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Dimensional scaling treatment of stability of atomic anions induced
by superintense, high-frequency laser fields
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We show that dimensional scaling, combined with the high-frequency Floquet theory, provides
useful means to evaluate the stability of gas phase atomic anions in a superintense laser field. At the
large-dimension limit �D→��, in a suitably scaled space, electrons become localized along the
polarization direction of the laser field. We find that calculations at large D are much simpler than
D=3, yet yield similar results for the field strengths needed to bind an “extra” one or two electrons
to H and He atoms. For both linearly and circularly polarized laser fields, the amplitude of quiver
motion of the electrons correlates with the detachment energy. Despite large differences in scale, this
correlation is qualitatively like that found between internuclear distances and dissociation energies
of chemical bonds. © 2007 American Institute of Physics. �DOI: 10.1063/1.2768037�

I. INTRODUCTION

The stability of atomic and molecular anions in the gas
phase is pertinent to many phenomena and has been exten-
sively studied.1,2 Many singly charged negative atomic ions
are known, but only recently have theoretical calculations,
supported by experimental results, clearly excluded the exis-
tence of any stable gas phase doubly negatively charged
atomic ion.3 Such atomic anions might, however, be stable in
very intense magnetic fields.4 Multiply charged gas phase
molecular anions have been observed, but most involve
many atoms.5 The question of the smallest molecule that can
stably bind two or more excess electrons remains open.6,7

Another perspective has emerged from theory revealing
exotic and often paradoxical electronic properties of atoms
induced by high-frequency superintense radiation fields.8 For
this realm, a particularly striking aspect is that the ionization
probability decreases as laser intensity increases.9 Calcula-
tions employing the Floquet theory have predicted the stabi-
lization of multiply charged anions of hydrogen10 and doubly
charged anions of helium and lithium atoms.11 As yet, such
stabilization has not been demonstrated experimentally, ex-
cept for atoms initially prepared in a Rydberg state.12

The predicted stabilization of atomic anions is accompa-
nied by the splitting of the electronic charge distribution into
lobes governed by the polarization of the laser field. This
localization of the electrons markedly reduces encounters
with the nucleus as well as electron correlation and hence
suppresses autoionization.9,13 Such pronounced localization
is also a feature seen in a pseudoclassical limit of dimen-
sional scaling theory as applied to an electronic structure.14

In this paper, in addition to extending results employing cal-
culations for D=3, we examine the large-D limit for the
Floquet theory. We find that it indeed provides a useful ap-
proximation for evaluating the detachment energy as a func-
tion of the laser field parameters. As the large-D limit re-

quires far simpler computations than are required for D=3, it
may facilitate examining prospects for laser induced stabili-
zation of molecular anions.

II. LASER ATOM INTERACTION

We consider a high-frequency monochromatic electric
field with amplitude E0 and frequency � incident on an
N-electron atom.15 In the dipole approximation, each elec-
tron is subjected in the same field and undergoes quiver os-
cillations ��t� along a trajectory given by

��t� = �0�e1 cos �t + e2 tan � sin �t� , �1�

where the quiver amplitude is �0=E0 /�2. The spatial orien-
tation of the oscillations is specified by e1 and e2, unit vec-
tors orthogonal to each other and to the propagation direction
of the light, and �=0 corresponds to linear polarization and
�= ±� /4 to circular polarization. In a reference frame
�Kramers-Henneberger �KH�� translated by ��t� with respect
to the laboratory frame, the electrons no longer quiver, while,
instead, the nucleus �considered infinitely heavier� quivers
along the ��t� trajectory. In the KH frame, the Coulombic
attraction between any electron and the nucleus takes the
form −Z / �ri+��t��, where Z is the nuclear charge.

