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Seeing is as Good as Doing

Magda Osman1

Abstract

Given the privileged status claimed for active learning in a variety of domains (visuomotor 

learning, causal induction, problem solving, education, skill learning), the present study 

examines whether action-based learning is a necessary, or a suffi cient, means of acquir-

ing the relevant skills needed to perform a task typically described as requiring active 

learning. To achieve this, the present study compares the effects of action-based and 

observation-based learning when controlling a complex dynamic task environment (N = 

96). Both action- and observation-based individuals learn either by describing the changes 

in the environment in the form of a conditional statement, or not. The study reveals that 

for both active and observational learners, advantages in performance (p < .05), accuracy 

in knowledge of the task (p < .05), and self-insight (p < .05) are found when learning is 

based on inducing rules from the task environment. Moreover, the study provides evidence 

suggesting that, given task instructions that encourage rule-based knowledge, both ac-

tive and observation-based learning can lead to high levels of problem solving skills in a 

complex dynamic environment. 

Seeing is as Good as Doing

Who has better knowledge and skill: the back seat driver, who is learning to drive, or the 

actual driver, who is also learning to drive; the person watching their friend play a new 

game on the Sony play station, or the friend who is actually playing the game? Our daily 

lives frequently involve learning to control complex dynamic environments like those 

referred to in the question, but how we come to form the relevant skills needed to master 

such environments remains much debated. Laboratory versions of these tasks, referred 

to as Complex dynamic control tasks (CDC-tasks; see Figure 1: water purifi cation system) 

typically include several inputs (salt, carbon, lime) that are connected via a complex 

structure or rule to several outputs (chlorine concentration, temperature, oxygenation). 
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In such environments, people are required to make a series of decisions, often in real time, 

that each depend on the other, and in an environment that changes autonomously as a 

consequence of a person’s actions (Brehmer, 1992). 

Implicit theorists (Berry, 1991; Berry & Broadbent, 1984, 1987, 1988; Dienes & Berry, 

1997; Lee, 1995; Stanley, Mathews, Buss, & Kotler-Cope, 1989) claim that the learning process 

involved in dynamic task environments is procedural. The knowledge that is acquired is 

“knowing how” to perform actions that are tied to specifi c goals. In contrast, declarative 

knowledge, which is “knowing that” of particular facts about the underlying actions, in-

volves structural knowledge concerned with the goal itself (Anderson, 1982). By extension, 

implicit learning theorists (Berry, 1991; Berry & Broadbent, 1988; Dienes & Berry, 1997; Lee, 

1995; Sun, Merrill, & Peterson, 2001) have proposed that knowledge acquired in CDC-tasks 

and experience in controlling them is procedural and embedded within the interactions 

problem solvers have with the system. This form of learning produces instance-based 

procedural knowledge, that is, specifi c actions undertaken while interacting with the 

system become associated with the specifi c effects that they generate. Thus, mastering a 

control task requires successfully matching the goal and the current situation to previously 

encountered instances in order to determine the next appropriate response. Knowledge 

is conscious only to the extent that the response appropriate to a given situation can be 

stated, but what led them to make this response is unavailable to consciousness (Buchner, 

Funke, & Berry, 1995; Dienes & Berry, 1997; Dienes & Fahey, 1995, 1998). 

The empirical foundation of this position is the phenomenon showing that declara-

tive knowledge is dissociated from procedural knowledge. This is because the learning 

systems understood to support declarative and procedural knowledge are distinct. In 

support of this, people have been shown to successfully control a CDC-task independently 

of any reportable declarative knowledge of the rule or causal structure that determines 

its operation, and without self-insight as to how they are able to perform it (Berry & 

Broadbent, 1984, 1987, 1988; Stanley et al., 1989). Another compelling demonstration of 

dissociations between rule- and instance-based knowledge is found in the contrasting 

effects of observation-based and procedural-based learning (Berry, 1991; Lee, 1995). Be-

cause declarative knowledge cannot easily be used to execute tasks suited to procedural 

knowledge (Berry, 1991; Berry & Broadbent, 1984, 1987, 1988; Dienes & Berry, 1997; Lee, 

1995), it has also been claimed that possessing declarative knowledge will impair one’s later 

ability to perform a procedural task. Observation-based learning involves problem solvers 

watching the actions taken by another problem solver attempting to learn a CDC-task. 

This encourages the observer to focus on understanding how the system operates (i.e., 

rule-based knowledge), and is claimed to engage the explicit learning system (Berry, 1991). 

