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THE USE OF THE MODIFIED CHOLESKY DECOMPOSITION

IN DIVERGENCE AND CLASSIFICATION CALCULATIONSt

D. L. Van Rooy , M. S. Lynn and
C. H. Snyder

Rice University

Houston, Texas

ABSTRACT

This report analyzes the use of the modified Cholesky

decomposition technique as applied to the feature selection and

classification algorithms used in the analysis of remote sensing

data (e. g.•as in LARSYS). This technique is approximately 30%

faster in classification and a factor of 2- 3 faster in divergence,

as compared with LARSYS. Also numerical stability and

accuracy are slightly improved. Other methods necessary to

deal with numerical stability problems are briefly discussed.

1. INTRODUCTION

This report analyzes the use of the Cholesky decomposttionv-J" technique in the analysis of

remotely sensed data, specifically in divergence calculations and in the evaluation of the maximum
likelihood function; the latter occur in, respectively, the feature selection and classification tech

niques' used, for example, in the LARSYS(2) system developed by the Laboratory for the Applica

tions of Remote Sensing of Purdue University.

Although LARSYS was primarily developed for research purposes, increasing use of the

system and of derivative systems such as ERIPS(3) for production processing emphasizes the need

for efficient, accurate and stable algorithms as the basis for design objectives of computational

analysis. The organization of computation in certain segments of LA RSYS and the use of subrou
tines such as MINV from the IBM Scientific Subroutine Package (SSp)(4) do not lend credence that
such design objectives have been met. The purpose of this report is to describe how one possible

re-organization of the computation and the use of preferred techniques can improve the efficiency

and accuracy of the system.

The focus of this report is on improved efficiency in terms of computati?n time. Thus the

arithmetic precision used is identical with that used in LA RSYS, so that a meaningful comparison

of efficiency can be obtained. It will be shown that the algorithms proposed yield improvements

in computational speed with no loss in accuracy or stability (in fact, slight improvements can be

obtained in the latter).

t Research supported under NASA contract NAS-9-12776

* Numbers in superscripts refer to references
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2. CHOLESKY DECOMPOSITION

Let K be real, nxn, symmetric positive-definite matrix. In the applications under consi

deration, K would be a covariance matrix. Then there is a unique, nxn, real, lower-triangular

matrix, L, such that (Cholesky decomposition)

Improvements in accuracy and stability can be achieved by further refinements in the tech

niques used. This will be the subject of a later report; however, in Section 6, we discuss where

such improvements can be expected by the use of higher precision and/or the use of such techni
ques as iterative refinement, scaling and equilibration.

It is, in our view, extremely important that the best numerical techniques be used in

production calculations. The argument that sub-optimal techniques have sufficed in the past is not

valid if one considers that unexpected failures in the future may be extremely costly to rectify;

since the use of the validated techniques discussed in this report are both more reliable and effi
cient, it would seem wiser to proceed into future production calculations with the assurance that

the systems and methods used rest on a more secure algorithmic foundation.

(2. 1)K = LL*

where L* denotes the (conjugate) transpose of L. There is also a unique, real, lower-triangular
matrix, L, and a real, positive diagonal matrix, D, such that (modified Cholesky decomposition)

K =LDL* (2.2)

where L has diagonal elements equal to unity. From (2.1) and (2.2) it can be seen that

(2.3)

_, 0

where D is the diagonal matrix whose entries are the square roots of the corresponding elements

of J).

Either the Cholesky or modified Cholesky decompositions can be readily obtained from the

!?llowing r~currence relationships(1), (5) (we use the notation K =(kij)' L =(2-ij) , L =(;ij) ,

D = diag {di} ):

Cholesky

t 11 kll' j-l

'jj" (kjj-fl'~)' 1j=l, ... , n

t ij = (kij -jf )s isYlj
s=1
i =j+l, j+2, ... , n (2.4)

and, of course, t ij = 0 for j > i.
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Mo dined Cholesky

j-r
I ~)

dj = kjj - ds t js
s=l
j-1

'II')' (k.. - \'d t. 1: )/d.~ ~ s IS )S
s=l
i =j+1 , ... , n

} j=I, ••. ,n

(2.5)

where 'tii = 1 (i=l, ... , n) and 'tij = 0 for j > i.