The high-frequency Floquet theory �HFFT� pertains
when the field frequency � is high compared with the exci-
tation energy of the atom in the field. Then, the electrons feel
a time-averaged effective attractive potential, termed the
“dressed potential,” given by

V0�ri,�0� = −
Z

2�
�

0

2� d�

�ri + ���/���
, �2�

where �=�t and the average extends over one period of the
laser field. The corresponding Schrodinger equation in the
KH frame is

THE JOURNAL OF CHEMICAL PHYSICS 127, 094301 �2007�

0021-9606/2007/127�9�/094301/6/$23.00 © 2007 American Institute of Physics127, 094301-1

Downloaded 27 Nov 2007 to 128.46.220.88. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2768037
http://dx.doi.org/10.1063/1.2768037
http://dx.doi.org/10.1063/1.2768037


�
i=1

N �1

2
pi

2 + V0�ri,�0� + �
j=1

i−1
1

�ri − r j�
	� = ���0�� . �3�

Since the Hamiltonian is Hermitian, the energy eigenvalues,
��N���0� are real. The field parameters E0 and � appear only
in the dressed potential and enter only via �0, the quiver
amplitude.

Of prime interest is the detachment energy required to
remove one of the N electrons,

DE�N���0� = ��N−1���0� − ��N���0� . �4�

As long as DE	0, the N-electron atom or ion remains stable
with respect to the loss of an electron and thus supports at
least one bound state. This stabilization requires �0	�0

crit,
the critical quiver amplitude for which DE=0. At some
higher value, denoted by �0

max, DE reaches its maximum
positive value, and as �0 increases further DE eventually
returns to zero. Table I reports our results for these and as-
sociated quantities, obtained from D=3 and large-D versions
of HFFT applied to hydrogen or helium anions with N
=2,3 ,4 in superintense high-frequency fields with linear or
circular polarization.

III. EVALUATION FOR D=3

Our application of HFFT for D=3 employs well-known
procedures.11,16 For linear or circular polarizations, the
dressed potential has an axis of cylindrical symmetry, taken
as the z axis. For linear polarization, this axis is along the
polarization direction; for circular polarization, it is along the
propagation direction of the light. Thus, in the KH frame, for

linear polarization the effective nuclear charge is spread
along a segment between ±�0 on the z axis, with most den-
sity near the end points. For circular polarization, the nuclear
charge is uniformly distributed on a circle of radius �0 in the
xy plane with the center at x=y=0.

For linear polarization, it is convenient to use prolate
spheroidal coordinates �
 ,� ,�� with foci located at ±�0. The
dressed potential V0�ri ,�0� for each electron then takes the
form

V0�ri,�0� = −
2Z

��0


i

2 − �i
2
K�� 1 − �i

2


i
2 − �i

2�1/2	 , �5�

where K�k� is the complete elliptic integral of the first kind.
The wave functions and energy eigenvalues as functions of
�0 are obtained from Eq. �3� via standard self-consistent field
methods. To evaluate the Hamiltonian matrix elements, we
constructed one-electron orbitals using basis sets of 81 func-
tions of the form

��
,�,��p,q,m = �
 − 1�p�q��1 − �2��
2 − 1��m/2e−
eim�,

�6�

where p, q, and m are non-negative integers and  is a varia-
tional parameter used to optimize the numerical results. As
the starting approximation, the electrons �N=2, 3, or 4� were
positioned at z=�0 and at equidistant points between; in the
subsequent iterations, which converged rapidly to self-
consistency, the overlap of the one-electron orbitals proved
to be negligibly small. Accordingly, the Hartree-Fock ex-
change terms are likewise negligible, and since the Hamil-

TABLE I. Parameters for the stability of atomic anions in superintense laser fields.

Quantity D Polarizationa H− H2− He− He2−

�0
crit �a.u.� 3 L 6 170 11 82

C 6 250 4.3 51
� L 3 181 3 59

C 2.6 300 1.3 45

Icrit �1016 W/cm2� 3 L 0.14 120 0.48 27
C 0.29 501 0.15 21

� L 0.036 130 0.06 14
C 0.054 721 0.014 16

�0
max �a.u.� 3 L 17 400 26 180

C 16 600 14 140
� L 10 500 12 160

C 10 834 6 130

Imax �1016 W/cm2� 3 L 1.2 640 2.7 130
C 2.1 2900 1.6 160

� L 0.4 1000 0.58 100
C 0.8 5600 0.29 140

DE �eV� 3 L 1.1 0.026 1.2 0.12
C 0.37 0.0073 1.1 0.078

� L 1.2 0.019 1.4 0.14
C 0.46 0.0052 1.1 0.066

aL and C denote linear and circular polarizations, respectively. Laser field intensity is related to photon fre-
quency and quiver amplitude by I= �1+2�E0

2 / �2�0c0�, where  is the polarization parameter, =0 for linear
and =1 for circular. E0; the intensity data given here pertain to �=0.191 a.u..
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tonian is independent of spin, the eigenvalues are degenerate
with respect to spin.

