
Purdue University
Purdue e-Pubs

ECE Masters Theses Electrical and Computer Engineering

12-7-2007

Intra-level Incomplete Bypassing: Achieving
Performance and Power Efficiency
Eric P. Villasenor
Purdue University - Main Campus, evillase@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetheses

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Villasenor, Eric P., "Intra-level Incomplete Bypassing: Achieving Performance and Power Efficiency" (2007). ECE Masters Theses.
Paper 12.
http://docs.lib.purdue.edu/ecetheses/12

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetheses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetheses?utm_source=docs.lib.purdue.edu%2Fecetheses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetheses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetheses?utm_source=docs.lib.purdue.edu%2Fecetheses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis Acceptance

This is to certify that the thesis prepared

By

Entitled

Complies with University regulations and meets the standards of the Graduate School for originality

and quality

For the degree of

Final examining committee members

, Chair

Approved by Major Professor(s):

Approved by Head of Graduate Program:

 Date of Graduate Program Head's Approval:

Eric Villasenor

Intra-cluster Incomplete Bypassing: Achieving Performance and Energy Efficiency

Master of Science in Electrical and Computer Engineering

M. S. Thottethodi, Chair

T. N. Vijaykumar

Y. Lu

12/06/07

M. S. Thottethodi

M. J. T. Smith

INTRA-LEVEL INCOMPLETE BYPASSING:

ACHIEVING PERFORMANCE AND POWER EFFICIENCY

A Thesis

Submitted to the Faculty

of

Purdue University

by

Eric P. Villasenor

In Partial Fulfillment of the

Requirements for the Degree

of

Masters of Science in Electrical and Computer Engineering

December 2007

Purdue University

West Lafayette, Indiana

ii

To Boo, who knows how to relax. To my family, thank you all for your support.

iii

ACKNOWLEDGMENTS

This project has undergone several makeovers until finally settling down into this

work. I would like to extend thanks to Mithuna Thottethodi for his direction, assis-

tance, and ideas on this project. I would also like to thank Daeho Seo for his help

and work on the project.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABBREVIATIONS . viii

ABSTRACT . ix

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Overview . 4

2 BACKGROUND AND OPPORTUNITY STUDY 5

2.1 Characterizing Bypass Utilization . 5

2.1.1 Bypass Fanout Evaluation Methodology 6

2.1.2 Bypass Fanout Metric . 6

2.2 Clustering Background . 9

2.2.1 Monolithic, Full Bypass Networks 10

2.2.2 Traditional Clustered Micro-architectures 12

3 INCOMPLETE BYPASS CLUSTERED MICROARCHITECTURE 14

3.1 IBCM Layout . 14

3.2 Cluster Scheduling . 15

3.2.1 Single Window Schedulers . 16

3.2.2 Partitioned Window Schedulers 18

3.2.3 IBCM Scheduler Modifications 19

3.2.4 IBCM Steering Policy . 20

4 RESULTS . 22

4.1 Evaluation Methodology . 22

4.2 Clock Critical Latency . 23

v

Page

4.3 Making Execute Clock Critical . 26

4.4 Results . 26

4.4.1 Performance Comparison . 27

4.4.2 Energy Efficiency . 30

5 SUMMARY . 36

5.1 Related Work . 36

5.2 Future Work . 37

5.3 Conclusion . 38

LIST OF REFERENCES . 39

vi

LIST OF TABLES

Table Page

2.1 Bypass fanout machine configuration. 7

4.1 Simulation processor configuration. 24

vii

LIST OF FIGURES

Figure Page

2.1 Realistic bypass fanout profile. 8

2.2 Aggressive bypass fanout profile. 8

2.3 Layout of 4-wide fully-connected, single-cycle bypass network. 11

2.4 Layout of 4-wide, traditional clustered microarchitecture. 13

3.1 Incomplete Bypass-based Cluster Micro-architecture. 15

3.2 Single window scheduler. 17

3.3 Traditional wakeup logic. 17

3.4 Partitioned window scheduler. 18

3.5 IBCM partitioned window wakeup logic. 19

4.1 Clock speed. 25

4.2 Realistic configuration performance. 27

4.3 Ideal configuration performance. 28

4.4 Real configuration IPC. 28

4.5 Ideal configuration IPC. 29

4.6 Real configuration energy per instruction. 32

4.7 Ideal configuration energy per instruction. 32

4.8 Real configuration energy per instruction across SpecCPU benchmarks. . 33

4.9 Ideal configuration energy per instruction across SpecCPU benchmarks. . 33

viii

ABBREVIATIONS

TCM Traditional Clustered Microarchitecture

IBCM Incomplete Bypass Clustered Microarchitecture

FU Functional Unit

ILP Instruction Level Parallelism

IPC Instructions Per Cycle

EPI Energy Per Instruction

EX Execute Stage

ALU Arithmetic Logic Unit

ix

ABSTRACT

Villasenor, Eric P. M.S.E.C.E., Purdue University, December, 2007. Intra-level In-
complete Bypassing: Achieving Performance and Power Efficiency . Major Professor:
Mithuna S. Thottethodi.

Researchers have proposed clustered microarchitectures to capture the benefits of

high performance and high energy efficiency. Typically, clustered microarchitectures

offer fast local bypasses (i.e., value forwarding between instructions) within clusters

and require global bypasses to take longer, more than one cycle. With communication

locality (i.e., most communication is within the clusters) the clustered designs capture

the benefits of both improved instructions per cycle and increased clock-frequency.

Traditional clustered microarchitectures are implemented by partitioning the register

file and associated functional units to clusters. In this work, an alternate technique

is demonstrated – Incomplete bypassing – to achieve similar clustering. Incomplete

bypass based clustering is similar to traditional clustering in that it creates groups of

functional units where intra-group communication occurs within a single cycle over

fast bypass wires and inter-group communication takes longer, more than one cycle.

One key difference is that in traditional clustered microarchitectures, inter-cluster

communication takes place over the global buses whereas incomplete bypass designs

achieve inter-group communication via the register file. It is demonstrated that in-

complete bypass based clustered micro-architecture achieves higher performance (10%

speedup) and better energy efficiency than traditional clustered microarchitectures.

1

1. INTRODUCTION

1.1 Motivation

Even as general-purpose computing moves toward multicore/manycore designs

as the mainstream model, the design of a single core to achieve high single-thread

performance and power-efficiency remains a key design consideration. Much research

over the past decade has focused on precisely this goal. One important example

is the clustered architecture which effectively groups, or clusters, execution units

such that intra-cluster communication, inside the cluster, is fast and inter-cluster

communication, between clusters, is (relatively) slow [1]. Clustering helps increase

clock speed because only the intra-cluster communication has to occur within a single

clock cycle. Furthermore, because instructions can be steered to clusters such that

intra-cluster communication is the common case and inter-cluster communication is

rare, the decrease in instructions per cycle (IPC) is minimal.