In contrast, conventional methods of training to control a CDC-task are procedural based 

and are thought to encourage knowledge of how to operate the system (i.e., instance-

based knowledge). When compared, observers show better rule-based knowledge than 
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procedural learners, but poorer control performance, further demonstrating dissociations 

between procedural and declarative learning.

Others, however, have suggested that successful skill acquisition depends on a combi-

nation of rule-based and instance-based knowledge, which develops through hypothesis 

testing (Burns & Vollmeyer, 2002; Osman, 2008a, 2008b; Sweller, 1988; Vollmeyer, Burns, & 

Holyoak, 1996). By exploring the task and formulating rules about how it operates, learn-

ers are able to update their rule-based knowledge through the instances that they have 

generated to test them. Through practice, a wider range of instances are experienced, 

and these enable learners to form generalizable knowledge that they can transfer to 

other similar tasks. Evidence for this comes from studies that compare different types of 

goal instructions during learning. For instance, instructions like “explore the system,” an 

example of a nonspecifi c goal (NSG), are contrasted with “learn about the system while 

trying to reach and maintain specifi c outcomes,” an example of a specifi c goal (SG). The 

former instruction is assumed to encourage hypothesis testing, because rules can be gen-

erated and tested, whereas in the latter instruction, learning is constrained by generating 

instances that fulfi ll specifi c criteria. When tested on their ability to control the system to 

previously trained goals, SG-learners’ performance is equal to that of NSG-learners that 

have not learned to perform the task to any criteria. Furthermore, for untrained goals, 

NSG-learners outperform SG-learners. Taken together with evidence that NSG-learners 

also have superior structural knowledge about the system, this suggests that rule- and 

instance-based knowledge combined is more effective than instance-based knowledge 

alone (Burns & Vollmeyer, 2002; Osman, 2008a; Vollmeyer et al., 1996). 

Given these confl icting views, this article asks: Is procedural learning necessary to 

ensure skill acquisition in a complex dynamic environment? To address this, the present 

study included six conditions (Active [generate]-Instance, Active [generate]-Instance + Rule, 

Active [replicate]-Instance, Active [replicate]-Instance + Rule, Observe-Instance, Observe-

Instance + Rule), across which the involvement of procedural learning was gradually 

attenuated. If procedural learning is necessary for skill development in CDC-tasks, then 

active-learning conditions will consistently show superior control performance compared 

with observation-based learning conditions, but poorer rule-based knowledge. If instead, 

instance- and rule-based knowledge combined are necessary for control skills to develop, 

then, regardless of action- or observation-based learning, both kinds of learners will show 

superior knowledge relative to those acquiring only instance-based knowledge.

Method

Ninety-six students from University College London volunteered to take part in the experi-

ment, and were paid £4 for their participation. Participants were randomly allocated to 

one of six conditions, with sixteen in each. Participants were tested individually and were 
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Figure 1. Water tank system with inputs (salt, carbon, lime) and outputs (oxygenation, 
chlorine concentration, temperature).

presented with a fully automated version of Burns and Vollmeyer’s (2002) water purifi ca-

tion system, which was run on Dell Optiplex computers.

Materials and Procedure 

The present study adapted Burns and Vollmeyer’s (2002) original control system as de-

picted in Figure 1. All participants were presented with a cover story in which they were 

told to imagine that they worked in a water purifi cation plant, and that their job was to 

inspect the water quality of the system. The system was operated by varying the different

levels of salt, carbon, and lime (inputs), which then changed the three water quality in-

dicators: oxygenation, temperature, and chlorine concentration (outputs). The CDC-task 

was divided into two phases, the learning phase (40 trials divided into 4 blocks of 10 tri-

als) and the test phase, with two control tests (Control Test 1 and Control Test 2; each test 

was 10 trials). After every 10 trials in the learning phase, and after each control test in the 

test phase, all participants were presented with a structure test, consisting of a diagram 

of the system shown on screen, and were asked to indicate which input was connected 

to which output. The critical manipulations for the six conditions of this study concerned 

the learning phase.

Active Generate Conditions:  The learning phase of both Active generate conditions 

(i.e., Active [generate]-Instance condition, Active [generate]-Instance + Rule condition) 

involved the following procedure. Each learning trial consisted of participants interacting 

with the system by changing any input by any value they chose, using a slider correspond-

ing to each. Each slider had a scale from -100 to 100 units. When participants were satisfi ed 

with their changes to the inputs, they clicked a button labeled “output readings,” which 

revealed the values of all three outputs. When they were ready to start the next trial, they 

clicked a button “next trial,” which hid the output values from view. On the next trial, the 

newly changed inputs affected the output values from the previous trial: thus, the effects 
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on the outputs were cumulative from one trial to the next. Prior to the learning phase, 

the Active (generate)-Instance condition was given a goal specifi c instruction. They were 

told that they would be required to generate input values to achieve and maintain the 

following output values in the system: Oxygenation = 50, Chlorine Concentration = 700, 

Temperature = 900; these values were identical to that of Control Test 1. In addition to this, 

the Active (generate)-Instance + Rule condition was instructed that, at the end of each 

trial, they were to verbally describe the input and output changes in the form of an “if___, 

then____” statement (e.g., if input salt is changed to 10 units, then the output value of 

Chlorine Concentration is 516). 

