with respect to w, it also attempts to minimize Es(w)
-with respect to w with the given training set. Since thefirst term of Eq. (3.18) isthe only
term which is afunction of w, clearly the network is forming a minimum mean squared
error approximation to the a posteriori probabilities P(H;|x). Note also that this minimum
mean squared error approximation is being computed as if the feature vectors x were
drawn from fx(x) rather than fx(x). Therefore the network is trained to recognize targets

occurring with a probability P*[H;] rather than P[H;] as desired.

It was mentioned in Section 3.2 that this method was very similar to importance sampling
techniques used in conjunction with forming estimates of the bit error rate (BER) during
the simulation of adigital communication system. The simulation being performed is of

the standard Monte Carlo type. By employing | S techniques, thegoal is to greatly reduce
the ssmulation run time of the Monte Carlo simulation while achieving the same degree
of accuracy in the estimate of the BER. Thisis done by biasing the input signal processto
the system so as to artificially increase the BER. However, during the ssmulation this bias

isremoved from the estimate of the BER by weighting each error by a weighting function

w(x) .-.?83, where f,(x) represents the multi-dimensional p.d.f. of the input vector x
X

associated with the biased input signal process and fy(x) represents the p.d.f. of the
unbiased input signal process. Clearly thereis adirect analogy between the IS weighting
function and the LRWF g(x). In the case of the IS weighting function w(x) the input
signal processis biased so as to increase the BER of the system being simulated and in
the case of the LRWF the input signal processis biased so as to increase the probability
of target occurrence. In both cases the end result is to decrease the amount of run time
required by the simulation/training procedure. For an excellent review of 1S the reader is

referred to arecent text by Jeruchim, et. a. [2].
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3.4 Modification of the Backpropagation Algorithm

Contained in this section is the derivation of a modified form of the backpropagation
algorithm which includes the LRWF. Hereit is shown that the only modification which
needs to be made is to include the weighting function, g(x), in the computation of the

error termsassociated with thefinal output layer of the neural network.

Consider aspecific weighted error, Ep, due to the presentation of the input vector p as

E, = 12_ JE [Yp; - FN (xp,W)2g(Xp) » (3.19)

where Yp; isthe jt component of the desired output vector due to the presentation of

input vector p. The output of node j of the output layer, which isthe Nt |ayer, is denoted
ang‘j(xp,w). The LRWF, evaluated at the present input vector, is defined by Eqg. (3.8).

The dependence of Fg‘j on the present input vector x, and the weights, denoted by w, will

be suppressed in the following notation.

Theinput to node j of the mth layer due to the presentationof input vector p isdefined as

net® = E wih FI- (3.20)

1
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where wm denotes the weight matrix between the mth and the (m-1)th layers of the
network. Furthermore, the output of node j in the m** layer due to the presentation of the

input vector p isdefined as

FD = f(netd), (3.21)

where {(.) is a continuously differentiable, nondecreasing, nonlinear activation function

such asasigmoid.

The negative of the gradient vector components of the error E, with respect to netp are

given by
9Ep
8pi = - . 3.22
P nets (3.22)
Applying the chain rule allowsthis partial derivative to be written as
ad d oF™
8pj = - E __ 9 % . (3.23)
anet‘p‘} oFg! onets
The second factor can be easily computed from Eq. (3.21) as
JF%
B = f'(netd), (3:24)

aneﬂ;}
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which is simply the first derivative of the activation function evaluated at the present

input to that particular node.

In order to compute the first term consider two cases. The first case is when the error

signal is developed at the output layer N. This can be computed from Eq. (3.19) as

ad
i{é— = -[¥pi - F ey (325)

Substituting Egs. (3.24) and (3.25) into Eq. (3.23) yields
8y = [Yp; - FN 1g(xp)f (net}). (3.26)

For the second case, when computing the error termsfor some layer other than the output

layer, the &p;'s can be computed recursively from those associated with the output layer as

.S OEp _ me1 (3.27)

Combining thisresult with Eq. (3.24) gives
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o5 =f'(met) Y S witl, (3.28)
k

These results can be summarized in 3 equations. First an input vector, x,, is propagated

through the network until an output is computed for each of the output nodes of the

output layer. These values are denoted as Fg’j. Next, the error terms associated with the

output layer are computed by Eqg. (3.26). The error terms associated with each of the other

m-1 layers of the network are computed by Eq. (3.28). Finally, the weights are updated as
Ap Wl =1 &7 F2, (3.29)

where n represents the learning rate of the network. Usually m is chosen to be some

nominal value such as0.01.