While the general benefits of clustering: reduced complexity, increased perfor-

mance, and improved power, are well known, the implementation of clustering can

have a significant impact on the overall performance of the architecture. There are

many renditions of clustered architecture implementations, the one referred to in this

work is the implementation in which a cluster has a local register file and local func-

tional units, this implementation will be referred to as the traditional clustered mi-

croarchitecture (TCM). This work describes an alternate implementation of clustering

— Incomplete Bypass-based Clustered Micro-architectures (IBCM) — that achieves

10% better performance than traditional clustered microarchitectures (TCM) while

simultaneously improving energy efficiency in the hottest part of the core.

In IBCM, like in TCM, instructions that are scheduled on functional units within

a cluster can forward/bypass results among themselves in a single cycle (i.e., they are

2

bypass-connected). However, unlike TCM, instructions executing on functional units

that are not within a cluster cannot bypass results to each other at all in IBCM. Any

communication between such instructions occurs via the register file. At first glance,

it may appear that IBCM is replacing fast and cheap wire-based communication

with expensive, register based communication. However, a careful analysis of IBCM

reveals the following three key insights due to which it achieves higher performance

and better energy efficiency.

First, it is demonstrated that, in the common case, the bypass fanout — the

number of times a value is read from the bypass network — is typically a small

number. Fewer than 2% of instructions in the integer SpecCPU 2000 benchmark

suite have a bypass fanout greater than 2. This gives the insight that full bypass

networks which connect the output of every functional unit to the two inputs of every

other functional unit are over-provisioned. As such, IBCM truncates the result bus to

limit the connectivity among functional units. The truncation of result buses reduces

the length of wires, which in turn improves both the clock cycle and the energy

consumption. This is achieved because driving shorter buses is faster and consumes

less energy. It is shown later in Section 3.1, the truncated result buses of IBCM are

shorter than the intra-cluster bypass buses of TCM and can directly lead to a faster

clock. Because the truncation of the bypass wires eliminates bypass connectivity of

some functional units, any communication between instructions will have to occur via

the register file.

Secondly, overall performance is relatively insensitive to increases in the delay of

inter-cluster communication, a fact that IBCM exploits. For example, increasing the

inter-cluster communication delay from one cycle to two cycles reduces the IPC by

less than 2%. This is not suprising because inter-cluster communication is not the

common case. Thus, the same property that enables clustering – locality of intra-

cluster communication – makes it tolerant of increased inter-cluster communication

latency. This is a key observation because the design choice of forcing inter-cluster

communication to occur via the register file increases the communication latency to

3

two cycles. This two cycle inter-cluster latency consists of one cycle to write to the

register file and another cycle to read from the register file.

Finally, the above discussion focuses purely on the “Execute” (EX) stage (includ-

ing ALU delay and bypass delay). Though the EX stage, with its EX-EX pipeline

loop, is known to be clock-critical, it cannot be assumed that a reduction in the delay

of the EX stage leads to a corresponding increase in clock speed. This is because

other stages (and the issue logic stage, in particular) may limit the reduction in clock

cycle time. However, it is shown later in Section 4.3 that there are ways to sacrifice

some ILP to ensure that the processor can be operated at a faster clock cycle that is

limited only by the EX stage delay.

On energy efficiency, as measured by energy per instruction, IBCM is expected

to be more energy efficient because of the shorter intra-cluster result buses that are

driven in the common case. Further, IBCM eliminates the additional cost of copying

over a global bus for inter-cluster communication. One caveat is that these energy

savings occur only in the EX stage and are thus modest when considered over the

entire pipeline. However, improving the energy efficiency in parts (register file and

ALU output drivers) that are known to be among the hottest regions [2] in a core

remains an important advantage of IBCM.

In summary, the two key contributions of this work are as follows. First de-

velopment of IBCM, an implementation of clustering based on incomplete bypass

networks. Compared to TCM, IBCM achieves 10% better performance by reducing

the clock-critical delay of the EX stage by 13% while degrading IPC by 2%. Finally it

is demonstrated that IBCM is more energy efficient than TCM. This is not surprising

because in the common case, shorter result buses are driven by each instruction’s

output and IBCM completely eliminates the additional cost of inter-cluster commu-

nication. While there is little improvement when considering the pipeline as a whole,

IBCM does improve the energy efficiency in the hottest parts of the chip.

4

1.2 Overview

The rest of this thesis is organized as follows. Chapter 2 discusses the background

of clustered architectures as well as the opportunity for incomplete bypass based

clustering. Chapter 3 describes the implementation of IBCM and the scheduling

techniques used for the IBCM design. Discussion of the simulation model, evaluation

methodology, and results are presented in Chapter 4. Chapter 5 discusses related

works, summarizes, and concludes this thesis.

5

2. BACKGROUND AND OPPORTUNITY STUDY

This chapter characterizes the bypass fanout of instructions which serves to illus-

trate the opportunity for incomplete bypass based clustering designs. Finally, a brief

overview of the functionality of bypass networks and traditional clustering implemen-

tations is presented.

2.1 Characterizing Bypass Utilization

In this section, utilization of bypass networks is characterized. The insights from

this evaluation directly leads to the conclusion that fully-connected bypass networks

are over-provisioned and that there is abundant scope for realizing comparable per-

formance with incomplete bypass networks. Extraneous communication exist in these

over-provisioned bypass networks that incomplete bypass networks are able to allevi-

ate. It also offers insights to the type of incomplete bypass networks that can exploit

the observed patterns of bypass network utilization.

Bypass networks are an integral part of high-performance processor design. They

enable improved performance by alleviating the data hazards inherent to program ex-

ecution. Thus, bypass networks enable back-to-back issue of dependent instructions.

Bypass networks are also known to be a source of delay complexity in processor de-

signs [1, 3]. The network complexity is a function of issue width and grows quadrat-

ically as it increases. This is because every output of a functional unit is connected

to the inputs of every functional unit.

6

2.1.1 Bypass Fanout Evaluation Methodology

Simplescalar 3.0 [4] is used to simulate two processor configurations shown in

Table 2.1. One of the machines is a 4-way issue processor with realistic memory

hierarchy, branch predictor and single-cycle issue logic. Note, single-cycle issue logic

is a conservative assumption since it potentially exposes more bypass utilization. An

aggressive configuration is also simulated with aggressive resources, perfect memory,

perfect branch prediction, and single-cycle issue logic. This aggressive configuration

serves to expose more ILP (and potentially more bypass utilization) as it eliminates

the sources of pipeline stalls. The integer SpecCPU 2000 benchmark suite is sim-

ulated with reference data sets for 100 million instructions after fast-forwarding to

the most representative simulation point indicated by the SimPoint 3.0 Tool-set [5].

Profile information is represented in Figure 2.1 and Figure 2.2, for both machine

configurations in Table 2.1.

2.1.2 Bypass Fanout Metric

The metric used to measure utilization of a bypass network is “bypass fanout.”

The bypass fanout, of an instruction i, is defined as the number of times the value

produced by the instruction i is read from the bypass network before the value is

written to the register file. Butts and Sohi describe another closely related concept

—degree-of-use— which counts all consuming instructions including those that read

the produced value from the register file [6]. However, utilization of the bypass

network remains the only item of interest for this concept of bypass fanout.