Active Replicate Conditions:  The learning phase of the Active replicate conditions (i.e., 

Active [replicate]-Instance condition, Active [replicate]-Instance + Rule condition) was as 

follows. In contrast to participants in the Active generate condition in which they were free 

to choose which inputs to change and by how much on each learning trial, participants 

in the Active replicate conditions were required to change the inputs according to a trial 

history. That is, participants were presented with a sheet which contained instructions as 

to which input/inputs had to be change and the values they should be changed by for 

every trial of the learning phase.1 The Active (replicate)-Instance condition were told to 

simply follow the instructions on the trial history sheet and change the specifi c inputs by 

their prespecifi ed values for each learning trial. In addition to this, the Active (replicate)-

Instance + Rule condition were instructed to described the input and output changes in 

the form of an “if___, then____” statement. 

Observe Conditions: The learning phase of both Observe conditions (i.e., Observe-

Instance condition, Observe-Instance + Rule condition ) was as follows: Instead of changing 

the inputs as in the active learning-based conditions, on each trial participants pressed 

a button “reveal inputs,” then observed the sliders of the inputs changing automatically 

according to prespecifi ed values. Then they pressed a button “reveal outputs,” which dis-

played the corresponding effects on the output values. After studying them, participants 

clicked a button “ready for next trial,” which cleared the input and output values ready for 

the next trial. In the Observe-Instance condition, participants’ job was to carefully track the 

changes to the inputs and outputs on each trial, which changed according to the same 

trial history presented in the active-replicate conditions, and to assess how successfully 

the output values met the criteria output values. In addition to this, the Observe-Instance 

+ Rule condition were told to describe the input and output changes in the form of an 

“if___, then____” statement. 

After the learning phase, participants were presented the test phase. The procedure 

in the test phase was the same for all six conditions. The criterion values participants had 

to reach and maintain in Control Test 1 were Oxygenation = 50, Chlorine Concentration = 

700, Temperature = 900, and in Control Test 2 the values were Oxygenation = 250; Chlorine 

Concentration = 350; Temperature = 1100. The output criteria in Control Test 2 were un-
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familiar to all six conditions, since this control test involved a goal that they had not been 

trained on, and provided a test of the generalizability of their control skills.

On completion of the experiment, participants were presented with a record of three 

different trial histories from the learning phase: one that they had actually experienced 

during the learning phase, and two randomly selected alternatives from the Active (gener-

ate) conditions. They were asked to decide which of the three they had experienced, and 

what formed the basis of their judgment: that is, did they recognize specifi c trials? Did 

they rely on a sense of familiarity? Did they guess?

Scoring

Structure test performance was based on computing the proportion of input-output 

links correctly identifi ed for each test. A correction for guessing was incorporated: correct 

responses (i.e., the number of correct links included, and incorrect links avoided), incorrect 

responses (i.e., the number of incorrect links included, and correct links avoided)/ N (the 

total number of links that could be made). The maximum value for each structure score 

was 10. Successful performance is indicated by higher structure test scores.

Control Tests 1 and 2

Control performance was measured as error scores, and was calculated in the same way 

for each test. Error scores were based on calculating the difference between each target’s 

output value (i.e., the criterion according to the test) and the actual output value produced 

by the participant for each trial of the transfer test. A log transformation (base 10) was 

applied to the error scores of each participant for each trial, to minimize the skewedness 

of the distribution of scores. All analyses of error scores are based on participants’ mean 

error, averaged over all 10 trials, across all three output variables. Successful control per-

formance is indexed by the difference between the achieved and target output values, 

thus lower error scores indicate better performance.

Results

Test of Control Skills 

The mean error score of all six conditions presented in Figure 2 suggests that, in all three 

Instance + Rule-based conditions, control error scores were lower (indicating good 

performance) in both tests, compared with the three Instance only-based conditions. 

To analyze this, a 2x2x3 ANOVA was carried out using test (Control Test 1, Control Test 

2) as within subject variables, and knowledge (Instance, Instance + Rule) and learning 

format (Active [generate], Active [replicate], Observe) as the between subject variables. 

