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Abstract 

We present efficient implement at ions of the balance- 
and-truncate model reduction technique for large-scale 
systems. The key observation that distinguishes our ap- 
proach is that Krylov subspace methods (Arnoldi and 
Lanczos) directly yield approximate low-rank square roots1 

of the system Gramians; the balancing transformation 
can be then constructed from these square roots, obvi- 
ating the need for solving any Lyapunov equations. In 
addition, the order of the reduced model is not fixed a 
priori as with some existing methods, but is determined 
from the problem data. Numerical simulations show t,hat 
our approach performs very well over a range of exam- 
ples, and offers considerable savings in practice. 

'We use the term "square root" to mean the not necessarily symmetric square root of a 
matrix: If M  = M~ = N N T ,  we say N is the square root of M .  



1 Introduction 

As engineering syst,ems become more and more complex, so do the mathematical models describing them. 

This is true, for instance, when an engineering system is modeled as an interconnection of a large number of 

sub-systems, as with VLSI circuit models. Computer-aided tools are typically used to model the sub-systems; 

the resulting model of the overall system can involve thousands of variables. 

The analysis and design of large-scale systems can stretch the limits of computing resources. Indeed, the 

mere simulation of a large-scale system can require an unacceptably long computation time. A standard 

practice that addresses such issues is that of model reduction: The objective is to find an approximate model 

of the original syst,em with far fewer variables. Our objective is to present efficient algorithms for the model 

reduction of large-scale linear time-invariant (LTI) state-space models. 

Model reduction of LTI systems is a well-studied topic. One approach is to expand the transfer function 

as a power series around a suitable point in the complex plane, and obtain a lower order model whose power 

series coefficients match the first few original coefficients ("moment-matching"). A well-known example of 

such an approach is Pad6 approximation, which can be shown to be optimal in a certain sense. Another 

model-reduction approach involves truncating the state space to the principal controllable subspace, or the 

principal observable subspace. Ilrell-conditioned and efficient implementation of these two techniques has 

been the subject of considerable investigation. Model reduction through moment-matching is the subject of 

the asymptotic waveform evaluation (AWE) technique due to  Huang, Pillage. and Rohrer [HuaSO, PR901. 

Pad6 approximations through moment matching are described in [CN92]; a discussion of the numerical 

properties of these algorithms can be found in [CC87]. For state-space models, Krylov subspace computation 

techniques such as the Arnoldi and the Lanczos iterations have proved to be very attractive. Krylov methods 

require only matrix-vector multiplications, and are therefore particularly useful for large-scale systems. For 

Pad6 approximation, the use of Lanczos iterations is discussed in [FF95, GGD941, and the use of Arnoldi 

iterations is discussed in [SKW95]. Krylov methods have been used to efficiently compute a basis for the 

principal controllable and observable subspaces; see [Fre98]. The reduced-order model can be then obtained 

by projecting the state-space on these subspaces [GG97, GN991. 

A third technique, one that underlies the approach presented in this paper, is the balance-and-truncate 

method (see for example, [Moo8l, GL951). The idea here is to find a state-space coordinate transformation 

in which the input-to-state map and the state-to-output map are "aligned". (This is the so-called balanced 

realization.) In the balanced coordinates, state variables are ordered by the ease with which they are simul- 

taneously reachable from the input and observable from the output. Thus, state-variables that are not easy 

to reach and not easily observed can the omitted (or the model truncated). An attractive feature of the 

balance-and-truncate method is that the approximation error can be shown to be bounded [Enn84, Glo841. 