Isolating the bypass fanout from the overall degree-of-use offers an interesting chal-

lenge. Unlike degree-of-use, which is unique to a given control path, bypass fanout is

sensitive to instruction scheduling as well. If the consuming instructions are sched-

uled soon after the producing instruction, the consumed value is likely to be sourced

from the bypass network. On the other hand, if the consuming instructions are de-

layed for any reason, the consumed value may be read from the register file. The

7

Table 2.1
Bypass fanout machine configuration.

Parameter Real Aggressive

Issue Width 4 8

Commit Width 4 8

Branch Prediction 14 bit g-share Perfect

Physical Registers 256 256

Load Store Queue 128 128

L1 Cache 32KB(I)+32KB(D) Perfect,

Direct Mapped Infinite

L1 Latency 1 cycle –

L2 Cache 2MB Unified –

4-way, 64B

Mem. Latency 200 –

reasons for temporal separation between producer and consumer instructions could

be one of the following. Temporal separation would be intrinsic to the application

(e.g. distance in the data-flow-graph), extrinsic artifacts of the processor such as re-

source constraints (e.g. issue width), pipeline inefficiencies (e.g. lack of back-to-back

dependent instruction issue), intervening branch miss predictions, cache misses, or

exceptions. Alternatively, cache misses may also delay value production. The delay

in value production may bring consumers closer together to increase the bypass fanout

of certain instructions.

Bypass fanout is measured by simulation on both a realistic and an aggressive con-

figuration (Table 2.1) to estimate the variation introduced by the factors mentioned

above. Fortunately, these experiments indicate that one key trend is insensitive to

such factors. The trend is that the bypass fanout of instructions is less than or equal

to 2 in the common case.

8

 0

 20

 40

 60

 80

 100

bzip2

crafty

eon
gap

gcc
gzip

mcf
parser

perlbmk

twolf

vortex

vpr
avg

D
y
n
a
m
i
c

I
n
s
t
r
u
c
t
i
o
n
s

(
%
)

0
1
2
3
4

Fig. 2.1. Realistic bypass fanout profile.

 0

 20

 40

 60

 80

 100

bzip2

crafty

eon
gap

gcc
gzip

mcf
parser

perlbmk

twolf

vortex

vpr
avg

D
y
n
a
m
i
c

I
n
s
t
r
u
c
t
i
o
n
s

(
%
)

0
1
2
3
4
5
6
7
8

Fig. 2.2. Aggressive bypass fanout profile.

9

Profile data for the bypass fanout of the integer SpecCPU 2000 benchmark suite

is presented in two graphs; Figure 2.1 represents the realistic configuration and Fig-

ure 2.2 represents the aggressive configuration. Table 2.1, again, depicts the con-

figurations for these two machines. These figures plot the percentages of dynamic

instructions with various possible bypass fanout values for the two machine configura-

tions. Each graph (Figure 2.1 and Figure 2.2) contains twelve bars corresponding to

the SpecCPU 2000 integer benchmark suite; in addition, the rightmost (thirteenth)

bar displays the average across all twelve integer benchmarks.

The primary observations from Figure 2.1 and Figure 2.2 are as follows. First,

on average, very few instructions (1.8%) have a bypass fanout greater than 2 on

the 4-way superscalar configuration (Figure 2.1) with vpr reporting the maximum of

3.3%. Second, on the aggressive configuration (Figure 2.2), the fraction of instructions

reporting a bypass fanout greater than 2 increases marginally to 2%. bzip2 is the

benchmark with the largest fraction at 4.7%. Finally, the fact that the bypass fanout

profiles, under both the aggressive and realistic configurations, are heavily skewed

towards low (≤2) fanout values indicates that low-bypass fanout is a fundamental

program property.

These bypass fanout measurements reveal significant underutilization of the bypass

network with more than 98% of instructions having a bypass fanout of 2 or less when

averaged across all integer benchmarks of the SpecCPU 2000 benchmark suite. This

underutilization clearly implies that bypass networks are over-provisioned for the use

they typically endure. Exploiting this common case is the key idea behind types of

incomplete bypass-based networks.

2.2 Clustering Background

In this section, the background of bypass networks and how clustering operates

will be discussed. Then, the insights of low bypass fanout and bypass network imple-

mentation are combined to describe the IBCM design.

10

In all, bypass networks can become a major source of delay and complexity in the

execution unit of a processor. Clustering as stated, reduces the complexity of these

networks by grouping functional units into clusters. This decrease in the complexity

and delay of such networks is a boon that clustered architectures exploit. However,

traditional clustered architectures only reach so far before diminishing returns are

encountered.

Incomplete bypass networks offer an interesting solution in achieving performance

and energy improvements beyond those offered by traditional clustered architectures.

Because this technique of incomplete bypassing relies on clustering via incomplete

bypass networks, background information is provided on the operation of full bypass

networks in the basic monolithic superscalar architectures (Section 2.2.1) and the

operation of TCM (Section 2.2.2).

2.2.1 Monolithic, Full Bypass Networks

The schematic diagram in Figure 2.3 illustrates the layout of a fully connected

EX-EX bypass network as described in [3]. This layout has also been used by Brooks

et.al. [7] and is representative of the layouts of the MIPS R10000 [8] and the Alpha

21264 [9] processors. The centrally located register file offers two dedicated read

ports and one dedicated write port for each functional unit. The outputs of the

functional units are placed on result buses that span the width (due to reoriented

diagrams, “width” is used wherever [3] uses “height”) of four functional units and the

register file. The same widths are used for functional units and register files as listed

in [3] and assume identical general-purpose integer ALUs. Discussion is restricted

to integer programs and integer functional units. The general principals extend to

floating point functional units as well, though the parameters will be different. The

results placed on the result buses are available at the operand multiplexers (shown as

shaded rectangles) associated with the inputs of each functional unit. The operand

multiplexer may place data from the result bus (instead of the data that has been

11

RegF1 F2 F3F0

Operand Mux

Result Bus

Fig. 2.3. Layout of 4-wide fully-connected, single-cycle bypass network.

read from the register file) at the input of the functional unit. The reader is referred

to [3] for additional implementation details.

Three observations can be made from the layout of the fully connected bypass

network. First, the only consequence of eliminating the bypass path to one of the

inputs of a functional unit is the removal of one of the two connections from the

result bus to the operand multiplexer. The length of the result bus is unchanged

because the value still has to be supplied to one of the inputs. The result bus is

the dominant contributor to overall bypass wire delay because the capacitance of

the result bus dominates the total capacitance observed by the ALU output drivers.

Ahuja et.al. [10] propose one optimization: to eliminate the bypass path to one of the

inputs and leverage commutativity of the operation to overcome the resulting pipeline

stalls. From the above observation, it follows that the presented optimization has very

little benefit for delay complexity but has the potential pitfall of introducing interlock

delays. Second, if one ALU output is not bypassed at all, it results in the complete

elimination of one of the result buses. This may help reduce wire density, but the

overall bypass delay is still bounded by the delay of the other result buses which

are unchanged in length. Finally, the above two observations rule out two types of

12

incomplete bypass networks. The only remaining option is to limit the horizontal

extension of the result buses. This results in the output of functional units being

bypassed to some functional units but not to others. Furthermore, the reduction in

the horizontal reach of the result buses must occur for every single result bus since

the delay complexity depends on the longest result bus.