Figure 1 displays the electronic charge distributions �up-
per panel� obtained for the ground states of H−, H2−, He−,
and He2−, evaluated for critical values of �0 just large
enough to attain the onset of stabilization, where the detach-
ment energy DE�N���0� of Eq. �4� becomes zero. The negli-
gible overlap of the electron orbitals is evident, and when
�0	�0

crit, the overlap decreases further. As shown in Fig. 2,
the detachment energy then grows positive, thereby enabling
the N-electron anion to support a bound state from which
none of the electrons will autodetach.

For circular polarization, it is appropriate to use oblate
spheroidal coordinates, and the dressed potential then has the
form

V0�ri,�0� = −
2Z

��0�
i + ��i��
K� 2


i + ��i�
�
i��i��1/2	 , �7�

where again K�k� is the complete elliptic integral of the first
kind. In contrast to the potential of Eq. �5�, which is stron-
gest near the line between z=�0, that of Eq. �7� is strongest
in the vicinity of the circle x2+y2=�0

2. The basis sets em-
ployed in the self-consistent calculations have the form

�p,q,m�
,�,��

= �
 − 1�p�qe−

1


�
cos�m�� if m 	 0

1

2�

if m = 0

1

�

sin�m�� if m � 0,
� �8�

where the indices are related to familiar hydrogenic quantum

FIG. 1. �Color online� Electronic charge distributions for ground states of
H−, H2−, He−, and He2− at critical values of the quiver amplitude, �0

crit=6,
170, 11, and 82 a.u., respectively, for high-frequency superintense laser
fields linearly polarized along the z axis. Upper panel shows probability
densities obtained for D=3. Note that overlaps between lobes of ���2 are
negligibly small. The lower panel pertains to the large-D limit, showing cuts
of the effective Hamiltonian of Eq. �10� along the z axis, evaluated for same
values of the quiver amplitude. Dots at minima indicate the location of the
electrons at the large-D limit.

FIG. 2. �Color online� Negative of the detachment energy, DE�N���0�, for the removal of an electron as a function of the quiver amplitude �0 for the ground
states of H−, H2−, He−, and He2− in the high-frequency limit of linearly polarized superintense laser fields. Results are shown for D=3 and the large-D limit.
Table I lists quiver values, denoted as �0

crit and �0
max, that correspond to DE�N�=0 and the maximum DE�N�, respectively, together with corresponding laser

intensities and the maximum detachment energies for both the D=3 and large-D limit.
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numbers via p=n− l−1; q= l−m; and m=−l ,−l+1, . . . , + l.
Again,  is a variational parameter.

Figure 3 shows contour maps of the electronic charge
distributions in the xy plane for ground states of the monoan-
ions and dianions of hydrogen and helium. These pertain to
values of �0 that correspond to the maximum detachment
energy. In each case, the distributions have an N-fold sym-
metry, with the electrons located in distinct lobes with peaks
separated by 360/N deg. The lobes are all bimodal, com-
prised of a large component outside the circle of radius �0

and a smaller companion inside the circle. This feature arises
from the electron-electron repulsion term in Eq. �3�, which
pushes electrons as far apart as possible; the effect of that
term is less pronounced for the dianions because for them
�0

max is much larger than for the monoanions. As seen in

Fig. 4, the variation of detachment energies with �0 for cir-
cular polarization is qualitatively similar to that in Fig. 2 for
linear polarization. For a given magnitude of �0

max, the cor-
responding detachment energy tends to be smaller for circu-
lar than for linear polarization.