From [1], it isseen that the only change to the backpropagation algorithm is the inclusion
of the likelihood ratio weighting function in Eqg. (3.26). All other steps of the algorithm

remain the same.
3.5 Evaluation of the Likelihood Ratio Weighting Function

The problem associated with directly evaluating the likelihood ratio weighting function
given by Eq. (3.8) is that fx(x|Ho) and fx(x|H;) must be known. If fx(x|Ho) and fx(x|H;)
were known, one could use a variety of parametric constant false alarm rate (CFAR)

processing techniques. These techniques employ certain assumptions about the target and
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clutter environment such as assuming that the p.d.f. of the return signal from clutter only
can be modeled according to a Rayleigh, lognormal, or Weibull distribution[5]. Similarly,
fluctuationsin the target radar cross section (RCS) are often modeled according to one of
the four Swerling fluctuating target models (5]. However, in this case, the generalization
capabilities of the neural network are used to form estimates to these unknown
conditional probability density functions based on the training data sets. Therefore, for
this method it would be desirable to construct a way of evaluating the LRWF which
makes as little a priori assumptions on the conditional probability density functions as

possible. That is, develop a non-parametric processing scheme.

In the remainder of thisthesis, the problem isrestricted to case depicted in Figure 3.2.

fx (xlﬂi)
X G £ (xH;)
fx (x|Hg)
X \ —>| |<—)/
: o ¥
7 b
24’/////////////// )
——— l 1 f]
Xc T X
[ Xt
|
—_ Ll —
Xc 0,

Figure 3.2 Illustration of target and clutter p.d.f. overlap.
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In the scenario depicted in Figure 3.2,
X;-0,>X; + 0, (3.30)

where X, and X. represent the mean of the target distribution and the mean of the clutter
distribution, respectively; o? and o2 represent the target and the clutter distribution
variance, respectively. It is assumed that the distributions are fairly well removed from
one another as depicted abovein Figure 3.2, such that Eq. (3.30) is true. Thisassumption
is valid since this is the situation created by pulse integration techniques which are
employed in most modern radar systems. Pulse integration techniques are based on the
premise that the return signal from background clutter tends to be relatively uncorrelated
pulse to pulse. By illuminating the target by many pulses and summing over these return
signals the clutter response can be greatly reduced . With this assumption the evaluation
of g(x) can begreatly smplified.

With Eq. (3.30) satisfied, thefollowing can be stated.
fx(lel)lx € Target Absent ™ 0 (3.31)

£u(x|Ho) |« & Terget Presea ~ 0 (3.32)

This allows the weighting function to be written as

Drir.l

P’[Hol | givenx € Target Absent (3.34)
8(x) = {

, givenx € Target Present
P[H1]
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This expression is used to evaluate the LRWF in all of the computer simulations

presented in Chapter 4.

Therefore, the requirement of obtaining expressions for fx(x|Hg) and fx(x|/H;) has been
reduced to requiring knowledgedf the a priori probabilitiesP*[Hg] and P*[H,]. From Eq.
(3.34) it can be seen that asthe probability of target occurrence, P*[H;], tendsto zero the

function g(x) tendsto
1 . -
: —— , givenx E Target Absent (3.35)
Lim g(x)= PH) ’
P [H]->0 0 , givenx E Target Present

From the above observation one would expect a degradation in mapping performance as

the mapping ratio, defined by

P[H,]
P*[Hy]

Mapping Ratio = (3.36)

tends towards infinity. This characteristic is depicted below in Figure 3.3. Note that the
notation 'p-0.XX' refersto the probability of target occurrance, P[H;] equa to 0.XX.
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) Mapping Characteristic
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Figure 3.3 Mapping characteristicfor several different training distributions.

From Figure 3.3, one would expect excellent performance for mapping ratios in the range
of 1.0 to 5.0 due to the linear nature of the characteristic in this region. However, as the
mapping ratio exceeds this range, the ability of this method to distinguish between
adjacent mapping ratios becomes increasingly difficult. In the experimants presented in
chapter 4, it was found that for a training distribution with P(H{]) = 0.248, proper
mappings were achieved for mapping ratios as large as 31.0. Above this value, little

control over the probability of detectionor the false alarm rate was achieved.
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3.6 Determining the Decision Threshold 8

Ideally, the decision threshold 6 would be determined in such a manner as to maintain a

constant false alarm rate regardlessof the clutter environment. Also, it would be desirable

for 6 to be independent of thea priori probabilitiesP[Hg] and P[H,].

With the type of likelihood ratio test described in the overview, Section 3.2, these ideals
are difficult if not impossible to achieve. In order to design a parametric type of CFAR
processor as discussed in Section 2.2, the probability density function of the likelihood
ratio itself would have to be known. If this were known one could develop a threshold

according to Eq. (3.37) below.