Incomplete bypass network designs can be derived naturally from the above three

observations. This insight will aid in designing incomplete bypass based clustered mi-

croarchitectures in Section 3.1, after discussing the operation of traditional clustered

microarchitectures.

2.2.2 Traditional Clustered Micro-architectures

Though there are many flavors of the clustered architecture implementations, this

thesis refers to the implementation in which a cluster has a local register file and local

functional units, as the traditional clustered microarchitecture (TCM). Figure 2.4

illustrates the layout of the register files, functional units and bypass network in a

2-cluster TCM. Each cluster has a register file and half as many functional units

as the monolithic organization. The intra-cluster result buses are shorter in length

by the width of two ALUs. It is the delay of driving this shorter bus (in addition

to ALU delay and clock overhead) that must be accommodated in a single clock

cycle. Inter-cluster communication on the global bus (shown with dotted lines) takes

two cycles. Note, each cluster-local register file has half as many read ports as the

register file in the monolithic architecture. Every instruction that creates a new value

is propagated to both the clusters. This is a conservative assumption for performance

because it minimizes the number of pipeline stalls. However, replicating every value is

not ideal from an energy-efficiency perspective. When energy efficiency is discussed,

this assumption that every value is replicated in both register files will be relaxed.

13

RegF2 F3

RegF0 F1

Fig. 2.4. Layout of 4-wide, traditional clustered microarchitecture.

14

3. INCOMPLETE BYPASS CLUSTERED

MICROARCHITECTURE

This chapter introduces IBCM and the insights that make it possible. Finally, schedul-

ing techniques of clustered architectures are discussed.

3.1 IBCM Layout

Consider the spectrum of designs that vary in their bypass connectivity. At one

end of this spectrum, there are the traditional fully-connected bypass networks (Fig-

ure 2.3). At the other end of the spectrum, there are architectures with no by-

pass/forwarding where all value communication occurs via the register file(s) and/or

memory. IBCM is an intermediate design point in this spectrum in which the by-

pass network spans exactly two functional units (in a 4-wide superscalar machine) as

illustrated in Figure 3.1.

IBCM exploits the previously mentioned intuition that the incomplete bypass

networks of interest are the ones which limit the horizontal reach of the result buses.

A key differentiating factor in this layout (compared to the layout of TCM) is that the

result buses do not have to span the register file. This results in a disproportionate

reduction in wire delay (35.7%, as estimated using ITRS roadmap parameters for

50nm technology [11]) since even a banked register file is significantly wider than

the ALUs. A simple observation, yet it provides astounding opportunity for design

improvement. It will be shown later, in Section 4.2 that the reduction in wire delay

causes an overall reduction of 13% in the EX stage delay (including ALU delay and

latch overheads).

From the layouts, it can be seen that the implementation of TCM and IBCM

designs are clearly different. For example, TCM architectures, unlike IBCM archi-

15

RegF1 F2 F3F0

Fig. 3.1. Incomplete Bypass-based Cluster Micro-architecture.

tectures, use replicated register files and hierarchical bypass networks. Yet, the un-

derlying clustering approach remains similar as both TCM and IBCM architectures

deliver non-uniform latencies for inter-instruction value communication. Consumer

instructions which issue to the same cluster as the producer ALU enjoy fast bypass

in TCM as do consumer instructions that issue to a bypass-connected ALU (i.e., an

ALU on the same side of the register file) of the producer ALU in IBCM. Consumer

instructions which issue to a different cluster in TCM architectures suffer a longer

latency penalty since operands must be communicated over the longer inter-cluster

bypass wires. Similarly, consumer instructions which issue to an ALU not on the

same side of the register file as the producer ALU suffer the delay of communication

via the register file.

In summary, presented herein is an alternate implementation of clustering – IBCM–

based on incomplete bypassing. It can be seen that IBCM provides a level of clustering

without the overhead of TCM components. This feature is a boon to IBCM as it shifts

the point of diminishing returns for clustered architectures.

3.2 Cluster Scheduling

The monolithic processor organization with uniform all-to-all bypass connectivity

provides one major benefit – any ready instruction may be assigned to any free func-

16

tional unit. As such is the benefit of single issue windows, partitioned instruction issue

windows are assumed for TCM. Cluster implementations, in contrast to single win-

dow schedulers, rely on appropriate scheduling of instructions to functional units to

avoid/minimize inter-cluster delays. The fact that IBCM is an alternative implemen-

tation of clustering renders the entire body of literature that deals with scheduling

for TCM architectures directly applicable for this design as well [1, 12–17]. These

partitioned issue windows have previously been proposed for TCMs [1]. This design

(TCM) associates an instruction window with each cluster. Instructions are steered

at instruction dispatch to one of the cluster issue windows. Once steered, instruc-

tions remain in that cluster until they execute. Any communicated values are shared

via the result buses depicted in Figure 2.4, scheduling policies are used to minimize

the need for inter-cluster communication. A representative (but not exhaustive) set

of instruction steering policies include: dependency-based steering [1, 12], criticality-

heuristic-based steering [13–15] and instruction replication [16, 17] policies.

3.2.1 Single Window Schedulers

Traditional schedulers consist of wakeup and select stage logic. Wakeup and select

are, in general, thought of as one atomic operation, this is shown to be complex and

infeasible for wide issue configurations [1,15]. This insight leads to the determination

that, for single issue window schedulers, they become clock-critical as a pipeline stage.

Figure 3.2 depicts this traditional scheduler. Figure 3.3 illustrates traditional wakeup

logic for one source operand [18].

Traditional wakeup logic functions as follows. First, it determines when an in-

struction is awoken by waiting for the determined latency after their source operands

are broadcast. After the source operands are ready, and the operational latency has

expired, the instruction is ready to issue. The select stage, also depicted in Figure 3.2,

then seeks a suitable functional unit and issues the instruction.

17

R
ea

dy

R
ea

dy

R
ea

dy

GRANT
REQUEST

Select Tree for FU 1

Select Tree for FU 0

Fig. 3.2. Single window scheduler.

Ready
(at all FUs)

=

= OR

Tag1

Tag8

SRC TAG M SHIFT R

Op Delay

shift enable

load

Fig. 3.3. Traditional wakeup logic.

18

Select Tree for FU 0

R
ea

dy

R
ea

dy

R
ea

dy

GRANT
REQUEST

Select Tree for FU 1
R

ea
dy

R
ea

dy

R
ea

dy

Window 0 Window 1

INSTRUCTION DISPATCH

Fig. 3.4. Partitioned window scheduler.

3.2.2 Partitioned Window Schedulers

Partitioned window schedulers significantly reduce complexity for wakeup logic.

A single window scheduler contains wakeup and select logic; however, by sectioning

off functional units, the complexity of this logic is reduced. Thus, partitioned window

schedulers reduce the schedulers clock-critical status in the processor.

A partitioned scheduler is illustrated in Figure 3.4. Again the wakeup logic is the

same as in Figure 3.3. It requires that the wakeup logic determine if the instruction

is ready at it’s cluster window (it may be surmised in Figure 3.4 that each cluster

contains one functional unit), this reduces the number of available functional units

which the select logic views. In order to benefit from the reduced complexity, intelli-

gent steering policies must be established to ensure an efficient flow of instructions,

as mentioned above.

