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ESTIMATION OF PROPORTIONS OF OBJECTS AND DETERMINATION

OF TRAINING SAMPLE-SIZE IN A REMOTE SENSING APPLICATION*

R. S. Chhikara and P. L. Odell

The University of Texas at Dallas
Dallas, Texas

I. ABSTRACT

One of the problems in remote sensing is estimat­
ing the expected proportions of certain categories of
objects which cannot be observed directly or distinct­
ly. For example, a multi-channel scanning device may
fail to observe objects because of obstructions block­
ing the view, or different categories of objects may
make up a resolution element giving rise to a single
observation. This will require ground truth on any
such categories of objects for estimating their expect­
ed proportions associated with various classes repre­
sented in the remote sensing data. Considering the
classes to be distributed as multivariate normal with
different mean vectors and cornmon covariance, we give
the maximum likelihood estimates for the expected
proportions of objects associated with different
classes, using the Bayes procedure for classification
of individuals obtained from these classes. An approx­
imate solution for simultaneous confidence intervals on
these proportions is given, and thereby a sample-size
needed to achieve a desired amount of accuracy for the
estimates has been determined.

II. INTRODUCTION

We consider here the application of the remote sensing technique for ascer­
taining those types of'earth resources which are not observable directly or
distinctly using remote sensors. For example, the multi-channel spectral measuring
devices used as remote sensors may fail to observe any vegetation, flora, etc.
grown underneath trees over a large track of land covered by forest. But if one
knows how the amount of vegetation and flora is associated with different types of
trees, the remote sensing technique can then be easily employed to estimate the
expected amounts or proportions of different categories of the former in the
region. The other situation may arise when different types of objects fall within
the instantaneous field of view of a multispectral scanning device, making up a
resolution element that gives rise to a single observation, and it is desired to
evaluate the contribution of each type of objects associated with various classes
in a region.

*This research was supported by NASA Johnson Space Center, Houston, Texas under
Contract No. NAS9-l2775.
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When a region is scanned from above using airborne data scanning devices,
identification of observations becomes subject to uncertainty and involves some
probability of misclassification which is often an unknown quantity. Also, the
true proportions of different categories of objects associated with the underlying
classes are generally unknown. Hence the estimation problem for any such types of
objects may involve a two-stage sampling process where at the first stage sample
observations are from the underlying classes, and at the second stage samples con­
sist of elements from the types of objects under consideration. A general formula­
tion of the problem is stated as follows:

Let TI i,i=1,2, ... ,m be m different classes and every member of these classes be

characterized by p common observable features. Denote the measurements associated
T

with an individual I(X) on these features by a vector X = (Xl , x2,.··,Xp) Let 01'

02, ... ,Ok be k mutually exclusive categories of objects associated with each of the

m classes, and assume that there is at least one object associated with each indi­
vidual from every class. Further, let p .. denote the actual proportion of jth cat-

~J

egory objects in TI i, j=1,2, .•. ,k and i=1,2, ... ,m. Assuming that the observation X

on a selected individual I(X) is the basis of classifying it into one of the given
classes and that its identification is subject to uncertainty, let P(sli) denote
the probability of its misclassifying .into TIs when it belongs to TIi(i~s) and let

P(i[i) denote the probability of its correctly classifying into TI .. Then the ex-
pected proportion of jth category objects in TI. is given by ~

~

and i=1,2, ... ,m.

e ..
~J

m
L PSjP(s! i),

s=l

j=1,2, ..• ,k (2.1)

k
It may be noted that for any fixed class TI;, ~ e .. =l, and e .. =p .. for all j

~ LJ ~J ~J ~J

j=l
if and only if p(ili) = 1. However, the later condition is often not achievable
and is highly dependent upon the classification procedure used for discrimination
between the classes. In our effort to discriminate well between the classes, we
will use the Bayes classification procedure which minimizes the expected probabil­
ity of misclassification when equal costs of misclassifying individuals from dif­
ferent classes and equal a priori probabilities for the classes are assumed
(Anderson, 1958).

Considering both cases of P(sli) in (2.1) known and unknown, we give ~n est~­
mate of e .. , j=1,2, ..• ,k and i=1,2, •.• ,m, in each case. We restrict our d~scuss~on

~J

to the case of normally distributed classes. Below in Section III we outline th7
sampling procedure and introduce the notations being used in this paper.. our ma7n
results are given in Sections IV and V where we discuss simultaneous c~nf~dence.~n­
tervals for e .. 's and a determination of sample size that leads to est~mates wh~ch

~J

with a given probability allow only a specified deviation about each e i j·

III. NOTATIONS AND THE SAMPLING PROCEDURE

For the sake of greater illumination, we consider here t~e case of two cla~ses
TIl and TI

2,
and let X be distributed as multivariate normal w~th mean vector ~ ~f

the associated individual I(X) is in TIl and mean vector v if I(X) is in TI 2• Assume

the covariance matrix E is the same for both classes. Then given an observation X
for a randomly selected individual I(X) from the totality of two classes, it fol­
lows under the Bayes classification procedure, assuming equal costs of misclassifi­
cation for individuals and equal a priori probabilities for the classes, that the
two types of probability of misclassification (~nderson, 1958),

p(112) = p(211) = <I>(-~) , (3.1)

where

4B-17



In the context of remote sensing, the sampling process should be executed
first by clustering the data allowing the possibility of severdl clusters per class
and then sampling at random the pixels in each clusteF. The ground truth at these
sampled points is determined by on-site inspection.