Pg = f fimo(2) dz (3.37)

where,

fij,(-) = Conditional probability density function of the I’aIIOP((gl X) with
Hj in effect.

_ P(H,jx) . output of Node1
P(Hglx) *"Output of Node 0

Thiswould accomplish our first goal of maintaining a constant false alarm rate invariant
to the clutter environment, assuming that the data set from which z is drawn adequately
represents the statistics of the clutter processour CFAR processor encounters. However,
from Bayes formula it is seen that z is a function of priors. Thisis illustrated by Eq.

(3.39).




2 = P
P(Ho|x)
_ P(x|Hi|)P(H1)
P(x|Ho|)P(Ho)
- fx|H1(x) dx P(Hl)
fxH,(x) dx P(Ho)
_ fym,(x) P(H1)
fxH,(x) P(Ho)

(3.38)

Another disadvantage of developing a decision threshold, 6, via Eg. (3.37) is that
assumptionswould have to be made concerning the statistics of the clutter environment in
order to arrive at a tractable result for the p.d.f, fyjg,(.). Thisdirectly conflicts with one of
our stated advantages of the neural network technique. Namely, that no such assumptions
are required regarding the clutter environment. However, the neural network technique
would be expected to exhibit a more graceful decay in performance as compared to the
cell averaging CFAR processor when it is operating in a clutter environment which does

not represent the one assumed during its design.

From Eq. (3.38) it is straight forward to see that the actual problem faced is that of
optimizing the threshold choice for a Bayes detector. From previously established theory
[8], the risk or cost associated with performing a hypothesis test of Hy vs. H; can be

written as

LOOPOO + LIOPIO’ H= HO in effect (339)
L01P01 + Lllpll’ H= Hl in effect

RH) =
where,
P;; = Probability of choosing hypothesisi when hypothesisj isin effect.

L;; = Loss associated with choosing hypothesisi when hypothesisj isin effect.
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Normally the loss function L;; is set equal to zero for i = j sinceno lossis incurred for a

correct decision.

Averaging the risk function presented by Eq. (3.39) over H = {Ho, H;} and setting Lii= 0
yieldsthe Bayesrisk as

E[RH)] = R(p) = poL10P10 + P1Lo1Po1 » (3.40)

wherep; = P[H;].

The optimum choice of 8 which will minimize Eq. (3.40) is found by first noting the

following relations.

|
fxH,(x) dx = Probability of False Alarm (3.41)

Py =

Pp1 =1 - Probabilityof Detection= 1- £y, (%) dX (342

Gathering Egs. (3.41) and (3.42) into Eq. (3.40) gives

R(p) = p1L10 +f [PoL10fxHs(X) - P1Lloifym,(x)] dx . (3:43)

Eq. (3.43) is minimized by including those measurement vectors x in the range 8 to «
which reduce the Bayes risk, R(p). Thisis done whenever the integrand of Eq. (3.43) is

negative. Hence the test becomes choosing those vectors such that




_ BE@PHE] L
’ fxm(x) P[Ho] ~ Lo;

}. (3.44)
Aswith this and most other problemsit is difficult to assign numerical values to Lo; and

L;o. Opting for the frequent assumption of Ly; = Ljg = 1 givesadecision threshold 6 = 1.
3.7 Data Sets Used In Simulations

In thissection, the data sets used to model the return signal from a range-only millimeter
wave (MMW) radar operating in a heavy clutter environment are described. The specific
scenario being modeled is that of a lock-on-after-launch (LOAL) air-to-surface missile
employing the MMW radar to provide high resolutiontarget discriminationfor the task of
stationary target identification (ST1) [6]. Our STI model isasimple two-class problem in
which the objective is to determinewhich range cells within the maximum unambiguous

range of the radar contain target returns.

The operating frequency of the radar was chosen to be 35 GHz due to the increased
attention to this portion of the electromagnetic spectrum in air-to-surface applications.
This attention is due to the favorable characteristicsof the MMW frequency band such as
smaller antenna beam-width and higher gain as compared to microwave frequencies, high
resolution in range and Doppler, reduced electronic countermeasures ( ECM)

vulnerability, and a reduction in multipath and ground clutter at low elevation angles [6].
The pulse repetition frequency (PRF) of the radar was chosen as 30 kHz in order to set
the maximum unambiguous range of the radar to be equal to 5 km. The radar waveform
itself was chosen as a coherent pulse train with the pulse bandwidth of the radar set equal

to 30 MHz. The pulse bandwidth of the radar was chosen so as to enable the radar to
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resolve individual point scatterers separated by distances as small as 5 meters. For
simulation purposes, these specifications fix the size of the array which represents the
range returnsfor asingle radar pulse to be 2000 elements. Therefore, each element of this
array represents a single range cell with each cell being 2.5 meters in length. Recall that
in this application it is assumed that the targets are stationary and as such exhibit zero
Doppler shift in the return signal. Also, it is assumed that the Doppler shift in the return
signal caused by the motion of the platform upon which the radar is mounted has been
negated. Hence, every element of our array will be arandom variable, r < R, drawn from

a probability distribution representing the retum signal from clutter only or target only.