For the applications under consideration, the modified Cholesky decomposition is more
. useful since it avoids the computation of square roots in'l.erent in (2.4). It can easily be shown

that, under the assumption that K is positive-definite, dj > 0 0=1 , ... , n) .

Once either decomposition is obtained, solutions of equations of the form

Kx = b (2.6)

-

may readily be obtained from the back and forward substitutions (we henceforth only consider the

modified Cholesky decomposition) :

.... -1
Y1 = L b (2. 7)

.... -1
Y2 = D Y1 (2.8)

.... *-1
(2.9)x = L Y2

since ............
Kx = LDL*x

= rDy2

= LY1

= b

as desired. (2.7) - (2.9) may alternatively be written (using - to denote replacement as

opposed to equality) to economize on storage:
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-1
Note that in order to solve such systems there is no requirement to calculate K ,only Land

D which requires approximately 1/3 the amount of computation.

This saving in itself is significant if one considers that the amount of time devoted to

computing matrix inverses in connection with feature extraction in LARSYS varies roughly as

mn 3 , where m is the number of classes and n is the number of features under consideration 
the corresponding amount of time devoted to the actual divergence calculation varies as 1/2m2n2,

which is of the same order of magnitude for most problems considered. Thus reducing the first

factor by a third can significantly effect the overall computation time of itself.

In the applications under consideration, we thus have m covariance matrices Ks (sel , ...

, m) corresponding to the number of classes. The dimensionality, n, of each K s corresponds

to the number of channels. With obvious notation, we write

(s) _ -:-<s) - . {_(s)}
K = (k.. ) , L = ( t.. ) , D = diag d.

s 1J S 1J S 1

are calculated as in (2. 5)

(2. 10)

s=l, .. , , m

i =2 , ... , n

i = n-l , n- 2 , .,. , 1

-b l / d l
i-I

( b . - \' r.. d. x ) / d
1 L 1J J j i

j=l

n

( Xi - L t.. x. )
j=i+ I J1 J

,..., ,..., ,...,*
K =L D Ls s s s

x·' 1

{
- (s)l {- (s) }

and t ij r, di

where

where

(3.3)

(3.2)

(3.1)

tr [(K. - K.) (K. -1 - K. -1) ]
1 J J 1I

j=i+l

m

I (ui - uj ) * (K
t

-1 + K
J
.-1) (u

i
- J)

j=i+l
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3. FEATURE SELECTION

m-l m

Feature selection, as implemented in LARSYS, depends upon calculating a measure of

inter-class divergence for multiple classes, requiring calculations of the form



f'"
I
I
j
!

I
where tr A denotes the trace of A (sum of its diagonal elements) and uS (s=1 , ... , m) is

the mean vector for the sth class.. We first simplify (3.2) and (3.3)

We note that we can write

m-l m 1 rn-I m 1
0

1
= I L(trKt

j-
) + I L(trKi~- ) - nm(m-l)

i=1 j=i+l j=1 i=j+l

m-j m m i-I

= l: l: (trKJ. Kj -1) + l: L (trKiKj-1) - nm (m-l)

i= 1 j=i+l i=2 j=1
m m

= L I -1 2
tr(KiKj ) - nm

i=1 j=1

m m
= I L -1 nm 2tr(K. K.)-

J 1

j=1 i= 1

(since tr(AB) = tr(BA»

where

m....
= L

j=1

-1 2
tr(Kj K) - nm

m

K = I Ki
i= 1

(3.4)

.... *-1 .... -1 .... -1 ............
= tr( L. O. L. LOL *)

J J J

.... -1 ....
= tr (D. T D T. * )

J j J

.... -1
T = L

j j

-

Now

where

Thus

-1
trK K

j

-1
tr(K.

