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INFORMATION PRESERVING CODING FOR

MULTISPECTRAL DATA 1

by

J. R. Duan and P. A. Wintz

Laboratory for Applications of Remote Sensing
and
Department of Electrical Engineering
Purdue University, West Lafayette, Indiana 47907

I. ABSTRACT

A general formulation of the data compression
system is presented. A method of instantaneous expan-
sion of quantization levels by reserving two codewords
in the codebook to perform a folding over in quantiza-
tion is implemented for error free coding of data with
incomplete knowledge of the probability density func-
tion. Results for simple DPCM with folding and an
adaptive transform coding technique followed by a DPCM
technique are compared using ERTS-1 data.

II. INTRODUCTION

In view of the massive amount of multispectral scanner data (LARS, 1973) that
will be accumulated with the use of aircraft and satellites such as ERTS-1, it is
desirable if the total number of bits recorded can be reduced and the original
version of measurements can be reconstructed without error from the coded version.
The ground station storage-space problem can thus be reduced and quantity of
storage tapes for distribution of these data can also be reduced.

) Much effort in the past, however, has been directed toward non-information
preserving techniques (at least from the numerical error point of view) based on
the model for the human visual system (Budrikis, 1972). Extensive bibliographies
on topics related to data compression have been compiled [11]-[14). 1In this study
a class of information-preserving techniques for minimizing the amount of informa-
tion (Shannon, 1949) that has to be retained, coded and stored to represent the
multispectral data is discussed. As the application for scientific measurements
such as the multispectral data is not intended for display purposes alone but
rather to extract and derive information, it is anticipated that new information
can be obtained when new processing techniques are developed. Therefore, it is
difficult to predict the value of the coded data if error is introduced. The
information-preserving techniques become very attractive. Deviations from the
error-free reconstruction are also discussed. Absolute error bounds are used in
the error control section to ensure a uniform gquality throughout the data. A
probabilistic error criterion is also proposed. A general formulation of the bit
reduction problem will be presented first which shows the necessary steps involved
and points out the various aspects of the data compression system.

The work reported in this paper was sponsored by the National Aeronautics and
Space Administration (NASA) under Grant Number NGR 15-005-152 and NGL 15~005-112.
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ITII. MATHEMATICAL FORMULATION OF THE PROBLEM

oIt is convenient to think of the bit reduction basically as a stochastic
minimization problem. Consider a set of discrete data D which consists of count-
able subsets Ii, i=1,2,.... For any i, Ii is a vector subset, i.e., Ii={X1,X2,

...,Xn} and the xi, i=1,2,...,n, are m x 1 random vectors collected from a data

source. Let b denote the total bits required for any given piece of information
I, where I = D. Now b is a function of the transformation, the associated quanti-
zation schemes and any controlled redundancy introduced. Through an appropriate
choice of these elements, the minimum can be found. We consider the general case
where the number of bits for different blocks of data may be different; therefore,
the minimization is over the expected value for a given subset of data I < D.

brin Qs XsT)=Min E {S(QOITZ(X)]k]+C(T2,k)}

TQCF Xel

Qo
subject to the constraint that
{e[x(Tl’Qo',Ql'k“) » X1 }<e
where

x=0, [T, {0, [T, ()1, }]

; : 1is the reconstructed data vector, m x 1. B

F : is the set of all available affine transformation.

I : is any member in D,

le is any m x m matrix in F,

Qo: is the nonlinear quantization operator with [LOI’LOZ""’LOm]

quantization levels for its corresponding arguments.
le is the nonlinear quantization operator with [Lll’le""'le]
quantization levels for its corresponding arguments.

S : is the function giving the number of bits required to code k
transformed variables.

k : is the number of transformed variables kept, being determined
through the constraint.

transpose of Tl

(o ]

is the function which gives the number of bits rgqpireq for
the controlled redundancy consisting of ;he specifications
inserted in the bit string for fast retrieval and the book-

keeping information.