The terrain which the MMW seeker is traversing is assumed to be that of a heavily
forested region containing deciduous trees during summer. As such, the region
illuminated by the radar is assumed to consist of a large number of equally sized point
scatterers. In accordance with the results of classical radar analysis, the amplitude
statistics of the return signal from clutter.only are assumed to be Rayleigh distributed.
Though thisis the classical model used at microwavefrequencies, it should be used with
caution in the MMW band. Due to the shorter wavelengthsof the MMW band, individual
point scatterers sometimes appear to have a larger radar cross section (RCS). This
manifests itself as a longer "tail" in the clutter p.d.f leading to the assumption of a
lognormal p.d.f. for the higher frequency portion of the MMW band. However, for our
radar operating in the lower frequency portion o the MMW band, 35 GHz, modeling the
clutter p.d.f. according to a Rayleigh distribution is still a valid assumption since data
gathered at this frequency and presented in [4] appears to be closely approximated by a
Rayleigh distribution.
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The Marcum and Swerling models have been widely used for modeling fluctuating
targets. However, due to the shorter wavelengths of the MMW band, the target RCS will
be very sensitive to the viewing aspect angle of the radar. Thiswill cause the target RCS
to fluctuate rapidly with time. Due to this sensitivity to the viewing aspect angle, the
Marcum and Swerling models are usually inadequate for the MMW band. Experimental
results in the MMW band indicate that ground vehicles exhibit alognormal probability
distribution of RCS values when al viewing aspect angles are considered [4][6].
Therefore, we chose to model the cell-to-cell amplitude statistics of the return signal from

target only according to alognormal probability distribution.

The occurrence of targets in range were modeled using a marked point process [9]. At
every occurrence of a target, a group of four random variables drawn from a lognormal
distribution were inserted into the array representing the return signal. Therefore, the
array representing the return signal consists of Rayleigh distributed random variables
which represent the return signal from clutter only and groups of random variables drawn
from alognormal distribution which represent the return signal from target only. Since
the target return is assumed to be dominant in the presence of clutter, no intermixing of
the target and clutter returnswithin an individual range cell was done. Adding the clutter
return to the target return within an individual range cell would complicate the analysis

while adding little accuracy to the return signal model.

A portion of the return signal array at different pointsin its construction is shown below.
Note that the targets were modeled to occur a a P[H;] = 0.248 rate with a mean value of
10.0 and a variance of 25.25. The background clutter process was modeled with a mean

value of 4.4 and avarianceof 5.50. These valuesgive aSCR of 5.0 (6.98 dB).
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Therefore, the complete data vector can be expressed as
Y= (xk’ Uk) ’ (345)

where,

0,1) Target Present
Uk = (U, Uy) = Desired Output Vector = { 0.1) Targ

(1,0) Target Absent

xx|[Ux = (0,1)] = Samplevector the componentsof which were drawn from a
lognormal distribution.

xx|[Uk = (1,0)] = Samplevector the componentsdf which were drawn from a
Rayleigh distribution.

Sample vectors were formed from this data set by including the range sample
immediately before and after'the present range sample. Thus, each sample vector, xy, was

formed as

Xk = { Sk-15 Sk Sk+1 } ’ T (346)

where xx represents the kth sample vector drawn from the ensemble of all input data
vectors, %, and s, represents the kt range sample which is a random variable drawn
either from a Rayliegh distribution, representing the return signal from clutter only, or a

lognormal distribution which representsthe return signal from target only.

Asdiscussed before, the desired output vector which the neural network trains towardsis
denoted as Uy = { U}, U} } where U equals 1 when the target is absent, 0 otherwise,
and U} equals 1 when a target is present, and 0 otherwise. This fixes the number of

output nodes of the neural network to be equal to two. The training data set was formed
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by employing a majority voting scheme imposed on the range samples making up a
sample vector xy. If the majority of the range samples, sk, making up some particular
sample vector, xx, belong to the class associated with a target present, then Ug = {0,1}.