19

=

= OR

Table
Delay
Prop

Tag1

SRC TAG M SHIFT R

Op Delay

SHIFT R

shift enable

load

shift enable
Ready
(at Groupj)

GT[i][j]

Tag8

for Groupj

AND

Fig. 3.5. IBCM partitioned window wakeup logic.

3.2.3 IBCM Scheduler Modifications

Slight modifications to the partitioned window scheduler must be made in or-

der to allow incomplete bypass-based designs to maintain efficient instruction flow.

Note, it was stated before in TCM a cluster was associated with a window; however,

bypass-connected ALUs, referred to in this section as groups for brevity, will now

be associated with a window. One will recall, from Section 3.1, that communication

between groups suffer a delay through the register file.

The delay between groups can be represented by a group table, or a propagation

delay table. A processor with G groups would have a table with G entries. This table

contains latency from every other group to the group associated with this window.

The table inherently maintains the property that number of groups is not linearly

related to issue width.

The modifications made to traditional wakeup logic, the shaded regions in Fig-

ure 3.5, are to account for the group delays described above. Figure 3.5 focuses on

the logic for a single operand. The logic functions as follows. First, the tag line

which matches the source tag is the group where the dependency is located. Second,

20

the logic then looks into the propagation delay table for the latency between groups.

Third, the propagation latency is loaded into a shift register. Fourth, the delays

are then counted down, until the Ready flag is asserted. Finally, the instruction is

ready, select logic finds an available functional unit in the group and the instruction

executes.

3.2.4 IBCM Steering Policy

As a proof-of-concept, the following adaptation of the dependency-based instruc-

tion steering policy is evaluated for IBCM. The partitioned window scheduler as

described in Section 3.2.3 allow for incomplete bypass-based policies. Where IBCM

has need of incomplete-bypass awareness, the TCM does not, and therefore issue

windows remain associated with a cluster, rather than a group. Each instruction

is steered to the window of the group where its source operand(s) is(are) produced,

by indicating an instruction is steered to a group, it is dispatched to an issue queue

window associated with that group. Issue queues are load balanced to prevent any

dependence chains from overloading any subset of the processors resources.

Several scenarios exist for scheduling instructions with this policy. An instruction

with no dependencies is free to move to any window, or queue, as long as there is

room. With load balancing, the window with the least pressure becomes the initial

target of the scheduler. This assures an even distribution of independent instructions,

which may head a dependency chain. An instruction with one dependency targets

the window of the source, or parent, instruction. If the source window is full, the

instruction is steered to another issue window irrespective of the register dependence,

again with load balancing the target then becomes the window with the least pressure.

An instruction with two dependencies targets the window of its parents. This is trivial

if both parents are on the same group, the instruction will target that window. If the

window is full, it will again go to the window with the least pressure. With parents on

separate groups, the instruction targets a window associated with a parent instruction.

21

Should one of the parent windows have less pressure than the other, the instruction

targets that window. Should either be full, the instruction will target the one that is

not full. Should neither source window present a valid target, the window with the

least pressure is targeted, irrespective of the register dependencies.

TCM operates in a similar fashion to IBCM but at the cluster level rather than

the group. Each instruction is steered to the cluster of the functional unit where

its source operand(s) is(are) produced, by indicating an instruction is steered to a

cluster, it is dispatched to an issue queue window associated with that cluster. If

the source instructions are in different clusters, the instruction may be steered to

the cluster with the least number of queued instructions. Finally, if one of the issue

windows is full, instructions are steered to the other issue window irrespective of the

register dependencies.

22

4. RESULTS

First, this chapter elaborates evaluation methodology, simulation models, and archi-

tectural enhancements to the simulation model. Second, contained herein is discus-

sion which allows the execute stage to attain clock-critical status. Third, it presents

clock-critical latencies in the execution unit. Finally, simulation results are discussed.

4.1 Evaluation Methodology

Though some of the following text may appear repetitive with the methodology

used to measure bypass fanout, there are significant differences since the purpose of

the two sets of simulations are quite different.

SimpleScalar 3.0 [4] is used to model the architectural modifications and measure

their impact on a superscalar processor using the Alpha ISA. The configuration of the

simulated processor is depicted in Table 4.1. Two slightly different configurations,

realistic and ideal, are used in the simulations. The realistic configuration has no load

speculation and has a combining branch predictor. The ideal configuration is used to

rule out the possibility that branch prediction or memory dependencies are choking

ILP (and resulting in a weakened base configuration), the ideal configuration has

perfect branch prediction and perfect load dependence prediction. With the perfect

load dependence predictor, a load is issued as soon as the last store to the same address

is ready. A store is defined as ready if its effective address has been calculated and its

operands (from which the value to be stored is calculated) are ready. It is assumed

that a load directly reads its value from the last store using the load/store queue.

Integer benchmarks of the SPEC CPU 2000 benchmark suite are used with reference

data sets for 100 million instructions [19]. The benchmarks are fast forwarded to

the most representative section using Simpoints 3.0 tool set and the early simulation

23

points for each respective benchmark [5]. Wattch [7] is used to measure energy usage

and power consumption of the processor. Single cycle issue logic is assumed to expose

more bypass network utilization. Also the register file is replaced by a banked register

file design [20]. This banked register file is implemented with two read ports, and two

write ports, as described in [20] with slight modifications. Bypasses from different

clusters are handled as bank conflicts, also the read ports are fully networked to

the functional units. Base functional unit latency is not modified, only the incurred

latency is added to the base.

Though discussion is limited to integer ALUs, bypassing from/to the two load

ports is included. For both the TCM and IBCM configurations, it is assumed that

each load port is fully connected by bypasses, and equidistant from all functional

units with a latency of 2 cycles. The integer multiplier is not included in the bypass

model as there were very few (≤0.5%) multiply instructions in the integer SPEC2000

benchmarks. The simulations model partitioned issue queues with a dependency-

based steering policy, as mentioned earlier in Section 3.2.4. There have been other

studies that examined more sophisticated instruction steering heuristics. Because

such steering policies work by minimizing the number of inter-cluster communications,

they will benefit both TCM and IBCM and are not likely to alter the results of the

simulations.

4.2 Clock Critical Latency

ITRS roadmap numbers are used to compute the delays of wires in the 50nm tech-

nology with intermediate metal layer wires [11]. Being conservative, it is assumed that

bypass wires use repeaters that are placed at register-file/ALU boundaries. This use

of repeaters reduces the delay of the bypass wires in the base-case. Since the wire de-

lays depend on lengths of wires between repeaters, register-file and ALU dimensions

obtained from the literature are scaled to 50nm technology. It is further assumed that

the EX stage delay is composed of three components: ALU delay (190 ps, obtained

24

Table 4.1
Simulation processor configuration.