J

....
L=(t

oo
)

1J

K) = I I
p=1 q= 1

(say)

(t (j) 2 /'ct(j»)d
pq p q

j=1 , ... , m
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Hence D l may economically be calculated from (3.4), (3.5) and (3.6). It should be noted that

the ca~uI::tionof ~e {1) } in (3.5) each require n calculations of the form (2. 10); however,

since T. ,L. and L are all lower triangular, it is important to remark that much of the compu
tation rrlay :6e reduced by observing that, in calculating the qth .column of T., the index n in

~ J
(2.10) is actually replaced by n-q+ 1 (q=1, ... , n) .

The calculation of D
2

may be stmtlartly simplified. For, from (3.3), we may write

m-I m
(i j) * (K. -1 + K. -1) i j

D2 = I I u - u (u - u )
1 Ji=1 j=i+1

m-I m
j * -1

u
j)

= L I i (u i -(u - u ) K.
1

i=l j=i+1

m-l m
(ui - u

j)* K.-1 u
j

)+ I I (u i -
J

j=l i=j+1 (3. 7)

(interchanging and in the second sum). Interchanging the order of subscripts gives

ij .... -1 i j

" = L. (u - u )
1

= aii - lIij i, j= 1 , ... , m

where

where the computation of

m m

D
2

= I I
i= 1 j= 1

m m

=I I
i= 1 j= 1

.... -1
D.

1

ij

" (3.8)

(3.9)

involves a forward substitution, that is lI
ij

is obtained from

a(ij) = u(j)
1 1

II(ij) u(j)
p-l .... (I) (ij)

= - L t pq II ,
P P q

q=1
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We thus have, from (3. 8) that

m m n
D = I L I ('Il(ij ) )2 I'd (t)

2 p P
i=l j=l p=l

where
l1(ij) = Ii(ii) _ Ii(Ij)

P P P

and the { 5gj) }are calculated from (3. 10).

(3. 11)

-1
Thus, if the Kj have been precomputed, the amount of wo.rk involved in evaluating D1 may
become negligible compared with the evaluation of D

2
by usmg (3. 12) and the fact that, for

symmetric matrices A, B:

The use of the above formulae should probably not be compared with the approach used in
LARSYS itself, but with the improvements proposed by G. Austin(8) which take full advantage of
the symmetry of the {K

i}
and of the symmetric structure of the summands in (3. 7). It can be

shown that the amount of work involved in calculating D2 in (3. 11) is comparable with that
involved with the corresponding terms in Ref. (8). However, the amount of work involved in

evaluating (3. 4) is actually considerably less than the method proposed in Ref. (8) on account of

the asymptotic linear dependence on m, as opposed to the quadratic dependence of Ref. (8). It

should nevertheless be pointed out that, from (3.·4)

~

D = tr(KK)
1

i
I
j
1

I
i
I
I

where
~

K =
m

L
j=l

2- nm

-1
K.

]

(3. 12)

(3. 13)

4. CLASSIFICATION

Classification involves the calculation of the maximum likelihood functions

However, this approach does not obviate the overall savings in feature selection of using the

Cholesky decomposition instead of computing matrix inverses.

(4. 1)

n n
tr (AB) = I L a.. b ..

1J Jl
i=l j=l

n i-I n

2L L a .. b .. + I a ..boo
1J J1 11 11

i=l j=l i=l

j=l , ... , m
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where

is calculated in a manner analogous to (3.9).

j -1 j .... -1
(x - u ) * K. (x - u) = y. * D.

J J

(4.2)

log f.(x) needs to be
J

= (fr ct<j»)-t
p=l p

n/2
an= 1/(2TT) ,and

.... -1 j
Y =L (x-u)
j j

-1 t
a = (det K. )

j J

Actually, since exp(x) is a monotonic increasing function, only

computed in determing the maximum of f.(x) over all m classes.
J

However, (4.1) is again simplified by noting that

where x is the observation vector,

5. RESULTS

The above techniques have been tested by appropriately modifying the OS version of

LA RSys(6). supplied byNASA- ]SC. In actuality the modification to the divergence calculations

in feature selection use the Cholesky decomposition as opposed to the modified Cholesky decom

position as discussed in Section 3 - further savings of time, obtained by not having to calculate

square roots, could be realized by using the modified Cholesky decomposition.