Otherwise, Ux = {1,0}, signifying that a target isabsent.
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CHAPTER 4
RESULTS

4.1 Introduction

This chapter begins with Section 4.2 entitled, "Computer Simulations,” which discusses
the computer simulations used to illustrate the performance of the LRWF aswell as the
overall performance of the neural network to correctly detect targets embedded in the
background clutter process. Presented in Section 4.3, "Performance Testing of the
LRWEF," are the results used to illustrate the success of the LRWF to force the neural
network to detect targets occurring with probability P*[H;], probability of target
occurrence associated with the testing data set, rather than P[H; ], which is the probability
of target occurrence associated with the training data set. Lastly, Section 4.4, "Network
Performance in a Varying SCR Environment,” contains simulation results used to
illustrate the performance of the neural network trained with and without the LRWF to

detect targets embedded in avarying SCR environment.

4.2 Computer Simulations

The data sets used for training and testing of the neural network were constructed

according to the descriptions given in Section 3.7. Accordingly, the clutter only signal

was modeled as a sequence of independent random variables drawn from a Rayleigh
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distribution with a variance of 550. Likewise, the target only signal was modeled as a
sequence of independent random variables drawn from a log-normal distribution with a

mean value of 10.0 and avariance of 25.0.

The training of the neural network was carried out using the backpropagation algorithm
modified as discussed in Section 3.2. Training was continued until the mean square error
(MSE) between the desired and the actual outputs decreased to some sufficiently low
value. Testing was done by fixing the weights of the neural network and using the
network to classify similarly modeled data, similar in termsof the PDFs used to represent
the target only signal and the clutter only signal. Classification of the individual feature
vectors, x;, was done by allowing the feature vector x; to propagate through the network
until an output is developed at the two nodes of the final output layer. As previously
shown in Section 3.2, the output of these two nodes represent estimates of the a posteriori
probabilities P[Ho|x] and P[H;|x] for nodes 0 and 1, respectively. A ratio test was then

constructed asshown by Eq. (3.44) and repeated below for the reader's convenience,

. Lm (X).P[H1] _ Ein
O i Fleel 2 B @

where the ratio % was set equal to 1.0. The detection rate (Pp) was determined as the
1 . .

percentage of target range cells which were classified as containing target returns.
Similarly, the false alarm rate (FAR) was determined as the percentage of the total

number of range cellsfalsely declared as containing target returns.

In order to obtain some degree of confidencein the values of Pp and the FAR, the testing
simulations were alowed to continue until the values of Pp and FAR were known to

three significant figures. Thiswas done by simulating a vast number of radar pulses and
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using the neural network to classify the individual range cells until the following

condition was satisfied for both Pp and FAR [7],

% 02 < E[X]22 (4.2)
where,
N = Total number of pulsessmulated thusfar
o = Varianced either Pp or FAR

E[X2] = Meansquared valuedf either Pp or FAR

€ = Confidenceinterval

Since three significant figures were desired in the values of Pp and FAR, & was set equal

to 0.001.

In the beginning, many different neural network architectures were investigated, ranging
in complexity from single hidden layer networks containing as few as 47 weights to as
many as 302. However, the experiments with single hidden layer networks were
unsuccessful in that reasonably low values of Pp and FAR were unable to be achieved,
with or without the use of the LRWF, for events occurring with low probability (P[Yo] s
0.03). However, by using networkswith 2 hidden layers, where the number of weights

ranges between 65 and 317, reasonably stable resultsfor Pp and FAR were obtained.

The experimantal resultswhich follow were obtained using a network with 3 nodesin the
first layer, 12 nodes in the second and third layers, and 2 nodes in the final layer output
layer. This network was chosen since we found littleimprovementin the values of Pp and

FAR for networksof higher complexity.




4.3 Performance Testing of the LRWF

Presented in this section are the simulation results contrasting the performance of a
conventionally trained neural network (i.e., no LRWF incorporated in the training
algorithm) to aneural which incorporated the LRWF into itstraining algorithm. Table 4.1
illustrates the failure of the conventionally trained neural network to correctly classify
targets occurring with low probability when the network was trained using a data set for
which P[H;] = 0.248. The total number of feature vectors making up the training set was
set equal to 2000.

Table 4.2 presents results which illustrate the performance of a conventionally trained
network for which P*[H;] = P[H;]. Note that during the training of each network the total
number of range cells representing the target signature was held constant at 496. In order
to do this, the total number of feature vectors making up the training set ranged from
2000 to 31,000 so as to generate the desired value of P[H;]. Note that we were unable to
train the network to recognize targetsfor which the probability of target occurrence was

|ess than 0.016.

Table 4.3 illustrates the performancedf the network which results from incorporating the
LRWF into the backpropagation algorithm. The training distribution was one for which
P[H;] = 0.248 and the LRWF was used to perform the mapping to a space with a low
value of P*[H;]. The initial training distribution was made up of 2000 feature vectors.

Note that these results were obtained while attempting to maintain a constant value of Pp.