The analysis showed a signifi cant main effect of test: F(1, 90) = 4.87, MSE = 0.13, p < 0.05, 
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η2 = 0.05. There was also a signifi cant main effect of knowledge: F(1, 90) = 59.22, MSE = 

1.56, p < 0.005, η2 = 0.39. No other main effects or interactions were signifi cant. Because 

there was no interaction between knowledge and test, the control error scores for each 

condition were collapsed across tests. The signifi cant higher control error scores (impaired 

performance) in the Instance conditions compared with the Instance + Rule conditions 

for the Active (generate), Active (replicate), and Observe conditions, was confi rmed by a 

planned comparison for error scores: t(15) = 2.75, p < 0.05, d = 1.42, t(15) = 5.05, p < 0.05, 

d = 2.61, and t(15) = 8.78, p < 0.005, d = 4.53, respectively.

Test of rule-based knowledge: The mean structure test scores were collapsed across 

phase for each of the six conditions and are presented in Figure 3. The fi gure suggests

that, in the three Instance + Rule-based conditions, structure test scores were lower (indi-

cating good performance) compared with the three Instance only-based conditions. To 

Figure 2. Mean Control Test error scores (±SE) at Control Test 1 and Control Test 2 for each 
condition. Successful performance is indicated by lower mean error scores.

Figure 3. Mean Structure test scores (±SE) averaged across the learning phase and again 
for the Control test phase for each condition. Successful performance is indicated by 
higher structure scores.
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analyze this, a 2x2x3 ANOVA was carried out using phase (Learning, Test) as within subject 

variables, and knowledge (Instance, Instance + Rule) and learning format (Active [gener-

ate], Active [replicate], Observe) as the between subject variables. The analysis showed a 

signifi cant main effect of phase: F(1, 90) = 4.561, MSE = 0.18, p < 0.05, η2 = 0.48. There was 

also a signifi cant main effect of knowledge: F(1, 90) = 29.58, MSE = 4.18, p < 0.0005, η2 = 0.24. 

No other main effects or interactions were signifi cant. Because there was no interaction 

between knowledge and test, the structure test scores for each condition were collapsed 

across phase. Planned comparisons confi rmed higher structure test scores (improved 

performance) in the Instance + Rule conditions, compared with the Instance conditions 

for the Active (generate), Active (replicate), and Observe conditions: t(15) = 2.65, p < 0.05, 

d = 1.37, t(15) = 3.19, p < 0.01, d = 1.65, and t(15) = 4.37, p < 0.001, d = 2.26, respectively.

Correlation between control performance and structural knowledge. The following 

correlation analyses were carried out on control error scores (averaged across Control 

Tests 1-2), and structure test scores (averaged across Structure Tests 5-6 in the test phase). 

Scores were collapsed across the four active conditions, and then again for the remaining 

observation conditions. Correlation analyses revealed a signifi cant negative relationship 

between structure test scores and control test scores: r(64) = -0.31, p < 0.05, and, r(32) = 

-0.47, p < 0.01, respectively.

Test of self-insight. Table 1 indicates that more correct identifi cations of the learning 

trials experienced during the learning phase were made in Instance + Rule conditions 

than in Instance only conditions. A Chi-squared analysis, collapsing responses across 

action-based conditions, and comparing accuracy of responding in Instance and Instance 

+ rule conditions, confi rmed the trend indicated in Table 1: χ (3) = 8.78, p < 0.05. Further-

more, Table 1 suggests that more participants relied on specifi c instances to identify 

their learning phase in Instance + Rule conditions than in Instance conditions, whereas 

the Instance-based conditions relied more on guessing. This was also confi rmed using a 

Chi-squared analysis: χ (3) = 9.47, p < 0.05.   

Table 1. Mean Control Test error scores (±SE) at Control Test 1 and Control Test 2 for each 
condition. Successful performance is indicated by lower mean error scores.
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Discussion

The fi ndings from this study can be summarized as follows: First, the evidence shows 

that the generation of instance-based knowledge in conjunction with rule-based knowl-

edge leads to better control performance and accurate structural knowledge of the task, 

compared to conditions in which only instance-based knowledge was acquired during 

learning. Second, consistent with previous studies (Osman 2008a, 2008b), there was no 

advantage of active-based learning over observation-based learning in both measures of 

performance. Third, also consistent with previous studies (Burns & Vollmeyer, 2002; Osman 

2008a, 2008b; Sanderson, 1989), the present study revealed an association between the 

accuracy of participants’ knowledge of the structure of the system they were controlling, 

and their ability to control it. Fourth, posttest questions indicated that when identifying 

the learning trials they experienced during the learning phase from two others, partici-

pants were more accurate in conditions in which the learning phase generated instance 

and rule-based knowledge compared with instance only conditions. 

