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A Comparison of Nodal- and Mesh-Based
Magnetic Equivalent Circuit Models

Hamza W. Derbas, Member, IEEE, Joshua M. Williams, Member, IEEE,
Andreas C. Koenig, Member, IEEE, and Steven D. Pekarek, Member, IEEE

Abstract—The magnetic equivalent circuit (MEC) technique is a
powerful analysis and design tool that combines relative accuracy
with moderate computational effort. In this paper, a nodal-based
MEC formulation and a mesh-based MEC formulation of a mag-
netic system are compared. The Newton–Raphson algorithm is
used to solve the algebraic system, and to draw conclusions about
the computational efficiency of the two formulations under linear
and nonlinear operation. Although the two formulations exhibit
similar performance under linear operating conditions, the per-
formance of the mesh-based model is significantly better than that
of the nodal-based model under nonlinear operation.

Index Terms—Magnetic equivalent circuit (MEC), permeance,
reluctance.

I. INTRODUCTION

MAGNETIC equivalent circuits (MECs) have been used
for decades as a tool for machine analysis. Advances in

computing performance have motivated a slight change in focus
of MEC modeling efforts. Specifically, original papers on the
technique [1]–[5] focused mainly on the analysis of saturated
machine behavior. More recently, researchers have focused on
its use in the design of electric machines [6]–[9]. For example,
in [10], an MEC-based design program for inductors is described
in which the researchers utilize evolutionary programming tech-
niques to select 12 geometric properties of the device. A similar
technique was used for induction machine design [5], [6], and
wound-rotor synchronous machines [7], [8].

Increased interest in MEC as a tool for design, wherein poten-
tially millions of model evaluations are performed as part of the
design process [10], necessitates the investigation of the numer-
ical efficiency of alternative MEC model formulations. Indeed,
over the past decades, there has been considerable research on
alternative model structures and solution techniques [11]. The
most common formulation is one in which Kirchhoff’s cur-
rent law is used to establish a system of nodal equations. In
such a formulation, the algebraic system is constructed using
magnetic permeance to relate node potential to tube flux. Once
constructed, the nonlinear algebraic system of equations has
been solved using Gauss–Seidel, Newton–Raphson, or modi-
fied Newton–Raphson algorithms.
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An alternative model formulation is one in which Kirchhoff’s
voltage law is applied to establish a system of mesh equations
wherein tube flux represents the unknowns [12]. In such a for-
mulation, the algebraic system is constructed using magnetic
reluctance to relate tube flux to node MMF. Traditionally, such
a formulation has received relatively minor attention. One ex-
ception is [12], [13] where a mesh analysis is used for the model
derivation of a field-regulated reluctance machine.

One can argue that the mesh and nodal forms are identical.
For a linear magnetic system in which saturation is neglected,
such an argument is valid. However, herein it is shown that
when saturation is included, a mesh formulation can yield a
model that is much more efficient numerically. Specifically, it
is shown that the number of iterations needed for the Newton–
Raphson algorithm to converge for the mesh-based model is an
order of magnitude lower than that of the nodal-based model.
The difference in the number of iterations is largely due to the
condition number of the Jacobian matrix, which is much smaller
in the mesh formulation. Interestingly, it is also observed that
in the case of the nodal formulation, an exact evaluation of the
Jacobian leads to a highly ill-conditioned system.

Prior to establishing and comparing the respective formula-
tions, it is necessary to review research that has focused on the
numerical aspects of MEC formulations. There has been consid-
erable effort focused on modeling the B–H curves of magnetic
material to ensure numerical stability of the respective nonlin-
ear solution procedures [11]. Further, in [14], a state model
formulation of a saturated machine was proposed in lieu of an
algebraic model. If a state model formulation is used, iterative
evaluation of a system of nonlinear equations is avoided, pro-
vided that the integration algorithm applied is explicit. Although
the state model formulation can be advantageous, the majority
of researchers continue to use an algebraic formulation. In addi-
tion, scaling of variables has been considered to prevent a subset
of variables from dominating the solution effort [15]. There has
also been a focus on structuring the respective MEC formu-
lations for compatibility with the respective solution technique
(Gauss–Seidel, Newton–Raphson, etc.). Finally, as MEC is anal-
ogous to electric circuit elements, it is recognized that mesh
formulations have been considered for electric circuits [16].
However, the advantage of mesh formulations, and particularly
for nonlinear circuits, has not been previously detailed.