Lastly, Table 4.4 illustrates the performance of the network which results from
incorporating the LRWF into the backpropagational gorithm while attempting to maintain
aconstant value of FAR. Asbeforein Table 4.3, the initial training distribution is made
up of 2000 feature vectorswith avalueof P[H;] = 0.248.



Table 4.1 Failureof conventionally trained network for the case P*[H;] « P[H;].

Py | PoIHy Fp FAR | o
0.248 0.248 0.766 | 0.079 n = 0.01
MSE = 0.0789
0.248 0.124 0.844 0.140 n =0.01
MSE =0.0789
0.248 | 0.048 0.921 0264 | n=001
MSE =0.0789
0.248 0.024 0.948 0.375 1" 0.01
MSE =0.0789
0248 | 0.016 0967 | 0453 | 1700
MSE =0.0789
0.248 0.012 0.971 0.490 n =001
MSE =0.0789
0.248 | 0.010 0.981 0544 | m"0.01
MSE=0.0789
0.248 0.008 0.981 0.566 | m=001
MSE =0.0789
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Table4.2 Performanceof conventially trained network for the case P*[H;] = P[H;].

P[H *
[H;] P [H;) Pp FAR | piginingion
0.248 0.248 0.766 | 0.079 n = 0.01
MSE =0.0789
0.120 0.120 | 0.740 0.075 | m=001
M SE = 0.0269
0.048 0.048 0.737 0.076 1 =0.01
) MSE = 0.0468
0024 | 00241 754 | 0079 |n=001
M SE = 0.0239
0.016 0.016 | 0.797 0.122 | m=001
MSE =0.0171
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Table 43 Network performance with LR WF while attempting to maintain a
constant value of Pp.

P[H * * Training
(] PriHy] P TRolPIHgl | P TH1VPIH P FAR Information
0.248 0.248 1.000 1.000 0.766 0.079 n =0.01
MSE =0.0789
0.248 0.124 1.165 0.500 0.767 0.091 | m=o0.01
MSE =0.0905
0.248 0.048 1264 | 0193 | 0.761 0096 | m=001
MSE=0.1172
0.248 0.024 1.298 | 00968 | 0.762 0115 | m=o01
MSE =0.1460
0.248 0.016 1308 | 00645 | 0770 0115 | m=o001
MSE =0.1596
0.248 0.012 1314 | 00484 | 0.761 0115 | n=o001
MSE =0.1709]
0.248 0.010 1.316 | 0.0403 | 0.756 0114 | m=0.01
MSE =0.1704
0.248 0.008 1319 | 00323 | 0.751 0112 | n=0.01

MSE =0.1823
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Table 4.4 Network performancewith LRWF while attempting to maintain a
constant value of FAR.

P[H o . * Trainin
[H;] P[Hy|  [P*[HolPHG [P*THVPIHy| |  Pp FAR | Tanng
0.248 0.248 1.000 1.000 0.766 0.079 1 =0.01
MSE=0.0789
0.248 0.124 1.165 0.500 0.753 0.080 n =0.01
MSE = 0.0867
0.248 0.048 1.264 0.193 0.737 0.076 n =0.01
MSE=0.1258
0.248 0.024 1298 | 0098 | 0715 0081 | n=00L
MSE =0.1556
0.248 0016 1308 | 00645 | 0705 0080 | m~oa
MSE =0.1668]
0.248 0.012 1.314 | 00484 | 0.703 0082 | n~oo01
MSE=0.1789
0.248 0.010 1316 | 00403 | 0695 0079 | n=00L
MSE =0.1876]
0.248 0.008 1319 | 00323 | 0688 0078 |mn=001

MSE =0.1849
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4.4 Network Performancein a Varying SCR Environment

The results presented in this section illustrate the classification performance o the
network with and without the LRWF in a varying SCR environment. For each case, the
training distribution was constructed in such a manner asto a SCR equal t0 5.0 (6.98dB).
Thisvalue of SCR the assumptions made in Section 3.5 concerning the simplification of
the LRWF, g(x), are valid. Values of SCR below below 5.0 were found to give
unsatisfactory performancein both the training and testing phases. The training data set
was also constructed to produce have the probability of target occurance equal to P[H;] =
0.248. As before in Section 4.3, the network itself was structured to have 3 nodesin the
first layer, 12 nodesin thesecond and third layers, and 2 nodesin the fourth layer.

The results presented in Table 4.5 illustrate the performanceof the convetionally trained

neura network in avarying SCR environmentfor the case P*[H;] = P[H; .
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Table 45 Performance of convetionally trained neural network in avarying
SCR envirionment.