While the balance-and-truncate method is theoretically attractive and also yields excellent approximate 

models in practice, its use for the model-reduction of large-scale systems has been hampered by its quickly 

growing computational demand: Two large-size Lyapunov equations need to be solved, followed by a large- 



size eigen-decomposition. One approach towards addressing this issue is to obtain low-rank approximate 

solutions to the large-size Lyapunov equations, for instance, the "Alternate Direct,ion Iteration" or AD1 ap- 

proach [L\fr91] and its modifications (LWW99, LW991. The drawback of the AD1 approach is the requirement 

that the original system matrix be tridiagonalized first; this step is both computationally demanding and 

possibly numerically ill-conditioned [GL89, 39.3.61. Another prevalent approach for balance-and-truncate 

model reduction is to use Krylov subspace computation methods to first find the principal controllable 

or observable subspace, and then solve reduced-order Lyapunov equations to proceed with balancing and 

truncating; see, for example, [JKL92, JK941, and the reference therein. 

Our contribution is an algorithm for balance-and-truncate model reduction, using Krylov methods, where 

no Lyapunov equations need solution. The key observation is the following: Krylov methods have thus far 

been used only to  obtain a basis for the principal controllable and/or observable subspace; however, it turns 

out that the Arnoldi and Lanczos iterations directly yield approximate low-rank square roots of the system 

Gramians; the balancing transformation can be then constructed from these square roots. In addition, the 

order of the reduced model can be determined from the problem data. In Section 2, we introduce the 

mathematical framework underlying our approach, including an analysis of the approximation error. We 

also provide the description of the algorithm. In Section 3, we present a few examples that illustrate that 

our approach requires greatly reduced computation. 

2 Mathematical Framework 

2.1 Balanced Transformation and Truncation 

Consider the linear system described by the state-space equations 

where z ( t )  E lRN, u , ( t )  E lR and y ( t )  E lR, and A, B ,  C and D are real matrices of appropriate sizes. (We 

will consider only single-input single-output systems in this paper; the extension of the results presented 

herein to multi-input multi-output systems is straightforward.) We will use ordered quadruple ( A ,  B ,  C,  D )  

to denote the state-space realization of the system. We assume that A is stable, i.e., all of its eigenvalues 

have negative real part, and that the realization is minimal. The objective in model reduction is to obtain 

another linear system 

where xred( t )  E lRn, with n << N, and with the mapping from u to y well-approximated by the mapping 

from u to yred. 



Balanced truncation is one well-known model reduction scheme. The first step is to compute the con- 

trollability and observability Gramians, denoted W, and CVo respectively, and defined as 

w 

W, = Jd e A t s s T e A T t  d t ,  W,  = Jdm e A T t c T ~ e A t  d t .  

The Gramians satisfy the Lyapunov equations 

The eigenvalues and eigenvectors of Wc can be shown to be the square of the singular values and the 

corresponding right singular vectors of the mapping from input u to state x. Therefore, with the eigenvalues 

sorted in descending order, the eigenvectors of Wc yield directions in state-space that are increasingly hard to 

reach with the input u. The eigenvalues and eigenvectors of Wo can be shown to be the square of the singular 

values and the corresponding left singular vectors of the mapping from state x to  output y. Therefore, with 

the eigenvalues sorted in descending order, the eigenvectors of Wo yield directions in state-space that are 

increasingly hard to observe from the output y.  

Let Wc = X X T  and Wo = YYT be square root decompositions. Let 

be a singular value decomposition (SVD), so that U, V E ELNx are orthogonal, and C > 0 is diagonal, with 

the diagonal entries in descending order. The diagonal entries of C are called the Hankel singular values of 

the system. 

Define 
- 1 

Tb = X U X - ~  = (C- tvTyT)  . 

A In the new coordinates 3 = TL'X, the state-space realization is (TF'AT~, T;' B, C T ~ ,  D) = (A, B, c, D). It 

is easily verified that the corresponding controllability and observability Gramians are 

Thus, in the new state-space coordinates, the state components are as reachable from the input as they 

are observable at the output. Moreover, when a diagonal value of C is large (respectively, small), the 

corresponding state component is both very (respectively, not very) reachable from the input, and very 