II. PROBLEM FORMULATION

The result that nodal- and mesh-based MEC models have dif-
ferent numerical properties was first witnessed by the authors
in establishing an MEC-based design program for claw-pole

0885-8969/$25.00 © 2009 IEEE
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Fig. 1. Two-dimensional magnetic system.

alternators used in automotive applications. The claw-pole ma-
chine has a relatively complicated magnetic structure that must
be modeled in three dimensions [17]. To simplify the analysis
when exploring the difference between model formulations, a
simplified magnetic structure was derived. Fig. 1 shows the mag-
netic system that provides the basis for derivations and compar-
isons presented herein. The geometry includes two trapezoidal
core sections that are representative of the rotor structure used
in claw-pole machines. Magnetic excitation is provided by two
permanent magnets, located at the base of each claw. An interior
core (representative of a stator) and air gap sections separate the
two claws. Using this arrangement, flux travels from a claw, into
the air gap, across the stator, and into the opposing claw.

A. Nodal-based MEC Model

Fig. 2 depicts the MEC that is used to represent the two-
dimensional magnetic system for the respective sections (claws,
air gap, and stator). Single permeance elements are used to rep-
resent the stator iron and permanent magnets. To model the spa-
tial distribution of air gap flux, the claws are sectioned, creating
a distributed permeance network. To accommodate the claw
discretization, the air gap has also been divided into sections,
wherein one air gap section is attached to each claw section.
Additionally, the claw sections and air gap sections are sym-
metric about the stator permeance. Specifically, corresponding
sections in opposing claws have the same permeance value and
relative permeability.

Fig. 2. Nodal-based MEC.

The Appendix provides derivations of the expressions for
the different permeance elements, namely, permanent magnet
permeance, claw section permeance, air gap permeance, and
stator permeance.

To model the permeance network in Fig. 2, Kirchhoff’s cur-
rent law is applied at each node to create a system of nonlin-
ear algebraic equations. In this system of equations, permanent
magnet flux represents input, while nodal magnetic potentials
represent outputs. Since the permanent magnets are placed at
the base of the claws, only nodes um1 and um2 have nonzero
injected flux values. For the three claw section MEC, the system
has the following form:

AP u = ϕ (1)

where

AP =
[

AP 1 AP 2
AP 3 AP 4

]
. (2)

AP 1 is given by (3), shown at the bottom of this page, and

AP 2 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−Ps 0 0 0 0


 (4)

AP 3 =




0 0 0 0 −Ps

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 . (5)

AP 4 is given by (6), shown at the bottom of the next page, and

u = [um1 uc11 uc12 uc13 us1 us2 uc23

uc22 uc21 um2 ]T (7)

ϕ = [Fm Pm 0 0 0 0 0 0 0 0 −Fm Pm ]T (8)

Fm = Hctmag . (9)

AP 1 =




Pm + Pc1 −Pc1 0 0 0

−Pc1 Pag + Pc1 + Pc2 −Pc2 0 −Pag

0 −Pc2 Pag + Pc2 + Pc3 −Pc3 −Pag

0 0 −Pc3 Pag + Pc3 −Pag

0 −Pag −Pag −Pag 3Pag + Ps




(3)
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Fig. 3. Mesh-based MEC.

In (1)–(9), the variable P denotes permeance, u node poten-
tial (MMF), and ϕ flux. Furthermore, Hc and tmag represent,
respectively, the coercivity and thickness of the permanent mag-
nets. It is noted here that the matrix AP is a function of branch
flux since it is composed of permeance elements that are depen-
dent on branch flux.

B. Mesh-based MEC Model

The second formulation is an alternative to the previous nodal
formulation. The MEC of the two-dimensional magnetic sys-
tem can be represented using a reluctance network [12], [13], as
shown in Fig. 3. The reluctance network maintains the same
topology as the permeance network, and the claws are dis-
cretized in the same manner.