The above formulation includes a class of data comprgssion systems,if )
appropriate identifications are made for the transformation matrlx,’tye gunctlon
S and the parameters involved. Two specific examples of the deterministic type
will be mentioned.
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Example 1: Differential Pulse Code Modulation (DPCM) coding:

Let TQ =

O e .
.
.
(=]
1
= .
bt

C(Tg,k)EO
S(y)=b1(yl)+b2(y2)+...+bn(yn)
where bi(yi) equals the number of bits used for data sample Y;-

and dele;e the minimization and expectation operators in equation A, the
result will be the familiar case of DPCM.

Example 2: Block Quantization Coding:
Let TREF and k=Cl, a fixed constant, C(Tl,k)EO,

Qo(y)=[001(yl),Qoz(yz).Qo3(y3)+....]. S(x) same in Exp. 1,

the result is the block quantization coding scheme,

A globa% solution of bmi (QO,X,TQ) is not readily available, partly due to
the computational effort for %he large amount of data volume such as the multi-
spectral scanner data and partly due to the nonstationarity of the data, so that
any strategy proven to be good for a subset of data such as I.,, for any i, may
not'be good for another subset. However, the absolute minimufh of b(Q,,X,T,) for

a given piece of data I =D, subject to all available variations of tge pa%ameters
and transforms in the set F, is not of great importance anyway, because usually

a suboptimum algorithm with simpler manipulations on the data may be found with
performance which may differ only slightly from the optimum result (Tasto, 1972).

Experimental results for two specific cases are compared and presented here.
The first case is regular DPCM and the second case involves a transformation
followed by a subsequent DPCM and is referred to as differential transform
coding. It consists of two sections (1) adaptive error control section and (2)
the residue difference correction section.

S

IV. DIFFERENTIAL PULSE CODE MODULATION (DPCM)
AND QUANTIZATION WITH FOLDING TECHNIQUE

For DPCM coding the data to be coded is the difference between two
correlated data samples. The gquantization requirements will change when the data
range is changed. Even through the variance of the difference data may be smaller
than the original data, the range spanned by the data may now be even larger. In
fact, 9 bits are needed to encode the data exactly. Otherwise, one will be faced
with either coarse quantization or with the problem of quantizer saturation, or
rather, dynamic overload. The percentage of these overload occurrences can be
made as low as desired by designing the quantizer to match the data, once the
probability density function of the data (or probability mass function for
discrete data) is completely known., However, usually only the sample probability
density function of a selected subset is assumed known. It is not efficient to
have a quantizer with many bands having an extremely low probability of
occurrence, and it is also unlikely that the quantizer can be effectively changed
from time to time. Therefore, in the effort of trying to code the data without
error while not having to use a large number of codes,a folding technique is
proposed. By reserving two codewords in the codebook to do folding when the
dynamic range of the data undergoes some sudden changes out of the regular
operating bounds, the saturation error can be completely eliminated while the
number of codes can remain to be small. Only a rough idea about the probability
density function is needed to design the codes. This is especially effective for
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variable length codes where shorter codes can be used for the normal operating
range of the data. The number of codes needed for coding a 9-bit DPCM data

can be reduced from 512 to 16 codes. The performance of DPCM with folding for
ERTS-1 for 4 channels using 16 predesigned variable length codes is contained in
Table 1. Also contained in Table 1 are the optimum results if the probability
mass function of the data is found through examining all of the data and the
variable length Huffman codes thus generated are used to code the data., If 4-bit
fixed length codes are used with the folding technique, 4.5 bits are needed.

This is not a fixed value due to the fact that it varies with the number of times
folding of data occurs. If no folding occurs for certain areas of the data, four
bits per data per channel are needed.