(respectively, not very) observable at the output. This motivates the next step, that of "truncation" of the 

state-vector, i.e., simply "throwing away" state components for which the corresponding diagonal entry a; 

of C is small. If 

a1 > a 2  > ' . '  > a n  >> an+l 2 ' . '  2 aN, 

the balance-and-truncate model reduction corresponds to that is, 



The approximation error with the balance-and-truncate model reduction is well understood, and we 

describe it next. The state-space realization of the reduced order model is given by (;4red, Bred, Credr D) ,  

where 

I n  
Ared = [ I n  Onx(N-n) ] [ I 7 Bred = [ I n  Onx(N-n) ] B7 Cred = C 

O(N-n)xn  [ g N - n ) x n  ] ' 
Let H(s )  = C ( s I  - A)-'B + D and Hred(s) = Cred(sI - Ared)-'Bred + D denote the transfer functions of 

the original and the reduced-order system respectively. Then, it can be shown that 

While the approximation properties of the balance-and-truncate model reduction algorithm are excellent, 

its use for large-scale systems is limited by the heavy computational demand: Two large-size Lyapunov equa- 

tions need to be solved, followed by one large-size SVD computation. In many practical implementations, the 

balance-and-truncate step forms a second step of an overall model reduction algorithm: First, the dimension 

of the state-space is reduced, for instance, by projecting the state-space on the principal controllable and/or 

the principal observable subspace. Specifically, if Qk is an N x k matrix with orthogonal columns spanning 

the principal k-dimensional controllable subspace, the idea is to obtain a kth order state-space realization 

(QrA4Qk, QTB, CQk, D). Then this is followed by a small-size balance-and-truncate model reduction. In 

contrast, the approach that we propose herein is a direct approach: We will describe algorithms that directly 

compute low-rank square roots of the Gramians. We will then show how these factors can be combined 

to yield "approximate" balancing transformations that automatically truncate the state space. The idea of 

computing low-rank approximations can be found in [Fre98, JK94, LW91]. However, these approximations 

have only been used to find the (approximate) principal controllable and/or principal observable subspace, 

and not to find the (approximate) balanced coordinates; this is one of the distinguishing features of our 

work. 

2.2 Approximate Balanced Truncation 

We first describe the idea behind an approximate balance-and-truncate method that relies on low-rank square 

roots of the Gramians. (We will defer a careful analysis of the approximation error to Section 2.4.) Suppose 

that we have approximate low-rank square roots of the Gramians, i.e., we have full rank Xk, Yk E lRNxk 

such that 

w, =xkx,T, W,XY~Y:. 

Let 

X ~ Y ,  = u2VT 

be the k x k SVD. Then, the diagonal entries ei of 2 approximate the first k Hankel singular values of the 

system. Suppose that 

el >e2 > . - . > e n  >>&n+l  > - . .  > e k .  



Define 

and 

~ b '  = [ In onx(N-nj  ] k-'pTy:. 

Note that Tb E KtNxn and Tb' E KtnxN, and that ~ b ' p b  = I .  

Consider the nth order system with state-space realization (T~ 'AF~.  b ' B ,  C T ~ ,  D )  It can be verified 

that the controllability and observability Gramians for this realization are 

- 
Wc z diag (61 , . . . , kn) 3 W,. 

Thus, the matrices Tb and Tb' directly provide for an approximate balance-and-truncate state-space model 

reduction. 

When k << N, the major computational task underlying the implementation of the forementioned ap- 

proach is that of efficient calculation of low-rank square roots Xk and Yk for the Gramians Wc and W,. Our 

next contribution is to describe an efficient algorithm for directly computing these low-rank square roots 

using Krylov methods. 

2.3 Square Roots of the Gramians via Krylov Methods 

For every real scalar p < 0, the equation 

is equivalent to 

A 
Defining A, = (PI + A)-'(PI - A), and B, E J m ( p ~  + A)-'B, we then have 

Similarly, with C, E ~-C(PI +A)-', we have 

One interpretation of these steps is that we have derived a discrete-time system with state-space real- 

ization (Ap, Bp, C,, D,), that has the same Gramians as the continuous system, using the conformal map- 

ping z H (p - s ) / ( ~  + s) that maps the the transfer function H ( s )  = C ( s I  - A)-'B + D to H(z )  = 

C,(tI  - A,)-'B, + D,. Then, equations (3) and (4) are simply the expressions for the Gramians for the 

discrete-time system. (Note that D, = D - C(pI + A)-'B.) 

