6-1-2003

Acoustical Modeling of Tensioned, Permeable Membranes

J Stuart Bolton
Purdue University, bolton@purdue.edu

Jinho Song

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

http://docs.lib.purdue.edu/herrick/26

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Acoustical Modeling of Tensioned, Permeable Membranes

June 24th, 2003

Jinho Song and J. Stuart Bolton

Ray W. Herrick Laboratories
Purdue University
Introduction - Background

● “Conventional” Sound Absorbing Material
 ◆ Open cell Foams/Glass fibers/Polymeric fibers
 ◆ Sound energy dissipation by thermal and viscous interaction of sound field and material fibers
Introduction - Background

“Conventional” Nonfibrous Material Usages

- Some environmental needs
 - Healthy Surroundings/Ease of Maintenance
 - Recycling
 - Moisture-Resistance
- Fibrous materials can be used with impermeable membranes to “tune” their performance

- Conventionally, membrane does not dissipate any energy
Introduction – Motivation & Objectives

Recently, it has been observed that stacked sheets of accordion-folded, impermeable membranes (e.g., mylar sheets) offer substantial levels of low frequency absorption even though such arrays feature no obvious dissipative elements.

OBJECTIVES:
- Identify the origin of the sound absorption and behavior capacity of such a treatment
- Develop models of those processes
- Use those models to optimize the acoustical performance

HYPOTHESIS:
- Dissipation results from losses due to local flexing of membranes stiffened by curvature (i.e., by folding) or tension

Altanoring layers of folded mylar

- How does this sound absorption arise?
- How do you model this effect?
Theoretical Model - Permeable Membrane

Assumed Solutions

- Sound Pressures in Acoustic Cavities:
 \[P_I(r, z) = e^{-jkz} + \sum_{n} B_n J_0(k_{r_n} r)e^{jk_{r_n} z} \]
 \[P_{II}(r, z) = \sum_{n} C_n J_0(k_{r_n} r)e^{-jk_{r_n} z} \]

- Membrane Displacement (Solid Component):
 \[y(r, t) = \sum_{n} A_n J_0(k_{0_n} r) \]

- Membrane Displacement (Fluid Component):
 \[u(r, t) = \sum_{n} F_n J_0(k_{0_n} r) \]
Theoretical Model – Solution Method

- **Boundary Conditions**
 - The Continuities of Velocity at the Both Side of a Membrane:
 \[
 - \frac{1}{j \omega \rho_0} \frac{\partial P_1}{\partial z} \bigg|_{z=0} = (1 - \Omega) \frac{\partial y}{\partial t} + \Omega \frac{\partial u}{\partial t}
 \]
 \[
 - \frac{1}{j \omega \rho_0} \frac{\partial P_{II}}{\partial z} \bigg|_{z=0} = (1 - \Omega) \frac{\partial y}{\partial t} + \Omega \frac{\partial u}{\partial t}
 \]
 - The Force Equilibrium Equation in the Membrane:
 \[
 \nabla^2 y - \frac{\rho_s}{T} \frac{\partial^2 y}{\partial t^2} - \frac{R_f}{T} \frac{\partial (y-u)}{\partial t} = -\frac{(1 - \Omega)}{T} (P_1 - P_{II})
 \]
 \[
 \rho_s \Omega h \frac{\partial^2 u}{\partial t^2} - R_f \frac{\partial (y-u)}{\partial t} = \Omega (P_1 - P_{II})
 \]
 where
 \[
 T = T_0 (1 + j \eta) \quad \Omega = N \pi a^2 / A \quad P_{\text{front}} - P_{\text{back}} = R_f v_f
 \]

- **Solution Method**
 Apply four boundary conditions on a point-by-point basis across the membrane.
Theoretical Model – Model Verification

- Sound Power Calculation

Compare power calculated by using Acoustical Solution with power calculated using Membrane-based solution