The target question that was asked in this article considered the following: Is proce-

dural learning necessary to ensure skill acquisition in a complex dynamic environment? 

Overall, the evidence from this study shows that procedural learning is suffi cient for the 

successful uptake of relevant knowledge, but not necessary, given that observational 

learning produced patterns of performance equivalent to those of the active learning 

conditions. Implicit learning theorists (Berry, 1991; Berry & Broadbent, 1988; Sun et al., 

2001) have maintained that the knowledge required to control CDC-tasks is procedural 

based, and embedded within the interactions problem solvers have with the system. Fur-

thermore, knowledge is conscious only to the extent that the response that is appropriate 

to a given situation can be stated, but the knowledge used to support that response is 

unavailable to consciousness (Buchner et al., 1995; Dienes & Berry, 1997; Dienes & Fahey, 

1998). Similar claims are made for other tasks considered to be procedural learning tasks, 

or called, alternatively, implicit learning tasks (e.g., artifi cial grammar learning, Reber, 1989; 

sequence learning, Nissen & Bullemer, 1987; Willingham et al., 2000). While CDC-tasks are 

typically classed as implicit learning environments, the fi ndings from the present study, 

along with previous studies ( Burns & Vollmeyer, 2002; Brehmer, 1992; Gibson et al., 1997; 

Schoppek, 2002; Vollmeyer et al, 1996), challenge this classifi cation. The evidence from 

the present study shows that rule-based knowledge was in fact associated with proce-

dural knowledge and lead to better performance on measures of procedural knowledge. 

Moreover, the present study is the fi rst of its kind to provide clear evidence that explicitly 

thinking about the relationship between events and outcomes as rules leads to superior 

knowledge about how a CDC-task works, how to operate it, how to transfer control skills to 

an untrained goal, and self-insight into what one does to learn about how to operate it. 
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Why were associations found between declarative and procedural knowledge?  

Typically studies using CDC-tasks in which dissociations are usually reported in studies in 

which structural knowledge of the task is examined only after learning takes place (Berry, 

1991; Berry & Broadbent, 1984, 1987; 1988; Broadbent et al. 1986; Dienes & Fahey, 1995; 1998; 

Marescaux et al., 1989). Without an opportunity to keep track of ones knowledge of the 

rule or structure the system operates under, explicit knowledge is found to be poor (Burns 

& Vollmeyer, 2002; Sanderson, 1989; Sanderson & Vicente, 1986). In contrast to this, demon-

strations of associations between procedural and declarative knowledge are reported in 

studies that encourage hypothesis-testing behaviors during learning (Burns & Vollmeyer, 

2002; Gonzales & Quesada, 2003; Jensen & Brehmer, 2003; Sweller, 1988). In addition, indices 

of both types of knowledge reveal that performance exceeds that of conditions in which 

hypothesis testing is prevented (Burns & Vollmeyer, 2002; Sweller, 1988; Vollmeyer et al., 

1996). Consistent with this, the present study included both types of methods designed 

to uncover associations between procedural and declarative knowledge. Participants 

had regular opportunities to examine their structural knowledge of the system during 

knowledge acquisition (both in active and observation-based learning) and those in the 

Instance + Rule conditions were encouraged to hypothesis test as a result of verbalizing 

their knowledge in the form of conditional statements.  

The fi ndings from this study converge with previous evidence suggesting that in-

structions designed to encourage hypothesis testing and other similar meta-cognitive 

processes (e.g., monitoring-tracking one’s online goal-directed behaviors) do not interfere 

with the uptake of skilled knowledge, as some have claimed, but instead enhance skilled 

performance (Berardi-Coletta et al., 1995; Osman, 2008a, 2008b). Thus, the present study 

shows that hypothesis testing, rather than the active engagement with a procedural task, 

is necessary for the successful uptake of knowledge and its application to mastering a 

complex control system. 
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Note
 The trial histories for the Active (replicate-instance), Active (replicate- Instance + Rule), Observe 1. 

(Instance), and Observe (Instance + Rule) conditions were based on the learning phase generated by 
one of the participants from the Active (generate – Instance + Rule) condition. The participant was 
selected on the basis of their control performance in the test phase, which was closest to the mean 
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across both Active (generate – instance) and Active (generate – Instance + Rule) conditions. This was 
favored instead of a full yoking procedure because the source of any diff erences in these conditions 
was carefully controlled, and was likely to result from the instructional manipulations during learning, 
rather than from the trial history itself.
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