Equations (3) and (4) suggest a natural way of obtaining low-rank approximations to the square roots of 

Wc and W,: 



where 

K(A,,B,,k) a [B, A,B, AZB, - A;-~B,] 

is the  kth order Krylov matrix. Similarly, 

T h e  direct computation of the N x k matrices K(A,, B,, k) and K(A;, CF, k) is ill-conditioned, as the 

columns of these matrices quickly converge to  the dominant eigenvector of A, and A: respectively. Krylov 

met hods are nat,ural tools for well-conditioned computation of K(A,, B,, k) and K(A;, CT, k). 

The  quality of the  approximation of K(A,, B,, k) and K(A;, CT,  k) a s  square roots of the Gramians 

depends critically on how fast A: goes t o  zero with k, or on the  spectral radius (i.e., the maximum magnitude 

of the eigenvalues) p(A,) of A,. T h e  choice of p t o  make p(A,) as small as possible is a well-studied 

problem; see for example [LW91]. T h e  key here is that  the  eigenvalues of A and A, are related by &(A,) = 

( p  - X,(A))/(p + &(A)). For every i, the value of p that  minimizes ( (p  - X,(A))/(p + X,(A))( is p = IX,(A)(. 

Of course, we need t o  choose p to  minimize 

As discussed in [LW91], a good choice for p is simply - d ( m a x ,  JXi(A)() (mini JXi(A)(). 

In our implementation, we used ten power iterations t o  compute maxi IX,(A)I and ten inverse power 

iterations t o  compute mini IXi(A)I. The  implementation of the power iterations is straightforward, and 

requires only matrix-vector multiplications. To implement the inverse power iterations, we began with an 

LU factorization of A; then every inverse power iteration required the  solution of two triangular systems of 

linear equations. 

We next discuss the  Arnoldi and Lanczos iterations that  compute the Krylov matrices K(A,, B,, k) and 

K(AF, CT,  k) in an  efficient and well-conditioned manner. 

2.3.1 A r n o l d i  M e t h o d  

T h e  Arnoldi iterations (GL89, Ch. 91 can be  used to  iteratively compute the  columns of matrices Q k  and P k ,  

such that  

the  columns of Qk and P k  span the  range of K(Ap, BPI k) and K(A;, CT, k); 

QcApQk = H k  and PFA;Pk = F k  are Hessenberg matrices; 

K(A,,B,,k) = [B, A,B, A;B, ... A ; - ' B , ] = Q ~ R ~ ,  
K(A;, CpT, k) = [ c ~ T  A ~ T c ~ T  (AT)~c~T . . . (A;)~-'c~T] = P k S k  

are QR factorizations. 



The algorithm t,hat we present here is adapted from [GL89, Ch. 91 to compute a QR factorization of both 

K(A, ,  B,, k) and K(AT, CF, k) inside one iterative loop; in addition, we show explicitly the construction of 

the QR factors. 

j = 1; 

qi = BP/IIBpllz; P = 1; Q 1  = ql;  R1 = IIBPl12; 

pi = C,T/IIC~~IZ; r = 1; Pi = p i ;  Si = IICpllz; 

repeat  while stopping c r i t e r i o n  is  not  met { 

f o r z = l : j  

h . .  - 
a3 - qTApqj; 

f . .  - a3 - pFAFpj: 

end 

rj+l = A . - C" h. .  . . P ~ J  a=1 a~qa, 

~ j + ~  = A T p . - ~ j  f . .  . P 3 a=l t3Pz; 

In the above algorithm, matrix-vector multiplications such as APqj = (PI + A)- l (p I  - A)qj can be 

implemented by first performing an LU factorization of (PI + A);  then the product APqj can be computed 

by performing one matrix-vector multiplication, followed by the solution of two triangular systems of linear 

equations. 