V. DIFFERENTIAL TRANSFORM CODING

A. ADAPTIVE ERROR CONTROL SECTION

The multispectral data can be considered as a three-dimensional random
process x{(n,m,%) defined over lg<ng¢J, lg¢mg¢K,1l<%<L and 0<x¢<N. The first step is to
partition the data into a convenient format., In order to take advantages of
both the spectral domain structure as well as the two-dimensional spatial
structure, a nxmxl array of data can be reindexed to form a one-dimensional
vector data (Wintz, 1972).

After segmentation the multispectral data will be arranged in a vector form
with each entry of the vector representing one picture element. Each pixel can
take on any one of the intensity levels, M. M is limited by the number of bits r
assigned to each sample, M=2T,

Let Y be the vector of the data in its transformed domain and X be the data
vector. Then,

Y=[T2]X
where 'I‘2 is the selected orthonormal transformation matrix.

From a quantized and truncated version of Y, e.g., ¥Y=(Y ,Y2,...,Y ,0,0,...,0),
nonzero up to K terms, X is reconstructed. Let X be the reconstructe5 data, we

have X=[T£]tY.
The number of terms kept in Y, e.g. k is chgsen according to how it is
desired to control the difference function e(X,X). Therefore, the number of bits

assigned to each block is dependent on the convergence rate of the block data
under the prescribed difference criterion.

B. Choice of Transformation Matrix

There is no restriction as to the type of transforms in set F to be used,
except, perhaps, a limitation on the matrix size and the tolerable computational
effort involved in obtaining the transformation results. The common choices
are Fourier, Hadamard, Karhunen-Loeve, Haar and Slant transforms. Fast
transform algorithms exist in the implementation of some of these transforms
(Pratt, 1969). Only results for optimum transform is contained in this
investigation due to the fact that other transforms will not result in better
performance (Habibi, 1971). The optimum transform for minimizing the number
of transform samples needed for best reconstruction in mean square error sense
is the Karhunen-Loeve (K-L) transform. Scme other optimum properties of thig
transformation can be found in (Okamoto, 1968). The K-L transformation matrix
is often defined as being composed of eigenvectors of the covariance matrix of
the data. However, if the mean of the data is not zero, the correlation matrix
and covariance matrix are different and their corresponding normalized mat;ices
are also different. This fact leads to four different transformation matrices
and the principal components are not invariant if the data are manipulated by
an affine or scale transformation. The performance of applying the ﬁpgr sets of
basic functions thus generated can be compared. It is found that scaling of the
data results in a more stable probability density function for the transformed
data, i.e., the change of the dynamic ranges of the coefficients from one area of
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data to another does not jump violently. Also, since the correlation matrix

rather than the covariance matrix is used, the effort in first obtaining and

then subtracting the sample mean from the data can be skipped in the transformation
of the data. Hence computational complexity can thus be reduced.