Regarding these probabilities of classification, two cases arise. If para­
meters ~, v and L are all known, p(lll), p(211), p(112) and p(212) will be known
quantities. Then, in order to estimate e .. 's, one only needs to estimate p .. 's

~J ~J

j=1,2, ... ,k and i=1,2. This can be achieved by sampling Nl individuals from TIl and

N2 from TI 2 and then determining separately the observed proportions of k categories

of objects associated with these N
I

and N2 sampled individuals. In case the popu­

lation of objects associated with the sampled individuals from each class is large,
a fixed number of objects, say n l and n 2 for TIl and TI 2,respectivelY,should be se-

lected at the second stage for the purpose of finding the observed proportions
estimating Pij's. The sampling scheme for obtaining samples from TIl and TI 2 is

simple random or stratified depending upon whether or not each of these classes
consists of one or more than one cluster.

(3.2)

(3.3)

2
e - y /2 dy.I

I27i
<I> (a)

and

Next, the p.obabilities of correct classification,

p(lll) = p(212) = I - <I>(-~)

When ~,.v and E are partially or completely unknown, t:. is unknown, and hence
p(ilj), i and j=1,2 are unknown quantities. Now for estimating eij's one needs to
obtain estimates for Pij'S as well as for p(ilj) 'so We use the same sampling pro­

cedure as in the previous situation except now the observations for the sampled N
I

and N2 individuals will be utilized to estimate t:. and thereby to estimate <1>(- %),
since estimation of any p(ilj) amounts to estimating this quantity.

IV. SIMULTANEOUS CONFIDENCE INTERVALS FOR e .. 's
~J

4.1. ~, v AND E ALL KNOWN

n .. , j=1,2, •.• ,k
~Jr

n ..
~J

Let ni j r denote the number of jth category objects associated with rth

sampled individual from TI i. Further, let

Ni
~
r=l

and

n.a

k
~ n i J· ,
j=l

i=1,2.

Then Pij = nij/ni provides an
also is the maximum likelihood
estimate and the MLE of e .. is

~J

unbiased estimate of p .. ,j=1,2, ••• ,k and i=1,2.
~J

estimate (MLE). Accordingly, both an unbiased
given by

It

2
e i j = ~ ~s/ (s [L) ,

s=l

j=1,2, ••• ,k

and i=1,2.

(4.1)
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We note that the sample size n i of categorized objects is itself a random variable.

In our discussion we would regard it fixed and so our results would hold condition­
ally. However, if n i(i=l,2) is large, as is the case being considered at present,

such restriction should not affect the unconditional results in any significant
way. On the other hand, if a second stage sampling is involved for the selection
of these objects, the results will not be subject to any condition.

The random vector e = (eil,ei2""'~i~)T, (i=l,2) ~ is a linear combination of
" "T~wo in~epe~dent mu~tin~mial distributed random vectors PI = (Pll,Pl2"",Plk) and

P2 = (P2l,P22,···,P2k) , and component-wise
"

E[e i j] = e .. ,
1J

2
p2(sli)

Psj(l-psj)
var(e i j) l:

ns=l s

and
2

p2(sji) PsjPsj'
cov(eij,e i j,) - 1: j~j'

s=l n s

(4.2)

(4.3)

j=l,2, •.• ,k and i=l,2.

Moreover, both e l an~ e 2 have multinomial distributions, and their respective com­

ponents are perfectly correlated.

Considering the large sample case, it follows (Miller, 1966) that the random

vector ~. has the mUltivariate normal distribution with mean e.=(e.
l,e. 2,

... ,e.
k)T1 111 1

and covariance matrix E consisting of elements in (4.2) and (4.3). So a lOO(l-a)%
confidence region for e. is approximately given by the ellipsoid of points e. 's
satisfying 1 1

2
Xa,p-l (4.4)

where E is an estimate of E obtained by replacing p .. 's by their estimates p .. 's
• 2 2 1J 1J

and X 1 is the lOO(l-a)% quantile for X variate with (p-l) degrees of freedom.a,p-
Now considering the coordinate-wise projection, this yields simultaneous confidence
intervals