Processor Configuration

Fetch, Decode, Issue, 4

Commit Width

ROB Entries 128

Issue Queue 2 window x 32 entries each (Except IBCM-IQ/2)

Load Speculation Realistic: No load speculation

Ideal: Perfect load dependence prediction

Branch Prediction Realistic: Bimodal & 2-level predictor

combined, BTB 2048, RAS 64

Ideal: Perfect prediction

Memory Hierarchy

L1 Instruction 2-cycle, 32Kb, 4-way,

and Data Cache 32-byte blocks, LRU

L2 Unified Cache 8-cycle, 1MB, 8-way,

64-byte blocks, LRU

Memory Latency 400 cycles

Memory Bus Width 16 bytes

Instruction and 64 sets, 4-way, LRU

Data TLB

from scaling previously published ALU delays [21]), bypass wire delay (as estimated

using the method described above) and clock/latch overhead (33 ps which is approx-

imately 10% of overall clock period in the TCM configuration). The ALU delay and

clock overhead remain constant across all configurations. The bypass wire delay (to-

tal clock period) for TCM is 112 ps (335 ps) and for IBCM is 72 ps (295 ps). The

clock frequency corresponding to the above delays are shown in Figure 4.1.

25

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

F
r
e
q
u
e
n
c
y

(
M
h
z
)

TCM
IBCM

Fig. 4.1. Clock speed.

26

4.3 Making Execute Clock Critical

The above analysis assumes that the EX stage alone determines the clock period

and all other stages are significantly sub-critical that they can be accomplished in the

reduced clock cycle. This is not always true, especially since it is known that issue

logic is also critical in superscalar processors.

In order to address this issue, of clock-critical stages, the following observations

are made. First, it is observed that issue logic and the EX stage are singleton pipeline

loops and thus cannot be pipelined without significant loss of performance. By virtue

of being singleton loops, these stages will fail to benefit from back-to-back issue of

dependent instructions if their logic is pipelined. The “Rename” pipeline stage is also

a singleton loop. However, it is omitted from consideration because previous studies

show that is is not clock-critical [1]. Second, all other pipeline stages can be pipelined

without significant penalty since they do not affect back-to-back issue of dependent

instructions.

From these two observations, a new configuration can be derived which has half

as many issue queue entries(IBCM-IQ/2). It is worth mentioning that the base issue

queue size for TCM was appropriately set (by scaling issue queue delays reported in

[1] to 50nm technology) to occupy approximately 335 ps which is the clock period for

the EX stage as well. By handicapping IBCM with an issue queue that is half the

size of TCM, IBCM sacrifices some ILP. However, the issue stage is now no longer

clock-critical and it can safely be assumed that the processor operates at the clock

speed determined by the EX stage. The reduction in issue queue size is explicitly

modeled. Deeper pipelining of other stages, in the processor, are not modeled as

their impact on performance is expected to be minimal.

4.4 Results

There are two primary conclusions from the simulations. First, that IBCM-IQ/2

achieves 10% performance improvement on average over the TCM configuration. The

27

 50

 60

 70

 80

 90

 100

 110

 120

bzip2

crafty

eon
gap

gcc
gzip

mcf
parser

perlbmk

twolf

vortex

vpr
Avg.

N
o
r
m
a
l
i
z
e
d

P
e
r
f
o
r
m
a
n
c
e Monolithic

TCM
IBCM
IBCM-IQ/2

Fig. 4.2. Realistic configuration performance.

13% improvement in clock speed more than compensates for the 2% reduction in

IPC due to the larger penalty for inter-cluster communication in IBCM and the

smaller issue queue. Second, IBCM is more energy efficient than TCM, especially in

the regions affected by IBCM. The overall reduction in energy per instruction (EPI)

is modest (under 1%). However, when considering the register file and ALU output

drivers alone, the reduction is significant, even when compared to a TCM with perfect

future knowledge.

This section is broken into the following sub-sections. Section 4.4.1 presents the

overall performance of IBCM. Section 4.4.2 presents the EPI measurements to support

IBCM’s claim of energy-efficiency.

4.4.1 Performance Comparison

There are two sets of graphs for performance, Figure 4.2 for the realistic con-

figuration and Figure 4.3 for the ideal configuration. Each graph plots the integer

benchmarks from the SpecCPU 2000 benchmark suite on the X-axis (with one final

additional bar showing the average across all benchmarks) and the normalized per-

formance relative to the TCM configuration on the Y-axis. Each benchmark has four

28

 50

 60

 70

 80

 90

 100

 110

 120

bzip2

crafty

eon
gap

gcc
gzip

mcf
parser

perlbmk

twolf

vortex

vpr
Avg.

N
o
r
m
a
l
i
z
e
d

P
e
r
f
o
r
m
a
n
c
e Monolithic

TCM
IBCM
IBCM-IQ/2

Fig. 4.3. Ideal configuration performance.

 80

 85

 90

 95

 100

 105

bzip2

crafty

eon
gap

gcc
gzip

mcf
parser

perlbmk

twolf

vortex

vpr
Avg.

N
o
r
m
a
l
i
z
e
d

I
P
C

P
e
r
c
e
n
t Monolithic

TCM
IBCM
IBCM-IQ/2

Fig. 4.4. Real configuration IPC.

29

 80

 85

 90

 95

 100

 105

bzip2

crafty

eon
gap

gcc
gzip

mcf
parser

perlbmk

twolf

vortex

vpr
Avg.

N
o
r
m
a
l
i
z
e
d

I
P
C

P
e
r
c
e
n
t Monolithic

TCM
IBCM
IBCM-IQ/2

Fig. 4.5. Ideal configuration IPC.

30

bars corresponding to the monolithic, TCM, IBCM and IBCM-IQ/2 configurations

respectively. The monolithic bars are presented purely for completeness. The obser-

vation of note in these graphs is that the IBCM-IQ/2 configuration out performs the

TCM configuration by 11%.

In order to elucidate the source of these performance improvements two graphs

are presented showing the IPC of the two configurations. Figure 4.4 is the IPC of the

realistic configuration and Figure 4.5 is the IPC of the ideal configuration. The graph

format is identical to the formats in Figure 4.2 and Figure 4.3, with the exception

that the Y-axis denotes normalized IPC rather than normalized performance. As is

expected, by reducing the bypasses, it is observed that going from TCM to IBCM

results in a modest IPC degradation due to inter-cluster communication latency.

IBCM-IQ/2 suffers an additional 1% IPC degradation when the issue queues are

reduced by half. However, the increase in frequency (13% as shown in Figure 4.1)

more than compensates for the IPC loss resulting in overall performance improvement,

as seen earlier. An occurrence of note, is that bzip2 achieves better performance with

a smaller issue-queue. This artifact is attributed to the way load balancing is done

in the IBCM steering logic. While dependency based steering is the norm whenever

issue queues have free slots this heuristic, the dependency rule, is violated when an

issue queue is full. That is, an instruction may be issued to one cluster even though

its source operands are computed on another cluster simply because the issue queue

of the source cluster is full. In the case of bzip2 the 32 issue queue, which is really two

partitioned issue windows of 16 entries each, resorts to such load balancing earlier

than the 64 entry issue queue. This improved load balancing causes improvement in

performance.

4.4.2 Energy Efficiency

The previous sections offered evidence that IBCM is an attractive design point

from the performance point-of-view. This section evaluates the energy efficiency of

31

IBCM. Energy-per-instruction (EPI) is used as the metric of energy efficiency as it

is independent of performance and represents the energy expended per unit of work.