Derivations of the expressions for the different reluctance
elements are provided in the Appendix.

By applying Kirchhoff’s voltage law to each of the defined
loops, a system of nonlinear algebraic equations can be devel-
oped for the reluctance network in Fig. 3. In this system of
equations, loop voltages are inputs, while mesh currents are
outputs. Again, since the permanent magnets are placed at the
base of the claws, only the mesh with current Φm has nonzero
loop voltage. For the three claw section MEC, the system has
the following form:

ARϕ = F (10)

where AR is given by (11), shown at the bottom of this page

RM = 2Rm + 2Rag + Rs + Rc11 + Rc12

+ Rc13 + Rc21 + Rc22 + Rc23 (12)

Fig. 4. B–H curve data points for magnetic material.

ϕ = [φm φc11 φc12 φc22 φc21 ]T (13)

F = [ 2Fm 0 0 0 0 ]T (14)

Fm = Hctmag . (15)

In (10)–(14), R is used to represent reluctance. It is noted
here that the matrix AR is also a function of branch flux since
it is composed of reluctance elements that are dependent on
branch flux. Furthermore, Hc and tmag represent, respectively,
the coercivity and thickness of the permanent magnets.

C. B–H Model

For both formulations, a set of data points was used to de-
rive the B–H curve for the iron material (stator and claws).
This curve was then used to construct the µ–B curve through a
piecewise combination of a linear function, a quadratic spline,
and a unity constant. Figs. 4 and 5 depict the B–H curve and
µ–B curve, respectively.

AP 4 =




3Pag + Ps −Pag −Pag −Pag 0

−Pag Pag + Pc3 −Pc3 0 0

−Pag −Pc3 Pag + Pc2 + Pc3 −Pc2 0

−Pag 0 −Pc2 Pag + Pc1 + Pc2 −Pc1

0 0 0 −Pc1 Pm + Pc1




(6)

AR =




RM −Rc12 −Rc13 − Rag Rc23 + Rag Rc22

−Rc12 Rc12 + 2Rag −Rag 0 0

−Rc13 − Rag −Rag Rc13 + 2Rag 0 0

Rc23 + Rag 0 0 Rc23 + 2Rag −Rag

Rc22 0 0 −Rag Rc22 + 2Rag




(11)
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Fig. 5. µ–B curve for magnetic material.

III. ANALYTICAL SOLUTION OF MEC SYSTEMS

Several numerical methods can be used to solve systems
of nonlinear equations. Due to its numerical stability and
convergence properties, the Newton–Raphson method was
elected to be used for both the nodal- and mesh-based
formulations.

A. Solution of the Nodal-based MEC System

The system of equations in (1) is rearranged to be in the form:

f (u) = AP u − ϕ = 0. (16)

To illustrate this rearrangement, the first equation in this set
is presented

f1 (u) = (Pm + Pc1) um1 − Pc1uc11 − Fm Pm = 0. (17)

In this equation, Pc1 is the only flux dependent permeance.
This dependency lies in the value of relative permeability, which
is obtained from the B–H curve, and is updated every iteration.
The flux through this permeance element is:

Φc1 = Pc1 (um1 − uc11) (18)

and the corresponding flux density in this permeance element
is:

Bc1 =
Φc1

Ac1
(19)

where Ac1 represents the cross-sectional area for the flux tube
of the respective claw section. In the claw-pole machine, the
claw sections do not have constant cross-sectional area. Thus,
this area is “chosen” by the system analyst. In this research,
the area two-thirds from the longer side of each claw section
was selected. This selection has yielded reasonable results as
compared to finite-element (FE) based models [18].