SCR (dB) Pp FAR
0 0.800 0.572
3 0.780 | 0.350
6 0.756 0.118

9 0.737 | 0.022
12 0.717 | 0.006
15 0.705 | 0.003
18 0.696 | 0.002
21 0.689 | 0.001
24 0.683 | 0.001
27 0.680 | 0.001
30 0.677 0.001

The results presented in Table 4.6 illustrate the performance of the neural network in
varying SCR environment while incorporating the LRWF to perform a mapping from the
training distribution for which P[H;] = 0.248 to the testing distribution for which P*[H;]
= 0.008.
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Table 4.6 Performanceof the neura network in a varying SCR environment

while incor por ating the LRWF.

P[H,] | P'[H,] | scr@B) | Pp FAR
0.248 0.008 0 0327 | 0.356
0.248 0.008 3 0.636 | 0.307
0.248 0.008 6 0.741 | 0.163
0.248 0.008 9 0.733 | 0.035
0.248 0.008 12 0719 | 0.002
0.248 0.008 15 0.712 | 0.000!
0.248 0.008 18 0.706 | 0.000!
0.248 0.008 21 0.707 | 0.0002
0.248 0.008 24 0.703 | 0.0002
0.248 0.008 27 0.701 0.0002
0.248 0.008 30 0.700 | 0.0002

1 For these values of SCR the FAR was less than 0.001

2 For these valuesof SCR the FAR was equal to zero,

i.e., no false alramsoccured during the entire smulation.
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CHAPTER 5
CONCLUS ONSAND RECOMENDATIONS

5. 1 Discussion

The results presented in Table 4.1 were obtained by training the network on a data set
where the probability of target occurrence, P[H;], was set equal to 0.248. This same
network was then used to classify an identically modeled data set where the probabilities
o target occurrence, PTH4], are those listed in Table 4.1. For the classification scheme
described by Eq. (3.44), these results indicate that, as the value of P*[H;] decreases, the
valuesof Pp and FAR increase. Thisresult isto be expected by considering the likelihood
ratio given by Eq. (3.44) and repeated below as EqQ. (5.1).

A PIHI] | Ly
) P[Fo] Lo

{x (5.1)

From Eq. (5.1) it iseasily seen that when the network is used to classify targets occurring
with probabilities P*[H;] given in Table 4.1, the likelihood ratio will become positively
biased. Thisis due to the network expecting to classify datafor which the probability of
target occurrence is equal to P[H;] when in fact the probability of target occurrence is

equa to P*[H;], where P*[H;] « P[H4]. This positive bias is reflected in Table 4.1 by
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The results presented in Table 4.2 were obtained by training and testing the neural
network utilizing data sets with a low probability of target occurrence. In order to
correctly contrast these results to those presented in Tables 4.3 and 4.4, the training set
was expanded to consist of many simulated radar pulsesso asto keep the total number of
range cells containing target returns constant at 496 which equals the total number of
range cells containing target returns for the case P*[H;] = P[H;] = 0.248. These results
were obtained so as to provide a benchmark of performance against which the results
obtained utilizing the (LRWF) could be compared. However, we were unable to
successfully train the network to recognize events occurring at rates below 0.016 using
this method. Note the increase in memory requirements as the value of P*[H,] is
decreased from 0.248 to 0.016 which corresponds to an expansion in the size of the
training data set from 2000 to 31,000 input vectors.

The results presented in Tables 4.3 and 4.4 illustrate the performance of the network
when trained utilizing the LRWF. The results presented in Table 4.3 represent an attempt
to maintain a constant value of Pp equal to that obtained for the case P[H;] = P*[H;]
while noting the resulting values of FAR. Similarly, the results presented in Table 4.4
represent our attempt to maintain a constant value of FAR equal to that obtained for the
case P[H;] = P*[H;] while noting the resulting values of Pp. Ideally, we desire to be able
to train the network utilizing the LRWF so as to be able to classify data with a much
lower value of P*[H;1] while still preserving the performanceof the baseline case P[H;] =
P*[H;] in termsof the valuesfor both Pp and FAR. By examining the results presented in'
Tables 4.3 and 4.4, one can see that we were able to accomplish our goal only partialy in
that we were able to achieve the desired value of Pp at the expense of an increasein the

value of FAR. Similarly, we were able to achieve the desired value of FAR at the expense
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of areductionin the value of Pp. Therefore, a tradeoff situation exists between the values
of Pp and FAR. If trainingwas alowed to continuein search of the minimum achievable
value of MSE between the desired and the actual outputs, the value of Pp will be
comparable to the baseline case of P[H;] = P*[H;] at the expense of an increase in the
value of FAR. However, if training of the neural network was suspended once the MSE

between the desired and the actual outputs ceases to change by an appreciable amount,

the weights matrices which result would be to maintain avalue of FAR comparableto the
baseline case of P[H;] = P*[H,].