The power for both TCM and IBCM designs is modeled using Wattch 1.02 [7].

The baseline Wattch models are modified to include banked register files [20] and

the altered result bus lengths (for both traditional and IBCM clustered designs). It is

of note that, TCM requires two register files with fewer read ports in each file. Recall

that the modeled TCM configuration assumes that writes are always eagerly prop-

agated to the other clusters. Because this configuration may unnecessarily expend

energy communicating values that will never be used, this configuration is referred to

as the “brute force” (TCM BF) configuration. As one might imagine, such a configu-

ration is a poorly conceived competitor as it inflates the EPI for the base case. This

bias is eliminated by evaluating another configuration, which assumes perfect future

knowledge (TCM PK) and communicates values across clusters only if those values

are needed on the other cluster. This configuration, though infeasible, sacrifices no

performance relative to the “brute force” clustering implementation. It is further

assumed that the two clusters are adjacent to each other when calculating the length

of the inter-cluster bypass bus. This assumption favors TCM since the clusters are

actually well separated in the Alpha 21264 layout [9] which would result in longer

inter-cluster buses for the TCM configuration.

The summarized EPI is plotted in two graphs, Figure 4.6 for the realistic configu-

ration and Figure 4.7 for the ideal processor configuration. Each graph contains two

sets of four bars. One set, which is labeled “affected”, plots the EPI in the regions

affected by optimizations employed in the IBCM design (i.e, register files and bypass

network result bus drivers). The second set of bars, labeled “total”, plots the EPI for

the entire processor. Within each set the four bars correspond to different configura-

tions: the perfect-knowledge (TCM PK) configuration of TCM, the brute-force (TCM

BF) configuration of TCM, IBCM configuration, and IBCM-IQ/2 configuration (issue

queue is reduced by half).

32

 0

 20

 40

 60

 80

 100

 120

affected

total

N
o
r
m
a
l
i
z
e
d

E
P
I

TCM PK
TCM BF
IBCM
IBCM-IQ/2

Fig. 4.6. Real configuration energy per instruction.

 0

 20

 40

 60

 80

 100

 120

affected

total

N
o
r
m
a
l
i
z
e
d

E
P
I

TCM PK
TCM BF
IBCM
IBCM-IQ/2

Fig. 4.7. Ideal configuration energy per instruction.

33

 0

 20

 40

 60

 80

 100

bzip2

crafty

eon
gap

gcc
gzip

mcf
parser

perlbmk

twolf

vortex

vpr
Avg.

N
o
r
m
a
l
i
z
e
d

E
P
I

TCM PK
TCM BF
IBCM
IBCM-IQ/2

Fig. 4.8. Real configuration energy per instruction across SpecCPU benchmarks.

 0

 20

 40

 60

 80

 100

bzip2

crafty

eon
gap

gcc
gzip

mcf
parser

perlbmk

twolf

vortex

vpr
Avg.

N
o
r
m
a
l
i
z
e
d

E
P
I

TCM PK
TCM BF
IBCM
IBCM-IQ/2

Fig. 4.9. Ideal configuration energy per instruction across SpecCPU benchmarks.

34

The expanded EPI is plotted in two graphs, Figure 4.8 for the realistic configu-

ration and Figure 4.9 for the ideal processor configuration. These graphs (Figure 4.8

and Figure 4.9) are of EPI measurements over the “affected” region. Each graph con-

tains thirteen sets of four bars. Each set corresponds to an integer benchmark in the

SpecCPU 200 benchmark suite. The thirteenth bar, corresponds to the average across

all twelve benchmarks. Bars inside each set correspond to different configurations:

perfect-knowledge (TCM PK) configuration of TCM, brute-force (TCM BF) config-

uration of TCM, IBCM configuration, and IBCM-IQ/2 configuration (issue queue is

reduced by half).

Two observations can be drawn from Figure 4.6 and Figure 4.7. First, the ability

to prevent unnecessary inter-cluster communication accounts for the EPI difference

(in the affected region) between TCM PK and TCM BF. Yet, IBCM configurations

are able to capture one additional advantage beyond eliminating unnecessary commu-

nication. IBCM reduces the EPI in the affected region by a significant amount. This

is attributed to shorter intra-cluster result buses and saving duplicate register writes

(albeit to a slightly smaller register file). Second, when considering the affected region

in isolation the energy savings appear significant. Conversely, when considering the

processor as a whole the energy savings appear insignificant. The trend is to consider

energy savings over the whole processor; however, considering that the register files

and ALUs (where the result-bus drivers are located) are among the “hottest” regions

in a core, energy efficiency in these regions is a particularly respectable feature of

IBCM [2].

In the expanded EPI graphs, Figure 4.8 and Figure 4.9, the effects of reduced

communication are readily visible. TCM configurations expend energy bypassing

to each functional unit in a cluster over the longer result buses; however, IBCM’s

reduced communication (fully connected ALUs are on either side of the register file)

expends less energy driving the shorter, less connected result buses. The variances in

IBCM designs are attributed to load balancing, as described in Section 3.2.4, as well

as the reduced issue queue size, which results in long dependency chains being split

35

across groups. This will raise the communication, and energy consumption of the

design. This variance in communication is readily visible in the ideal configuration

(Figure 4.9) as there is less interference with bypass fanout as described in Section 2.1

because of the ideal resource configuration (specified in Table 4.1).

36

5. SUMMARY

First, this chapter discusses related works associated with IBCM. Second, future

work on incomplete bypass-based designs is detailed. Finally, concluding remarks

and summary of the results follow.

5.1 Related Work

Ahuja et.al. [10] characterize bypass network utilization in an in-order single-

issue processor by measuring the activity on any given bypass path. This is not an

appropriate metric for dynamically scheduled superscalar processors where a given

static instruction may be issued to a different functional unit in each of its dynamic

instances. The introduced metric of bypass fanout is more appropriate and maps

directly to the length of result buses. Ahuja et.al. [10] also evaluated the performance

trade-offs of incomplete bypassing for in-order, single-issue processors. This work

focused on static techniques to transform the code in order to minimize the impact

of incomplete bypassing.

In general, register caching [22] with early writeback to the register cache is a way

to reduce the “levels” in the bypass network because the newly produced values are

preserved in register caches even though they haven’t been written back to the main

register file. The bypass network simplification that results from register caching

is orthogonal to IBCMsince focus is on incomplete bypassing within a single stage

(EX-EX).

Butts and Sohi [6] propose degree-of-use which serves many useful purposes, such

as dead instruction removal; however, the metric of bypass fanout measures a subset

of the total degree of use.

37

Park et.al. [23] have argued for reducing register port pressure by exploiting the

fact that a large number of operands are sourced from the bypass network. In the

common case, IBCM should not interfere with their technique as IBCM does not aim

to replace bypass communication with register communication. Note, bypass fanout

claims that each value is bypassed very few times; in addition, this claim does not

contradict their claim that a large number of operands are sourced from the bypass

network.

Aggarwal and Franklin examine instruction replication in hardware to minimize

the performance loss due to clustering [16]. Aleta et.al. describes a compiler tech-

nique for instruction replication to minimize inter-cluster communication in clustered

microarchitectures [17]. Similar approaches may be used in IBCM designs to replicate

instructions across clusters.

