A Comparison of Partial Coherence and Singular Value Partial Field Decomposition in the Context of Nearfield Acoustical Holography

J. Stuart Bolton
Purdue University, bolton@purdue.edu

Hyu-Sang Kwon

J. K. Hammond
ISVR

Follow this and additional works at: http://docs.lib.purdue.edu/herrick
A Comparison of Partial Coherence and Singular Value Partial Field Decomposition in the Context of Nearfield Acoustical Holography

Hyu-Sang Kwon and J. Stuart Bolton
(Herrick Labs., Purdue Univ.)
J. K. Hammond
(ISVR)
ACOUSTIC HOLOGRAPHIC METHOD

- What’s the Acoustic Holography

A Useful Sound Visualization Technique
- Localization of Sources
- 3D Characterization of Radiated Sound Fields

- Enhancement techniques
 - Wavenumber filtering
 - Minimum Error Windowing
- Moving frame technique
- Partial field separation
- Residual field technique
INTRODUCTION

What's the partial field?

Acoustic Holography:
Coherent field procedure
Partial field separation

finite number of
uncorrelated or
partially correlated
sources
total sound field

separation of sound
field related to each
noise source

engine noise

exhaust noise

Purdue University Herrick Laboratories
BASIC IDEAS

• How can we separate partial fields?

source 1 source 2

reference 1 reference 2

field points

– Unable to directly measure source signals
– Use of references close to sources; strong relation between each source and corresponding reference
– Partial field separation methods
 • Singular value decomposition method
 • Partial coherence method

Residual field method; modified from conventional method

Purdue University Herrick Laboratories
FUNDAMENTALS

- **Source/signal relations**
 - Source 1, S_{AA}
 - Reference 1, S_{11}
 - Source 2, S_{BB}
 - Reference 2, S_{22}
 - Field point, S_{yy}

- **Decomposition of reference signals**

- **Decomposed references**
 - SVD method
 - Partial Coh. D
 - Residual FD

- Orthogonal
 - 1st partial reference
 - 2nd partial reference

Purdue University Herrick Laboratories
2 SOURCE MODELLING

- 2 incoherent sources / 2 references

- Incoherent sources; $S_{AA} = 0$
- Transfer functions: g_{ij}, geometry relation
 - simple point source case
 $$ g_{ij} = \frac{e^{jkr_{ij}}}{r_{ij}} $$
 r_{ij}: distance between i source & j receiver
 - strong source/corresponding reference relation
 $$ g_{11}, g_{22} \gg g_{12}, g_{21}, g_{1y}, g_{2y} $$
METHODOLOGIES

- Reference spectral matrix

 \[r = G_{\text{ref}} a \]

 source amplitudes

 TF's from sources to references, geometric relations

 \[S_{\text{ref}} = E\{r^* r^T\} = G^* S_S G \]

- Partial field separation

 - Singular value decomposition method;
 - depends on the levels of sources & geometrical TFs \((g_{ij}, S_{AA}, S_{BB})\)
 - reordering, singular value swapping

 - Partial coherence method;
 - depends on the levels of sources & geometrical TFs \((g_{ij}, S_{AA}, S_{BB})\)

 - Residual field method;
 - depends only on the geometrical TF's \((g_{ij})\)
 - easily applicable to general acoustic problems, including structural acoustic problems
INCOHERENT REFS.

• 1-to-1 relation between sources & references

 source 1
 \(S_{AA} \)

 g_{11}

 reference 1

 No cross-relations
 between sources & refs.
 diagonal \(S_{\text{ref}} \)

 source 2
 \(S_{BB} \)

 g_{22}

 reference 2

 field points

 \(P_{\text{Coh}} \)
 Level
 \[S_{zz} = |g_{zz}|^2 S_{BB} \]
 \[S_{nn} = |g_{nn}|^2 S_{AA} \]

 freq.

 1st partial field

 2nd partial field

 \(S_{AA} \)

 \(S_{BB} \)

 \(g_{11} \)

 \(g_{22} \)

 \(g_{1y} \)

 \(g_{2y} \)

 \(\lambda_1 = |g_{zz}|^2 S_{BB} \)

 \(\lambda_2 = |g_{nn}|^2 S_{AA} \)

 \(\lambda_3 = |g_{zz}|^2 S_{BB} \)

 freq.

 1st partial field

 2nd partial field

Purdue University Herrick Laboratories
Simulation parameters

- N = 512
- Δf = 8 Hz
- $N_{avg} = 250$

Power spectra of Source 1 & 2

Coherence between Source 1 & 2

Power spectra of Reference 1 & 2

Coherence between Reference 1 & 2

19 field points

Purdue University
Herrick Laboratories
SIMULATION

- Estimation of source strengths

- Comparison of separated partial fields
CONCLUSION

- Partial field separation methods
 - Use of as many references as sources, and place them close to incoherent sources
 - SVD, Partial coherence techniques
 • depend on source levels as well as geometries of sources & refs.
 • reordering of references & partial fields
 - A useful alternative: *Residual Field Technique*
 • modified from partial coherence technique
 • depends only on the geometries of source & refs.
 • simple extraction of partial field related to each reference

- Applicable to the structural acoustic problems
APPENDIX

• In case of 1-to-1 measurement

\[
S_{\text{ref}} = \begin{bmatrix}
|g_{11}|^2 S_{AA} & 0 \\
0 & |g_{22}|^2 S_{BB}
\end{bmatrix}
\]

\[
S_{11} = |g_{11}|^2 S_{AA}, S_{22} = |g_{22}|^2 S_{BB}
\]

\[
H_{1y} = \frac{g_{1y}}{g_{11}}, H_{2y} = \frac{g_{2y}}{g_{22}}
\]

\[
\lambda_1 = \max\{|g_{11}|^2 S_{AA}, |g_{22}|^2 S_{BB}\}, \quad H_{1y} = \frac{g_{1y}}{g_{11}}, H_{2y} = \frac{g_{2y}}{g_{22}} \quad \text{if} \quad |g_{11}|^2 S_{AA} > |g_{22}|^2 S_{BB}
\]

\[
\lambda_2 = \min\{|g_{11}|^2 S_{AA}, |g_{22}|^2 S_{BB}\}, \quad H_{1y} = \frac{g_{2y}}{g_{22}}, H_{2y} = \frac{g_{1y}}{g_{11}} \quad \text{if} \quad |g_{11}|^2 S_{AA} < |g_{22}|^2 S_{BB}
\]

• Cross-relations between sources/references

\[
|g_{11}|^2 S_{AA}, |g_{22}|^2 S_{BB} \gg |g_{12}|^2 S_{AA}, |g_{21}|^2 S_{BB} \quad S_{AA} \approx S_{BB} \quad \text{source level relation}
\]

\[
g_{11}, g_{22} \gg g_{12}, g_{21}, g_{1y}, g_{2y} \quad \text{geometric relation}
\]