IV. EVALUATION AT LARGE-D LIMIT

Dimensional scaling, as applied to electronic structure,
involves generalizing the Schrodinger equation to D dimen-
sions and introducing suitable D-scaled distance and energy
units to remove the major, generic dimensional
dependence.14 Passing to the large-D limit then yields a
pseudoclassical structure, in which the electrons are localized
in the D-scaled space, at positions determined by the mini-
mum of an effective Hamiltonian function. The latter con-
tains no differential operators but comprises merely a cen-
trifugal term, derived from the kinetic energy, in addition to
the familiar Coulombic interactions of electrons and nuclei.
As the scaling has removed most of the D dependence, the
energy at the D→� limit, found simply as the minimum of
the effective Hamiltonian, usually offers a good approxima-
tion to the D=3 energy.

This procedure provides a natural means to examine
electron localization in a superintense laser field. In view of
the axial symmetry that obtains for either linear or circular
polarization, it is convenient to use D-dimensional cylindri-
cal coordinates �akin to x=� cos �, y=� sin � and z, in D
=3�; the Schrodinger equation in those coordinates is already
available.17 Because the essentially zero overlap among
lobes of the electron distribution indicates that electron cor-
relation can be neglected, we consider just the Hartree-Fock
�HF� case.

For linear polarization, the large-D limit effective
Hamiltonian corresponding to Eq. �3� then becomes

FIG. 3. �Color� Electronic charge distributions for ground states of H−, H2−,
He−, and He2− in circularly polarized high-frequency superintense laser
fields. Contours show probability densities for D=3; dots show positions of
electrons for the large-D limit. Both contours and dots pertain to quiver
amplitudes �0

max=16, 600, 14, and 140 a.u., respectively, corresponding to
the maximum detachment energies for D=3.

FIG. 4. �Color online� Negative of the detachment en-
ergy, −DE�N���0�, for H−, H2−, He−, and He2−, as in Fig.
2, for the case of circularly polarized laser fields.
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H =
1

2�
i=1

N
1

�i
2 + �

i=1

N

V0��i,zi;�0�

+ �
i=1

N

�
j=i+1

N
1


�i
2 + � j

2 + �zi − zj�2
, �9�

where for the ith electron, �i measures the distance from the
polarization axis, zi is the distance along that axis, and the
dressed electron-nucleus interaction is given by

V0��i,zi;�0� =
− Z

2�
�

0

2� d�


�i
2 + �zi + �0 sin ��2

. �10�

All distance coordinates, including �0, are scaled by �2

and energies by 1/�2, with �= �D−1� /2; thus, �=1 at D=3.
In Eq. �9�, the first term is the centrifugal contribution. The
third term is the 1/rij electron-electron repulsion; in the HF
case, its form is simplified because the dihedral angle be-
tween any pair of electrons �i−� j =90° in the large-D
limit.18 By minimizing Eq. �9� we obtain the energy ��

�N� as
well as the positions of the localized electrons as functions of
�0. The calculations required are thus far easier to perform
than for D=3. As seen in Figs. 1 and 2 and Table I, the
results we find for D→� compare fairly well with those for
D=3. Particularly for the quantity of chief experimental in-
terest, the variation of detachment energy with �0, the large-
D limit appears to offer adequate estimates.

For circular polarization, we used the same procedure
except for reorienting the quiver amplitude. The effective HF
Hamiltonian for the large-D limit then takes the same form
as Eq. �9� except that the dressed potential is replaced by

V0�xi,yi,zi;�0�

=
− Z

2�
�

0

2� d�


zi
2 + �xi + �0 cos ��2 + �yi + �0 sin ��2

.

�11�

Again, as seen in Figs. 3 and 4 and Table I, the large-D

results compare well with those obtained for D=3; the elec-
trons localize at angular intervals of 2� /N, at the corners of
an N-sided polygon inscribed in the circle of polarization.

V. DISCUSSION

In the HFFT domain, both the blossoming of the electron
distribution into distinct lobes, seen in Figs. 1 and 3, and the
variation of the detachment energy with quiver amplitude,
seen in Figs. 2 and 4, exhibit a qualitative resemblance to a
molecular structure. Figure 5 displays a further aspect.
There, the DE��0� curves are normalized by scaling both DE
and �0 to their values at the maximum detachment energy.
These scaled curves become quite similar for the four anions
considered and for linear and circular polarizations, espe-
cially in the region between the onset of stability and the
maximum detachment energy.