(4.5)

for e .. ,j=1,2, .. .,k and i=l,2.
1J

4.2. NOT ALL OF ~, v AND ~ KNOWN

Let Xl'X2""'XN be the observations for Nl individuals sampled from TIl and
1

Yl,Y , •.. ,Y be the observations for N2 individuals sampled from TI 2. The MLE's of2 N2
the unknown parameters or ~2 can now be obtained on the basis of these observa­
tions. Two particular cases of interest are (i) ~, v unknown and ~ known and (ii)

2
~, v and ~ all unknown. The MLE of ~ is

"2 - T-l
~ = (X - Y) I: (X - y)

in case (i) and
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in case (ii), where

and

S
1

Use of these estimates for ~2 leads to the MLE ~(- ~) of ~(- ~) or of p(ilj), given
by 2 2

observed proportion of jth category

individuals from ni. Assuming

observations in each class, it

(4.6)
i=j

4.1, let p .. be the
~J

Ni randomly selected

between two types of
e .. is given by
~J

with i and j = 1,2.

Next, as in Section

objects associated with

stochastic independence
follows that the MLE of

2 A ~

L psl(S Ii),
s=l

(4.7)

j=l,2, ..• ,k

and i=l,2
A

where P(sli) is given by (4.6). The estimates e .. 's are consistent, and if Nl and
~J

N
2

individuals from n l and n
2

are sampled in large numbers, also leading to large

values for assoc~ate~ nlAand n 2 ~bjects in n l and n 2 respectively, the asymptotic

distribution of e.=(e. l,e'2, .•• ,e'k)T can be shown to be mUltivariate normal. In
~ A ~ ~ ~

the present case, e., is a biased estimate and so for the purpose of finding
~J

asymptotic simultaneous confidence intervals for e. ,'s, we will use their mean
square errors (MSE) instead of their variances. ~J

A

Recognizing the two estimates Psj and P(sli) are independent, it follows that

A

Var (psj P(sli»
A A 2

[Var(P(sli)] + [E(p(sli)] Var (p .)
SJ

A

Since Var (p(lli» var(p(2Ii» = Var(~(- ~», i=l,2, we obtain

" " " " " "",... "
Var(e1 j) = var(PljP(111»+var(P2jP(211»+2 Cov(P1jP(111) ,P2 jP(21 1»

[

3P l j (1- P l j ) + 3P 2 j(1-P2j)

n 1 n 2
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(4.9)

(4.8)

(4.10)

[

3P l J. (I-Pl' ) 3P2' (1-P2 .)
_..=...<_"-_-=-JoI-. + J J +

n l n 2

and

Next, interchanging subscripts 1 and 2 in (4~8) one can obtain var(e2 j). Since we

are interested in the mean square errors of eij's, we now give similar expressions
for these as following:

We denote MSE(e .. ) = S .. and let its estimate s .. be obtained by replacing unknown
lJ lJ lJ

quantities in (4.9) and (4.10) by their estimates.

(4.11)e. ,
lJ

i=1,2 and j=1,2, ... ,k, respectively.

Now using the same argument as in the previous case, it follows that approxi­
mate 100(1-a)% simultaneous confidence intervals for e i j, i=1,2 and j=1,2, ..• ,k
are given by

V. DETERMINATION OF SAMPLE SIZE

In this section we consider the problem of determin~ng sample size and, in
particular, want to obtain the sample size so that only a specified amount of error
for e, .'s is allowed by their estimates with a given probability. In specific

lJ
terms the problem is to find the size of Nl,N 2 and thereby that of n l,n 2 so that

e. ,IS fall simultaneously in intervals given bye .. + y .. , (y., fixed), i=1,2 and
lJ lJ - lJ lJ

j=1,2, ... ,k, with probability (l-a). However, this is equivalent to obtaining the
sample size when the coordinate-wise length of a 100(1-a)% confidence region for e.

l

is specified as 2Yi=2(Yil'Yi2""'Yik)T,
i=1,2. Hence, based upon the discussion

in Section IV, an asymptotic solution for the sample size is available from equa­
tions (4.5) and (4.11) for the two cases considered'earlier.

(i) suppose~, v and ~ are known. Then using the result in (4.5), an approximate
solution for the sample size is given by the equation

2

~
s=l

2
P . (l-p .)

p (a l L) SJ SJ
n s

i=1,2 (5.1)

for any fixed j. Simplifying (5.1) for n l,n2, we get

4B-21



and

(5.2)

(5.3)

j=1,2, •.• ,k

where

(5.4)[ 6. 2 2 6.] 2C = (1-.(- -2» -. (- -) X .2 a.,p-1

Thus for every j we have a determination for n
1

and n 2 from (5.2) and (5.3), re­

spectively. One way to find a unique solution is to consider n, given by
1

n i max {n i ( j) , j =1 , 2 , ... , k} ,

i=1,2. Secondly, by a judicious choice of y .. , j=1,2, •.• ,k and i=1,2, (5.2) can
1J

provide the same value for all n1(j) 's and so also (5.3) for all n 2(j) 'so Then any

such cornmon solution, say n 1 and n
2,

will be the desired sample size.