Sound Field Based Solution

\[W_I = \frac{1}{2} \text{Re}\{\int_0^a P_I(u_I^*)(2\pi r)dr\} \quad W_{II} = \frac{1}{2} \text{Re}\{\int_0^a P_{II}(u_{II}^*)(2\pi r)dr\} \]

Power Dissipated:

\[W_{d,a} = W_I - W_{II} \]

Membrane Based Solution

\[W_{d,\text{solid}} = \frac{1}{2} \text{Re}\{\int_0^a T \left[(\nabla^2 y + k_f^2 y - \frac{R_f}{T} \frac{\partial (y-u)}{\partial t}\right] \left[\frac{\partial y}{\partial t}\right]^* (2\pi r)dr\} \]

\[W_{d,\text{fluid}} = \frac{1}{2} \text{Re}\{\int_0^a \left[(\rho_0 \mathrm{c}^2 \frac{\partial^2 u}{\partial t^2} - R_f \frac{\partial (y-u)}{\partial t}\right] \left[\frac{\partial u}{\partial t}\right]^* (2\pi r)dr\} \]

Power Dissipated:

\[W_{d,m} = W_{d,\text{solid}} + W_{d,\text{fluid}} \]

Should be equal if model works properly
Theoretical Model – Model Verification

Using 4 membrane modes

Using 30 membrane modes

Using 10 membrane modes

\(a=0.05 \text{ m}, \ \rho_s=0.174 \text{ kg/m}^2, \ \Theta_0=85 \text{ N/m}, \ \eta=0.005, \ \Omega=0.0018, \ R_f=0.15 \text{ Rayls}, \ \h=0.2 \text{ mm} \)
Sound Dissipation Mechanism – Impermeable Membrane

- Membrane with finite-depth backing space

\[Z_n \approx Z_{n,\text{Membrane}} + Z_{n,\text{Backing}} \]

Many resonances because of membrane dynamics

Absorption peaks when \(\text{Im}\{Z_n\} = 0 \)

- Significant sound absorption in narrow frequency regions produced by dissipation in the membrane

\[T = 75 Pa \quad \eta = 0.0063 \quad \rho_s = 0.19 \text{ kg/m}^2 \quad l = 0.1192 \text{ m} \]
Sound Dissipation Mechanism – Effect of Membrane Loss Factor

Sound Power Dissipation from Membrane

\[P_{\text{membrane}} = \frac{1}{2} \rho_{\text{membrane}} c^2 A_0 \delta_{\text{membrane}} \]

\[P_{\text{fluid}} = \frac{1}{2} \rho_{\text{fluid}} c^2 A_0 \delta_{\text{fluid}} \]

\(\rho_{\text{membrane}} = 0.174 \text{ kg/m}^2 \), \(T_0 = 85 \text{ N/m} \), \(\Omega = 0.0018 \), \(R_f = 0.15 \text{ Rayls} \), \(h = 0.2 \text{ mm} \)

Purdue University Herrick Laboratories
Sound Dissipation Mechanism –
Effect of Flow Resistance

Sound Power Dissipation from Membrane

\[\text{Sound Power Dissipation from Membrane} \]

Sound Power Dissipation from Fluid

\[\text{Sound Power Dissipation from Fluid} \]

\[a=0.05 \text{ m}, \quad \rho_s=0.174 \text{ kg/m}^2, \quad T_o=85 \text{ N/m}, \quad \eta=0.005, \quad \Omega=0.0018, \quad h=0.2 \text{ mm} \]

Purdue University

Herrick Laboratories
* The maximum sound power dissipation in the higher frequency range can be designed by choosing an “optimized” flow resistance.

\[
a=0.05 \text{ m}, \; \rho_s=0.174 \text{ kg/m}^2, \; T_o=85 \text{ N/m}, \; \eta=0.005, \; \Omega=0.0018, \; h=0.2 \text{ mm}
\]
Experimental Set-up