When contrasting the results presented in Tables 4.1 through 4.4, it isinteresting to note
the close similarity between the results presented in Tables 4.2 and 4.4 as well as their
associated plotsin Figures4.1 and 4.2. These resultsshow that by including the LRWF in
the backpropagation algorithm it is possible to achieve relatively the same performanceas
the conventionally trained network with far less training time due to the reduced size of
the training set. Also, it was mentioned that we were unable to successfully train the
conventionally trained network to recognize targets occurring at rates below 0.016. This
Is due to the reduced number of target samples as compared to thesize of the entire data
set. Therefore, asillustrated in Tables 4.3 and 4.4 the LRWF offers the means to train a
neural network to recognizetargets which occur with low probability by keeping the ratio
of targets samples to clutter samples relatively independent of the desired value of
P°[Hy].

Upon comparing the curves labeled Table2_Pd' and "Table4_Pd' in Figure 4.1, we see
that we actually have superior performancein terms of Pp for mapping ratiosin the range
zero to five. This corresponds directly to the performance predicted by the curves

presented in Figure 3.3.
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The results pertaining to network performancein avarying SCR environment presented
in Section 4.4 seem to indicate that the network trained utilizing the LRWF produces
higher values of Pp and lower values of FAR as compared to the conventionally trained
network over most of the 30 dB SCR range for which results were obtained. However,
examination of Figure43 reveals disturbing results obtained from the LRWF trained
network for SCRs less than 6.98 dB, the value of SCR for the training data set. Recall
that in order to simplify the evaluation of the LRWF it was assumed that little overlap
existed between the PDFs of the target and clutter distributions. Asthe SCR isdecreased,
this assumptionis no longer valid explaining the degradation in network performance for

decreasing SCR.

For the conventionally trained network, we see that the probability of detection increases
with decreasing SCR. By refemng to Figure 4.4 it can be seen that thisincreasein Pp is
accompanied by a substantial increase in the FAR. Therefore, as the noise level is
increased the conventionally trained network is unable to differentiate between the target
and clutter distributions. For the network trained utilizing the LRWF some degree of
discrimination between target and clutter distributions is preserved, though a marked

increasein FAR still occurs.

For increasing values of SCR it is seen that the LRWF trained network produces zero
false alarms during simulations for SCRs in the range 21 dB to 30 dB while the
conventionally trained network produced a FAR equal to 0. 001 over this same range of
SCR. Note, however, that these results were obtained to three significant figuresonly. In
order to properly evaluate values of FAR less than 0. 001 more exhaustive simulations

would be required.



5.2 Conclusions

The results presented in Section 4.3 clearly indicate the value of LRWF as atool capable
of significantly reducing the training time of a neural network to detect targets (or events)
occurring with low probability. The capability of a neural network to perform the task of
stationary target discrimination is also evident in Figures 4.3 and 4.4. The network is
capable of maintaining a reasonably high detection rate and a relatively low FAR over a

wide SCR environment.
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CHAPTER6
FUTURE RESEARCH

6.1 Discussion

Our future research will be primarily directed towards generalizing the LRWF to an N
class pattern recognition problem with each class occurring at an equally likely rate. As
the number of classes, N, increasesthe probability of someith class occurring decreases.
This, of course, increasesthe size of the training data set for the neura network. We hope
to show that by incorporating the LRWFinto the backpropagation algorithm for agenera
N class problem, we will be able to increase the ability of the neural network to correctly
classify each of the N classes while at the same time reduce the computational overhead

of the entire training procedure.

Specifically, we plan tofirst generalize the proof presented in Section 3.3 of thisthesisto
that of an N class problem. Modification of the backpropagation algorithm to incorporate
the LRWF will remain the same. Next, we plan to ssmulate the performance of the
generalized LRWF (GLRWF) by first generating a sixteen class data set, each class being
distributed according to a Gaussian distribution with a distinct mean and variance. A
neural network with an appropriately chosen architecturewill then be trained to classify
this data set using our modified version of the backpropagation algorithm. Once the

neural network has been trained, it will be tested on a similarly generated data set in the
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manner described in Section 4.2 of this thesis. These results will then be compared to
those obtained from asimilarly structured neural network whose training algorithm does
not incorporate the GLRWF. These results will be compared in terms of classification
performance and required CPU time for training. Note that two figures will be obtained
for the classification performance and the required CPU time for training. The first will
be for the case where the training data set will be identical to that used for the network
which incorporates the GLRWF. The second will be for the case where the training data
set is expanded so as to increase the classification performance to the level obtained

utilizing the GLRWF.
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