The modifications were written in single-precision FORTRAN and compared with the
original single-precision versions in LARSYS. In the case of classification, the results were

also compared with a single-precision version of the corresponding calculations in LARSYS

written in assembly code.

o The precision of these timing results is very open to question due to the difficulty of

obtaining accurate and reproducible timing information under the OS Operating System of the

IBM 370/155. Timings are heavily dependent on general system activity; furthermore the con

siderable subroutine overhead inherent to the computation tends to mask much of the potential

arithmetic economies of efficiency.

The results are summarized in Figures 1, 2 and 3 on test data supplied by Purdue

University with LA RSYS. Figure 1, depicts the ratio of the time taken by the original LARSYS

version (DIVERG) to that taken by the proposed algorithm (CHOLESKY) in a divergence calcula

tion for feature selection using six channels; this ratio is plotted for a varying number of target

classes. It can be seen that CHOLESKY is approximately twice as fast as DIVERG.

Theoretical analysis shows that this ratio should be greater than three for all values of m,

and asymptotically should approach four for large values of m . This discrepancy underscores

the high degree of imprecision associated with the timing results.

In Figure 2, the same ratio is plotted for a fixed number of classes (11) and where a

varying number of features is selected from twelve channels. Except for a very small number
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of features, where the order of the Kj is SQ small that the time of calculation is dominated by

computational overhead, it can again be seen that CHOLESKY is between two and three times

faster than DlVERG. Again, theoretically, this ratio should be between three and four for all
values of the number of features.

In Figure 3, the time taken for classification using the three methods is compared for a

number of points varying from 50,000 to 100,000. The Cholesky method is significantly faster

(about 30%). It should be pointed out that, as has been noted elsewhere(7), equivalent savings

can be obtained by Using a variant of the LARSYS calculations which does not employ the

modified Cholesky decomposition; however, this variant does not have the accuracy potential of
the Cholesky approach(1)

6. IMPROVEMENTS IN ACCURACY

The modifications described were executed in single-precision so as to provide a basis

for comparison with the LA RSYS calculations. Without further refinement, it should not be
surprising that the accuracy will be correspondingly limited, since(1) accuracy in such compu-

tations is essentially a function of three principal components:

the method employed

the arithmetic significance
the conditioning of the various matrices

For ill-conditioned systems (in the applications under consideration, these may arise, for

example, from working with highly-correlated channels), more precise methods have to be

employed and/or the arithmetic significance increased. Directions which need to be examined

with higher accuracy objectives in mind include, not only that of using higher significance arith

metic in sensitive portions of the computation, but also those of employing iterative refinement,

scaling or equilibration. These will, however, be studied in a later report.

REFERENCES

(1) G. Forsythe & C.B. Moler, Computer Solution of Linear Algebraic Systems, Prentice Hall,

Englewood Cliffs, N. ]. 1967.

(2) Supplied by LARS, Purdue Univ. , West Lafayette, Indiana.

(3) Earth Resources Interactive Processing System (ERIPS) prepared by IBM Federal Systems

Division for NASA - ]SC.

(4) System 360 Scientific Subroutine Package, Version III, IBM Application Program.

(5) A. Ralston and H. S. Wilf, Mathematical Methods for Digital Computers, Vol. II, John Wiley

and Sons, New York, 1967.

(6) The OS version of LARSYS was written by IBM - Federal Systems Division for NASA - ]SC.

3B-43



(7) G. Austin, "Analysis of LARS Subroutine CLASS and Recommended Coding Improvements to

Reduce Its Execution Time, " NASA - JSC MPAD Memorandum, May 16, 1972.

(8) G. Austin, "Modifications to ERIPS Requirements to Reduce Computation Time and Storage

Requirements," MSC Internal Note No. 72-FM-21O, Jan. 16, 1973 NASA.

3B-44



3

R 2 .
-
•

R=FTIME SYGHOLESKY

FEATURE SELECTION

TIME BY OIVERG

6 C tiANNE'LS

2 4 6 8 10
NUMBER OF CLASSES

12

Figure 1. Timing comparison as a function of number of classes

used for the divergence calculation.
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