Polymer Concrete Pipes

Purdue ECT Team

Purdue University, ectinfo@ecn.purdue.edu

DOI: 10.5703/1288284315733
Polymer Concrete Pipes

The Need
Materials are needed for piping applications that have high strength and are resistant to corrosive chemicals.

Figure 1: Example Polymer Concrete Pipes

The Technology
Polymer concrete pipes are one solution to this problem. These pipes are made by mixing a high strength, thermosetting resin with oven-dried aggregate to form a type of concrete. The resin within the mix provides for bonding the aggregate much like Portland Cement does in traditional concrete pipes. The pipe sections are cast vertically with an inner and outer form and are vibrated for compaction. After the forms are removed, the section is heated in a kiln to finish curing the resin. These pipes can typically be used to carry highly aggressive wastes, for pipe jacking as they have very high compressive strengths (up to 17,000 psi), or for microtunnelling. (Bloomfield) They can also be used for gravity flow or pressure applications. Some manufacturers are also making polymer pipes in sizes appropriate for use as manholes.

The Benefits
Polymer concrete pipes have several benefits including high strength, corrosion resistance (they can be used in environments with pH ranges of 1 to 13), low wall roughness, and high abrasion resistance.

Status
The use of polymer concrete pipes is becoming more common in the following areas: direct bury, slip lining, jacking and microtunneling, tunneling, and above the ground applications. Manufacturers like Hobas Pipe USA provide polymer concrete pipes that have been manufactured under the most strict quality control and assurance standards.

Barriers
The use of polymer concrete pipes has not been widely accepted by governmental agencies, and not enough standards have been approved by state and federal codes.

Points of Contact
Thomas D. Bloomfield, Meyer Pipes Engineering GmbH.
Tel: (49 4131) 953-0. Fax: (49 4131) 953-255
Hobas Pipe USA, E-mail: info@hobaspipeusa.com

References
1. Bloomfield, Thomas D., Polymer Concrete Pipes, No-Dig International, October 1994

Reviewers
Peer reviewed as an emerging construction technology

Disclaimer
Purdue University does not endorse this technology or represents that the information presented can be relied upon without further investigation.

Publisher
Emerging Construction Technologies, Division of Construction Engineering and Management, Purdue University, West Lafayette, Indiana