At the end of the kth iteration, we have an approximate kth order square root of W,, given as Xk = 

K(A,,  B,, k) = Qk Rk , and an approximate kth order square root of lVO, given as Yk = IC(AF, CT,  k) = Pk Sk. 

An nth order approximately balance-and-truncate model can be obtained through the following steps: 

1. Find the SVD 

X ~ I ;  = R ~ Q T P ~ S ~  = 02VT. 



2. Determine n,, the number of significant state components, from the approximate Hankel singular values 

3. Form 
- t ib =  lit-+ [ In ] , and T~ = [ I, O n x ( N - n )  1 =-+cTy:. 

O(N-n)xn 

4. Compute the nth-order state-space realization (pbf A F ~ ,  T ~ ~ B ,  c T ~ !  D). 

2.3.2 Lanczos Method 

The Lanczos method for non-symmetric matrices is another technique for the computation of a basis for 

Krylov subspaces. While the Lanczos method involves less computation than the Arnoldi method, its 

numerical properties are suspect [GL89, $9.3.61. The Lanczos algorithm reduces the square matrix A, to  

tridiagonal form using a general similarity transformation. The algorithm interactively computes the bi- 

orthonormal columns of Pk and Qk (i.e., with P ~ Q ~  = I )  such that PTApQk = Tk,  with Tk a tridiagonal 

matrix. Here Qk spans the range of the Krylov matrix K(A,, B,, k), P k  spans the range of the Krylov matrix 

K(AF, c;, k). Also, during the iterations, we can construct the upper-triangular matrices Rk and S k ,  such 

that 

K(A,,B,,k)=[B, A,B, . . .  A!-'B,]=QkRk 

and 

K(A,T,c,T, k) = [c,T AFCT . - .  (ApT)k-l~pT] = 4 S k .  

(Note that these are not QR factorizations, unlike with the Arnoldi method.) 

The algorithm is: 

repeat while stopping criterion is not met { 



As with the Arnoldi method, we have an  approximate lcth order square root of WC,  given as Xk = 

K(Ap,  B,, k) = Qk Rkr and an approximate kth order square root of W,, given as Yk = K(A;, CT, lc) = PkSk. 

Approximate balanced truncation can proceed as described at the end of Section 2.3.1. Note that with the 

Lanczos iteration X;Yk = RcQTPkSk = R ~ s ~ ,  or the Lanczos iterations yield approximate rank-lc LU 

factors for the product XTY; in this sense, the Lanczos method is a more natural method for use with 

balancing. 

2.4 Error Analysis, Stopping Criterion and Flop Counts 

We first analyze the error in approximating the Gramians. Consider the error Ek,, = W: - x ~ x : .  Clearly 

Ek,c > 0 for all k?  so that Tr (Ek,,) serves as a norm of the error. Now, 

Thus, the error converges monotonically to zero with k. Moreover, 

for some constant Kc.  Thus, 

Tr (CvC - x ~ x : )  <_ K , P ( A , ) ~ T ~  (W,) ,  and similarly Tr (W, - Y~Y:)  I K , ~ ( A , ) ~ T ~  (l.Vo), 

or the relative error in the approximation depends critically on the spectral radius of A,. 

Finally, we may derive an expression for the error in the approximation of the Hankel singular values 

themselves. Recall that with Wc = XX T and l.Vo = Y Y T ,  the Hankel singular values are simply the singular 

values ui of X TY.  Our algorithm yields k approximate Hankel singular values C i ,  via an SVD of XrYk. 

Then, 
N k 

I I x ~ Y ( ~ $  = Tr ( Y T x X T Y )  = 01 ,  and I ~ x ? Y ~ I I $  = Tr (Y:x~x:Y~)  = xi??. 
i=l  i= 1 

Moreover, 

for some constant K .  Once again, the approximation error depends critically on the spectral radius of A,. 