Thus, DE��0� emulates a potential energy curve for the
stretching of a chemical bond, although DEmax is much

FIG. 5. �Color online� Scaled detachment energy func-
tions, −DE�N���0� /DE�N���0

max� plotted vs scaled quiver
amplitudes, �0 /�0

max, for linearly �full symbols, full
curves� and circularly �open symbols, dashed curves�
polarized laser fields and for D=3 �triangles� and the
large-D limit �circles�. Table I lists the scaling param-
eters. Note the similarity in shapes of the curves for
D=3 and the large-D limit, especially between the on-
set of stability �at �0

crit� and the maximum of the detach-
ment energy �at �0

max�.

FIG. 6. �Color online� Log-log plot of maximum detachment energy, DEmax

�eV�, as a function of corresponding quiver amplitude, �0
max �a.u.�, for the

four atomic anions of Fig. 4, using again full symbols and full lines for
linearly polarized and open symbols and dashed lines for circularly polar-
ized laser fields, triangles for D=3, and circles for the large-D limit. For
comparison, the upper left-hand corner includes the plot of bond dissocia-
tion energies vs bond lengths for the molecules H2, H2

+, and He2
+ in field-

free, D=3 space.
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smaller than typical bond dissociation energies and �0
max is

much larger than equilibrium bond lengths. Figure 6 shows
that, on a log-log plot, the correlation between DEmax and
�0

max is actually similar to, but not as steep, as that between
the bond dissociation energies and bond lengths for H2, H2

+,
and He2

+ molecules. The correlation for DEmax extends over
three orders of magnitude and is much the same for linear
and circular polarizations and whether for D=3 or the large-
D limit. We find also that HFFT results11 obtained at D=3
for Li− and Li2− likewise conform to this plot.

The use of the HFFT is subject to three validity
criteria.15 �1� The dipole approximation requires the wave-
length of the field to be large compared to 2�0, for either
linear or circular polarization. For the frequency, this speci-
fies ��137� /�0. �2� Further, the maximum quiver speed of
the electrons must be much smaller than the speed of light.
That requires �0��137; so, whenever this nonrelativistic
constraint holds, so does the dipole approximation. �3� To
attain the high-frequency regime, the field must oscillate
much faster than electron motion within the atom. This re-
quires that ���N���0����. For instance, the ultrahigh power
KrF laser provides photons with �=0.19 a.u. �5 eV�. For the
four anions of Table I, this � would satisfy the lower bound
�3� but the upper bound �2� would in the H2− case not be
sustained because �0

crit is too large.
We obtained from the large-D limit version of HFFT a

modest accuracy with far simpler computations than conven-
tional D=3 methods. D-scaling treatments should prove use-
ful for exploratory studies of other superintense laser pro-
cesses, particularly involving electron localization. Inviting
opportunities akin to our present study include examining the
shapes of electron distributions induced by further varieties
of laser polarization �e.g., elliptical, tetrahedral� or by
multichromatic10 rather than monochromatic radiation. The
large-D limit will also facilitate the evaluation of HFFT for
molecules and the incorporation of time dependence. When
necessary, results can be systematically improved by the use
of a 1/D perturbation expansion.19

The almost total lack of experimental evidence for the
inhibition of ionization in a high-frequency superintense la-
ser field looms in marked contrast with the abundance of
theoretical work affirming and elucidating stabilization.
Many discussions emphasize, among other experimental
challenges, a daunting aspect.12 In order to attain the requi-
site intensity, a pulsed laser must be used. During the rising
edge of the pulse, the target atoms or anions will be ionized.

Few if any may survive intact when the pulse intensity has
reached the stabilization regime. This is termed the “death
valley” problem. It is generally regarded as the key reason
that stabilization has remained experimentally so elusive.
The only exception, as yet, involved a Rydberg atomic state,
enable to survive death valley because the minimum lifetime
for ionization exceeded the pulse rise time.12 We expect that
the use of the large-D limit will aid a search, guided by
theory, to identify similar cases amenable to an experimental
observation of stabilization.
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