C. RESIDUE ERROR CORRECTION SECTION .

In this section the replica of the original data is reconstructed and the
difference is found and coded, which consists of errors introduced through
quantization, saturation of guantization levels and truncation of the
transformation coefficients. 1In the transform method, even if all the transform
terms are kept, a certain amount of gquantization errors will still occur. Mean
square error between the replica and the original that can be tolerated is
usually used as a criterion to determine the number of bits needed for each
coefficient and the number of transform terms kept which is fixed as in the case
of block quantization coding (Huang and Schultheiss, 1963). The error, however,
cannot be effectively controlled in this fashion and may be concentrated on
certain areas and, therefore, vital information may be lost even though the
overall mean square error may be small. The bounds set for the maximum
deviation from the original data for the reconstructed replica can be used in
addition to the mean square error criterion. (1) ,Set an absolute bound for
uniform convergence of every data point, i.e., |X-X|<£ where £ may be several
gray levels, 2) Set an absolute bound for only a% of the,data, that is, the
bounds can be set in a probability sense such that Prob(|X-X|<e)=a; where a
can be arbitrarily set according to needs. The convergent property of each
block processed under this criterion is different; the number of terms needed
vary in the reconstruction of the replica. The distribution of the number of
coefficients kept for abgolute bounds 2 and 8 aye plotted in Figure 1, where
B=8 actually means -7<X-X<8 and B=2 means -1<X-X<2. The results for an ERTS-1
subframe (channel 2) is shown in Figure 2 for illustration purposes only. The
advantage of a probabilistic description of the absolute error bound is that
less number of the transform terms need be kept, see Figure 1, the curve in the
middle, and thus results in more compression, see Figure 2 (d), where only 2.6
bits are needed rather than 3.4 bits in Figure 2 (c). Since the result shown
is for channel 2 only, which usually has a higher entropy than the other
channels, the number of bits required is a little higher than that required if
4 channels are processed., Using variable length codes, the picture data in
Figure 2 (b) (c) (d) require 3.3, 1.6 and 2.2 bits per picture element more
respectively for error free reconstruction. From the sum of two stages, it can
be seen that if more bits are used in the transform domain the less efficient
is the data compression. If only a few terms of the transform coefficients
are used then the more efficient would be the compression system. In fact, for
a 400x400x4 block of ERTS-1 subframe using 0.397 bits/pel/channel for the
transform terms and 2.508 bits/pel/channel for the subsequent DPCM (Duan and
Wintz, 1973).

VI. CONCLUSIONS

(1) Given an incomplete knowledge of the true probability density function
of the data, the concept of folding can greatly simplify the design of the
quantizer with only a slight complication for the decoder. The idea of folding
takes care of instantaneous increase of the dynamic range encountered.

(2) It is demonstrated that an overall average of around 3.5 bits per data
sample per channel are needed for an error free reconstruction of ERTS~1 data
with predesigned variable length codes and using folding technique.

(3) It is found that one can take advantage of both the transform techniques
and DPCM in the error free coding of the data. This is done by first coding
the data through a few terms of the transform coefficients so that the data can
be reconstructed with controlled error (or rather controlled differencg between
the original and reconstructed versions) and then coding the element dlfferenqe.
This is especially true when the number of bits used for the transform terms is
small.

(4) Further compression can be done through transform tgchniques and with
some assurance of the absolute deviation of the reconstruction data such as
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through the probabilistic description. Varying degree of compression can be
achieved.

(5) At present it seems that the transform technique is so much more
complicated compared to DPCM that it may be hardly implemented. However, since
the multispectral data is eventually going to be processed by machine through
transformation, it may prove to be useful to code the transform terms if
specific transformation proven to be good for, say, a certain classification
purpose, can be defined.
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Relative Frequency of Occurrence

0.2

0-1

LARS run number Data Standard Optimum

and Volume codes codes
Flightline ID

bits/sample/channel
72063500 1172x784x4 3.77 3.54
102715233
72059000 601x580x4 3.48 3.22
110617504=4
72051000 1873x652xk4 3.33 2,93
103716244
Table 1 Comparison of Performance of DPCM

Compression System for data taken at

a different time and location.

Rx-R<2)=1

)

R(x-A<8)=1

B=8

P e-RI€2)=091
| B=
j& B=2

)

) = 10 20 36 40 50

Figure 1 Distribution of the Number of Coefficients

needed to ensure uniform convergence of

every data point.
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® 1. 1'915
E(X-X) “=6. 06 with
=7¢ (X-X) <8 °

3.4 bi Esiiei (@ 2.6 h;ts/pél
E(X-X)2=0.43 with E(%-X)2=1.20 with
-l&(x-x}<2 Prob{-1<(X-X)<2)=0.91

Figure 2., The Original and Reconstructed Pictures

for Channel 2 of ERTS-1 Multispectral

Scanner Data

4a-35



	Purdue University
	Purdue e-Pubs
	10-1-1973

	Information Preserving Coding for Multispectral Data
	J. R. Duan
	P. A. Wintz