Stopping Criterion 

One practical stopping criterion with both the Arnoldi and Lanczos iterations is to monitor the Frobenius 

norm of the product XTYk, and to stop when the change is smaller than some tolerance. The quantity 

IIXrYklJF can be computed iteratively: 

The latter three terms require only matrix-vector multiplications. 

Flop Counts 

The flop counts of the major steps involved in the various implementations of the balance-and-truncate 

method are listed below. The number of states in the full-order model is N ,  and we assume that the reduced- 

order model has n states. We assume that k iterations are performed with the Arnoldi- and Lanczos-based 

approximate balance-and-truncate implementations. 

1 Technique 

3 Numerical Results 

Flop count 11 

Balance-and-truncate with Arnoldi 

Balance-and-truncate with Lanczos 

We now demonstrate the performance of the model reduction schemes described thus far on some numerical 

examples. For the first set of test cases, we considered randomly generated stable LTI systems with twenty 

pairs of eigenvalues with a real part of -1, twenty pairs of eigenvalues with a real part of -2, with the 

remaining eigenvalues having smaller (more negative) real parts. We considered full-order models of three 

different sizes: 100,200 and 400. For each size, we generated thirty different test cases, and applied our model 

reduction schemes to  obtain an approximately balanced-and-truncated reduced order model. Table 1 shows 

statistics describing the performance of our algorithm. It is evident that with our algorithm, considerable 

computational savings accrue as compared with the standard balance-and-truncate model reduction. 

In order to illustrate the error in approximation, we consider a typical test case of a full-order model 

with 100 states. Our algorithm yielded a reduced-order model with 21 states. Figure l ( a )  shows the relative 

approximation error of the 21-state reduced-order models obtained with the standard balance-and-truncate 

method, balance-and-truncate with Arnoldi iterations, and balance-and-truncate with Lanczos iterations 

respectively. It is evident that error performance of our algorithms are comparable with that of the standard 

balance-and-truncate method. Figure l (b )  show the magnitude and phase of the system response of the 

n Standard balance-and-truncate I (30 + z ) N 3  + 6nN 2 + 6n2N + 4nN 11 
5 '  

$AT3 + (40 + 10C + 2n)N2 + (10k2 + 2n2 + 4k + 4n + 4Cn)N 
+4n2k + (22 + t ) k 3  + 6k2 - % k  

+ N 3  + (40 + lOk + 2n)N2 + (6k2 + 2n2 + 10k + 4n + 4kn)N 
4n2k + 22k3 + 2k2 - C 

- 



Original model order I100 1 200 1 4 0 0 1  

I I Average flop count with the 
standard balance-truncate met hod (in millions) 

1 225 1 1930 1 16400 1 
Average savings with Arnoldi 
Average savings with Lanczos 

h,laximum savinas with Arnoldi 

n - 
Minimum savings with Lanczos 1 23 1 50 1 121 

L, 

Maximum savings with Lanczos 
Minimum savings with Arnoldi 

Table 1: Comparison of flop counts. For each of our algorithms, the term "savings" in the above table is 
the ratio of the flop count of the standard balance and truncate model reduction scheme to the flop count 
of our algorithm. All simulations were performed with MATLAB. 

46 
47 

105 

original system, and that of the reduced-order systems, once again illustrating that the reduced-order model 

107 
23 

obtained from our algorithms are virtually indistinguishable from those obtained by the standard balance- 

108 
109 
193 

and-truncate method. 

173 
174 
241 

194 
48 

Recall that the analysis of the approximation error in Section 2.4 revealed that the quality of our low- 

rank approximation of the square root of the Gramian depended critically on how small the spectral radius 

241 
119 

p(A,) = p((pI + A)-'(PI - A ) )  is. When the eigenvalues of A are well-damped, as with the test cases 

L 

presented thus far, the spectral radius of p(A,) can be made significantly less than one with an appropriate 

choice of p. This is the reason for the remarkably good performance of our approximate balance-and-truncate 

schemes. For very lightly damped systems, for every choice of p, the value of p(A,) will be very close to 

one, implying that the quality of approximation with our methods should be poor. To explore this issue 

further, we considered a second set of test cases, where we randomly generated stable LTI systems with 

twenty pairs of eigenvalues with a real part of -.001, twenty pairs of eigenvalues with a real part of -.002, 

with the remaining eigenvalues having smaller (more negative) real parts. We collected the same statistics 

as with the earlier test cases; these are shown in Table 2. It is immediately noticeable that as expected, 

the computational savings due to our algorithms, although quite significant, are not as high as with the 

reduction of heavily-damped models. 