(ii) Suppose not all of ~, v and L are known. Again as in the previous case, an
approximate determination of sample size is given by a solution of the equation

i=1,2

for any fixed j. Denoting

v = estimate of MSE(.(- ~»,

it follows from (4.9), (4.10) and (5.5) that

(5.5)

[3v +

" "
: 2 P1' (1-P1 ' )

(1-. (_ ~»] J J
n1

2 A P2,(1-P2')
+[3V+.(-~)] J J

n 2

and

[3v + .2(_ ~)] P1j(1-P1j) + [3v+(1-.(- ~)2] P2j(1-P2j)

n
1

n 2

2
y 2j
2

Xa.,p-1

(5.6)

and n 2 for a fixed j, we get

2 2" " 2
(a -b ) Plj (+-P1j) Xa.,p-1

)(

6. 2 2 2
(1-2.(- 2'»VXa.,p-1 + aY1 j - bY2j

Simplifying these equations for n 1

and
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2
Xa,P-l

(5.7)

where

a = 3v +

b = 3v +

6 2
(l-~(- 2"))

~2 (_~) •

Once again, a unique determination of sample size is obtained either by taking

n i = max {n i (j) , j =1 , 2 , .. ., k } ,

i=1,2 or by obtaining a common solution for ni(j)' j=1,2, •.. ,k with a jUdicious

choice of Yi j, j=1,2, .•. ,k in (5.6) and (5.7)

The solution fo~ ni(j) in (5.6) and (5.7) depends upon the knowledge of v, an

estimate of MSE(~(- ~)). The later can be evaluated by considering it a function

of the statistic ~2, which is distributed as non-central X2 with p degrees of

freedom and non-centrality parameter 6
2

when r is known and asymptotically so if r
is unknown. Since we are dealing with the large sample case, in both cases we will
hav~ the same evaluation given by

where

and

MSE(~(- ~) ) [2 6 6 [ 6 ] 2 6
2 = E ~ (- 2')] - 2~(- 2")E ~(- 2") + ~ (- 2") (5.8)

00 (1:1

'
6 1 f

2

dY) f(Q;6 2) dQE[~(- 2")J
e-y /2

I27i 0

00 ( fl'
2

E[~2(_ ~)] 1 f
2

dy ) f(Q;lI 2)dQ
27T

e-Y /2

0 -00

with

L
C/.=O

Now for an evaluation of v, it is given by (5~8) with 6 replaced by lI, and for any

and E [~2 (- ~)] can easily be computed by a nu­

~(- %) is available from the standard normal

A

given ~, the quantities E [~(- %)]
merical integration technique and
table.

VI. CONCLUDING REMARKS

The sampling procedure and the other discussion given in this paper are of
such a general nature that our results can be easily applicable or adapted in
several different situations that may arise in remote sensing. For the specific
examples mentioned in the beginning of the paper, one can now see that once sam­
ples are obtained from different classes of trees by a suitable sampling technique
and subsequently the ground truth regarding vegetation and flora, etc. associated
with the sampled trees is ascertained, the above discussion will provide estimates

-
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for the amounts of different types of vegetations and flora in a forest covering a
large area. Also, a similar approach will lead to estimating contributions of
various categories of objects making up a resolution element for remote sensing
data in case the instantaneous field of view of a multispectral scanning device
covers mOre than one type of objects. Exclusively addressed to this last situation
another approach to the problem (Horwitz, Nalepka, Hyde and Morgenstern, i97l), has
been suggested earlier. It consists of estimating the expected mean values and
expected covariance matrix, assuming the mean vectors and dispersion matrices for
individual categories of objects, and then considering class distributions as mul­
tivariate normal with these expected mean vectors and expected covariance matrix.
Another situation that falls in the present framework is where an acreage estimate
for different types of soils under various crops in a region is desired.

The computations involved are straight-forward except in the evaluation of v
which involves numerical integration. In the absence of real data a sampling study
can be conducted easily using simulated data obtained for actual proportion vectors
associated with different classes and for the classes as well if so needed.

It may as well be pointed out that our determination of sample size was based
upon the requirement of achieving certain specified precision by the estimates. If,
however, it is desired to have a given fraction of the objects covered with a de­
sired level of confidence, the results will be more interesting. This, of course,
would require deriving tolerance limits on eij's, and then by a similar procedure

as in the fixed precision case, a sample size can be determined so that a desired
amount of coverage of objects with a given level of confidence is insured. The
authors hope to give results with this approach in a subsequent paper.
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