5.2 Future Work

There are a few notable branches from this project. This work focuses on bypass

wire delay and not other delay bottlenecks such as issue queues. This work may be

incorporated into research that reduces the clock criticality of other pipeline stages,

as well as the issue stage. Reducing other pipeline stages to sub-critical status, will

make IBCM designs more attractive to processor performance.

The other direction lies in the scheduling of instructions on IBCM designs. As

mentioned earlier, the body of work applicable to clustering is also applicable to

IBCM, yet there is still room for tuning these policies to IBCM designs. The body

of work on scheduling instructions shows the extent of variability programs and ap-

plications exert on processor architectures. Such heuristics as level of criticality, stall

vs. steer, etc... allow new scheduler implementation with IBCM designs at the heart

of the policy.

38

5.3 Conclusion

Single thread performance and energy efficiency remain important design goals for

processor design. Significant progress has been made since the days of the monolithic

superscalar processor design. This has been accomplished with the introduction of

clustered architectures. This work goes beyond existing clustering implementations

to propose a novel form of clustering — Incomplete Bypass-based Clustered Micro-

architectures (IBCM) — that achieves 10% better performance than traditional clus-

tered microarchitectures. The basic tradeoff of clustering is to have a slight sacrifice

of ILP for disproportionate increase in clock-speed. The IBCM implementation goes

farther along in this direction than TCMs. IBCM also has a slight sacrifice of ILP

(2% reduction in IPC) compared to a TCM, but achieves 13% faster clock speed.

Finally, IBCM offers improved energy efficiency in the register files and ALU output

drivers. The improvement is modest when considering the processor as a whole, but

their significance lies in the fact that the improvements in energy efficiency are in

the hottest parts of the processor core. Overall, a novel design is proposed, which

increases the performance while enhancing the benefits of clustered architectures.

This performance also comes without much of the overhead associated with clustered

architectures. Reducing needless communication that allows shorter wires, increases

performance, while improving energy efficiency in the execution stage of a processor

core are a boon to any design. IBCM also remains relevant as cores become simpler,

so long as they remain capable of multiple issue. As general purpose computing moves

to multicore/manycore designs, single core performance must not sustain neglect.

LIST OF REFERENCES

39

LIST OF REFERENCES

[1] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity effective superscalar
processors,” in Proceedings of the 24th Annual International Symposium on Com-
puter Architecture, pp. 206–218, June 1997.

[2] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Veusamy, and
D. Tarjan, “Temperature-aware microarchitecture: Modeling and implementa-
tion,” ACM Trans. Archit. Code Optim., vol. 1, no. 1, pp. 94–125, 2004.

[3] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Quantifying the complexity of
superscalar processors,” Tech. Rep. CSTR-96-1328, University of Wisconsin-
Madison, November 1996.

[4] D. Burger and T. Austin, “The simplescalar tool set,” tech. rep., University of
Wisconsin-Madison, 1997.

[5] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood, and B. Calder, “Us-
ing simpoint for accurate and efficient simulation,” in ACM SIGMETRICS the
International Conference on Measurement and Modeling of Computer System,
June 2003.

[6] J. A. Butts and G. S. Sohi, “Characterizing and predicting value degree of use,”
in Proceedings of the 35th annual ACM/IEEE international symposium on Mi-
croarchitecture, pp. 15–26, IEEE Computer Society Press, 2002.

[7] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” in Proceedings of the 27th
Annual International Symposium on Computer Architecture, pp. 83–94, June
2000.

[8] K. C. Yeager, “The mips r10000 superscalar microprocessor,” IEEE MICRO,
vol. 16, pp. 28–40, April 1996.

[9] R. E. Kessler, “The alpha 21264 microprocessor,” IEEE Micro, vol. 19, pp. 24–
36, Mar/Apr 1999.

[10] P. S. Ahuja, D. W. Clark, and A. Rogers, “The performance impact of incom-
plete bypassing in processor pipelines,” in Proceedings of the 28th Annual Inter-
national Symposium on Microarchitecture, pp. 36–45, IEEE Computer Society
Press, 1995.

[11] “S.i. association. international technology roadmap for semiconductors,” 2006.

[12] A. Baniasadi and A. Moshovos, “Instruction distribution heuristics for quad-
cluster, dynamically scheduled, superscalar processors,” in MICRO 33: Proceed-
ings of the 33rd annual ACM/IEEE international symposium on Microarchitec-
ture, (New York, NY, USA), pp. 337–347, ACM Press, 2000.

40

[13] E. Tune, D. Liang, D. M. Tullsen, and B. Calder, “Dynamic prediction of
critical path instructions,” in The Seventh International Symposium on High-
Performance Computer Architecture, pp. 185–195, 2001.

[14] B. Fields, S. Rubin, and R. Bodik, “Focusing processor policies via critical-
path prediction,” in ISCA ’01: Proceedings of the 28th annual International
Symposium on Computer Architecture, pp. 74–85, 2001.

[15] P. Salverda and C. Zilles, “A criticality analysis of clustering in superscalar
processors,” in MICRO 38: Proceedings of the 38th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, (Washington, DC, USA), pp. 55–66,
IEEE Computer Society, 2005.

[16] A. Aggarwal and M. Franklin, “Instruction replication: Reducing delays due to
inter-pe communication latency,” in 12th International Conference on Parallel
Architectures and Compilation Techniques (PACT’03), p. 46, 2003.

[17] A. Alet, J. M. Codina, A. Gonzlez, and D. Kaeli, “Instruction replication for
clustered microarchitectures,” in MICRO 36: Proceedings of the 36th annual
IEEE/ACM International Symposium on Microarchitecture, (Washington, DC,
USA), p. 326, IEEE Computer Society, 2003.

[18] J. Stark, M. D. Brown, and Y. N. Patt, “On pipelining dynamic instruction
scheduling logic,” in International Symposium on Microarchitecture, pp. 57–66,
2000.

[19] S. Standard Performance Evaluation Corporation, “The SPEC CPU2000 Bench-
mark Suite,” 2000.

[20] “A speculative control scheme for an energy-efficient banked register file,” IEEE
Trans. Comput., vol. 54, no. 6, pp. 741–751, 2005. Student Member-Jessica H.
Tseng and Member-Krste Asanovic.

[21] P. G. Sassone and D. S. Wills, “Multicycle broadcast bypass: Too readily over-
looked,” in WCED ISCA ’04: Proceedings of the Workshop on Complexity Ef-
fective Design, 2004.

[22] J. Butts and G. Sohi, “Use-based register caching with decoupled indexing,” in
Proceedings of the 31st annual international symposium on Computer Architec-
ture, p. 302, IEEE Computer Society, 2004.

[23] I. Park, M. Powell, and T. N. Vijaykumar, “Reducing register ports for higher
speed and lower power,” in Proceedings of the 35th Annual International Sym-
posium on Microarchitecture (MICRO), pp. 171–181, November 2002.

	Purdue University
	Purdue e-Pubs
	12-7-2007

	Intra-level Incomplete Bypassing: Achieving Performance and Power Efficiency
	Eric P. Villasenor

	Villasenor, Eric.pdf
	thesis.pdf