- Power Amplifier
- Pre-Amplifier
- Signal Analyzer
- Computer
- Anechoic Termination
- Sound Source
- Test Sample
- Microphone

Purdue University Herrick Laboratories
Acoustical Properties: Theory & Test

- Measuring Sound Pressure: P_1 to P_4
 - Calculation of Normal Incident Pressure Transmission Coeff. & Reflection Coeff.: T, R
- Experimental Results
 - Transmission Loss: T_{Le}
 - Absorption Coeff.: $\alpha_t = 1 - |R|^2$
 - Dissipation Coeff.: $\alpha_{d,t} = 1 - |R|^2 - |T|^2$
- Theoretical Estimation
 - Transmission Loss: T_{Le}
 - Absorption Coeff.: α_e
 - Dissipation Coeff.: $\alpha_{d,e}$

Given experimental results as input, find appropriate material properties (e.g., T_o, ρ_s, η)

Purdue University Herrick Laboratories
Model Optimization

- Given experimental results as input, Find appropriate material properties (T_o, ρ_s, η)

Note: Most "absorption" results from transmission through membrane in anechoic termination case

- Objective function: $f = \sum_{n=1}^{N} \left[(TL_e - TL_t)^2 + \kappa (\alpha_e - \alpha_t)^2 \right] = f(T_o, \rho_s, \eta)$

$\rho_s = 0.174 \text{ kg/m}^2$, $T_o = 85.41 \text{ N/m}$, $\eta = 0.005$
Membrane Permeability: Measurement

- Each pore had a diameter of approximately 0.5 mm and the total number of pores ranged from 24 to 120 increasing in steps of 24: the pores were uniformly distributed over the membrane.
Membrane Permeability: Comparison of Measurement and Prediction

* The acoustical properties were predicted by using estimated porous material parameters (i.e., porosity, flow resistance, and membrane thickness) in combination with the impermeable membrane parameters (i.e., tension, loss factor, and membrane surface density) found by the optimization procedure.
Membrane Permeability: Porosity & Flow Resistance

- Consistent Permeable Membrane Models
- Physically reasonable parameter estimates

* Measured Porosity = Membrane Pore Area / Membrane Total Area
Mode Splitting Effect: Measurement

Non-Uniform Membrane

- The attached tape affected both the membrane density and the loss factor because of the viscoelastic nature of the tape.

Purdue University Herrick Laboratories
Mode Splitting Effect: ANSYS

ANSYS Membrane Models

- Uniform Membrane
 \[\rho_s = 0.19 \text{ kg/m}^2 \]

- Non-uniform Membrane
 \[\rho_s = 0.25 \text{ kg/m}^2 \]

Comparison of Forced Responses

- As the non-uniformity of the membrane density becomes larger, additional peaks occur, which can be accounted for by the mode splitting phenomenon.
- This work supports the assumption that the mode splitting phenomenon that occurred in the various measured data resulted from membrane inhomogeneity.

Purdue University
Herrick Laboratories
Conclusions

In the present work, an acoustical model for a tensioned, permeable membrane was presented. Specifically, the effect of membrane porosity on the sound absorption was investigated both theoretically and experimentally. Excellent agreement was found between measured and predicted values.

It was found that permeable membranes can dissipate a significant amount of energy due both to vibration of the membrane and oscillatory flow through the membrane. The energy dissipation related to membrane vibration occurs in narrow frequency regions associated with membrane resonances while the energy dissipation associated with oscillatory fluid flow through the membrane occurs over a broad range of frequencies and thus supplements the former energy dissipation mechanism.

The model presented here can provides the foundation necessary to design membrane-based sound absorbing systems having enhanced sound dissipation capacity.

It was verified that the mode splitting visible in the measured results is consistent with slight membrane inhomogeneity. The latter indicated that any resonance mechanism that creates family of resonances could account for energy dissipation seen in membrane systems.