In order to  examine the error in approximation, we consider a typical test case of a (full-order) system 

with 100 states. Our algorithm yielded a reduced-order model with 44 states. An examination of the quality 

of approximation, shown in Figure 2(a), reveals the remarkable fact that over a large range of frequencies, our 

approximate balance-and-truncate schemes perform better than the standard balance-and-truncate scheme. 

A possible explanation for this is that for very lightly-damped systems, the Gramians themselves are ill- 
A conditioned (the Lyapunov operator L(.) = AT(.) + (.)A is close to  being singular), and therefore numerical 

errors lead to the poor performance of the standard balance-and-truncate method. In contrast our algorithms, 

especially the Arnoldi method, are numerically more stable. Figures 2(b), 2(c) and 2(d) show the magnitude 

and phase of the system response of the reduced systems. From these plots, it is once again evident that our 

algorithms perform better than the standard balanced truncation met hod. 



Relalire appmx~malion error ol r d w d  syslerru 

Slandard balanced tuncatan 1 7 Balanced buncai'm wilh Arnddi - + - Balanced rmncai'm wilA Lancros I I Standard balanced truncation 
$ 5 1  1 - maned mncamn m .-. 
, - - -  Balanced truncam w m  Lanczos I n h  

(a) Relative approximation error of 21-state reduced- (b) System response of the original 100-state system and 
order models (original model order is 100). the 21-state reduced-order systems generated by different 

implementations of the balance-and-truncate method. 

Figure 1: A typical test case of a full-order model with 100 states. Our algorithm yielded a reduced-order 
model with 21 states. 

Original model order 1 100 1 200 1 400 

Table 2: Comparison of flop counts. For each of our algorithms, the term "savings" in the above table is 
the ratio of the flop count of the standard balance and truncate model reduction scheme to  the flop count 
of our algorithm. All simulations were performed with MATLAB. 

- 
Average flop count with the 

standard balance-truncate method (in millions) 

Average savings with Arnoldi 
Average savings with Lanczos 

Maximum savings with Arnoldi 
Maximum savings with Lanczos 
Minimum savings with Arnoldi 
Minimum savings with Lanczos 

230 

22 
22 
24 
24 
20 
21 

1900 

25 
25 
28 
26 
23 
23 

16000 

26 
2 5 
2 7 
25 
24 
25 



(a) Relative approximation error of 44-state reduced- (b) System response of the original 100-state lightly- 
order models (original model order is 100). damped system and the 44-state reduced-order system 

generated by the standard balanceand-truncate method. 

(c) System response of the original 100-state lightly- (d) System response of the original 100-state lightly- 
damped system and the 44-state reduced-order system damped system and the 44-state reduced-order system 
generated by balance-and-truncate with Arnoldi. generated by balance-and-truncate with Lanczos. 

Figure 2: A typical test case of a lightly-damped system with 100 states. Our algorithm yielded a reduced- 
order model with 44 states. 



4 Conclusion 

PVe have presented efficient implementations of the balance-and-truncate model reduction technique for large- 

scale systems, using Krylov subspace methods. The two distinguishing features of our algorithms are: (i) 

We directly compute state coordinate transformations that approximately balance-and-truncate the state 

vector. (ii) The coordinate transformations are computed directly from Krylov subspace methods and a 

small-size SVD, without the need for solving any Lyapunov equations. Numerical simulations show that our 

approach holds promise in the balance-and-truncate model reduction of large-scale systems. 
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