Next, the Jacobian matrix J is constructed. Again, to illustrate,
the first entry of the matrix J is presented

J11 =
∂f1

∂um1
= (Pm + Pc1) +

∂Pc1

∂um1
(um1 − uc11) . (20)

The first term in J11 is clearly the first entry of AP . Applying
the chain rule to resolve the second term in J11 , the following
expression is obtained:

∂Pc1

∂um1
=

∂Pc1

∂µrc1

∂µrc1

∂Bc1

∂Bc1

∂Φc1

∂Φc1

∂um1
. (21)

Referring to the permeance expression in (62) (see
Appendix), the first term in the previous equation becomes:

∂Pc1

∂µrc1
=

µ0N (l1 − l2)
lclaw ln (l1/l2)

=
Pc1

µrc1
. (22)

This term will be denoted by α. The second term, denoted by
β, is obtained from the B–H curve. The third term, denoted by
γ, is simply:

∂Bc1

∂Φc1
=

1
Ac1

. (23)

At first glance, the final term seems to suggest that
∂Pc1/∂um1 cannot be resolved into a closed form since:

∂Φc1

∂um1
=

∂Pc1

∂um1
(um1 − uc11) + Pc1 . (24)

However, by substituting (24) into (21), arranging terms such
that ∂Pc1/∂um1 is on the left-hand side and all other terms are
on the right-hand side, then dividing through, one can solve for
∂Pc1/∂um1 to obtain the following:

∂Pc1

∂um1
=

αβγPc1

1 − αβγ (um1 − uc11)
. (25)

This process can be repeated for all the partial derivative terms
in the entries of J .

B. Solution of the Mesh-based MEC System

In a similar manner to the nodal-based system, the system of
equations in (10) is rearranged to be in the form:

g (ϕ) = ARϕ − F = 0. (26)

To illustrate this rearrangement, the first equation in this set
is presented

g1 (ϕ) = RM φm − Rc12φc11 − (Rc13 + Rag) φc12

+ (Rc23 + Rag) φc22 + Rc22φc21 − 2Fm = 0 (27)

RM = 2Rm + 2Rag + Rs + Rc11 + Rc12 + Rc13

+ Rc21 + Rc22 + Rc23 . (28)

In this equation, Rc11 , Rc12 , Rc13 , Rc21 , Rc22 , and Rc23 are
flux dependent reluctances. The flux in these elements is:

Φc11 = φm

Φc12 = φc11 − φm

Φc13 = φc12 − φm

Φc21 = φm

Φc22 = φc21 + φm

Φc23 = φc22 + φm . (29)
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Next, the Jacobian matrix J is constructed. The first entry of
this matrix is:

J11 = RM +
∂RM

∂φm
φm − ∂Rc12

∂φm
φc11 +

∂Rc13

∂φm
φc12

+
∂Rc23

∂φm
φc22 +

∂Rc22

∂φm
φc21

= RM +
∂Rc11

∂φm
φm +

∂Rc21

∂φm
φm +

∂Rc12

∂φm
(φm − φc11)

+
∂Rc22

∂φm
(φm + φc21)

+
∂Rc13

∂φm
(φm − φc12) +

∂Rc23

∂φm
(φm + φc22) . (30)

The first term of this entry is exactly the first entry of the
matrix AR . All the other terms are produced by the flux depen-
dent reluctances. All these partial derivative terms need to be
resolved as follows:

∂Rc12

∂φm
=

∂Rc12

∂µrc12

∂µrc12

∂Bc12

∂Bc12

∂Φc12

∂Φc12

∂φm
. (31)

Referring to (19), (29), and (61), the following expressions
are obtained:

Rc12 =
lclaw

µ0µrc12N (l1 − l2)
ln

(
l1
l2

)
(32)

Φc12 = φc11 − φm (33)

Bc12 =
Φc12

Ac12
(34)

where Ac12 is the cross-sectional area for that claw section.
Furthermore

∂Rc12

∂µrc12
= − 1

µrc12
Rc12 (35)

∂Bc12

∂Φc12
=

1
Ac12

(36)

∂Φc12

∂φm
= −1. (37)

Therefore

∂Rc12

∂φm
=

Rc12

µrc12Ac12

∂µrc12

∂Bc12
. (38)

The term ∂µrc12/∂Bc12 is obtained from the B–H curve;
hence, these results allow one to analytically compute the
Jacobian matrix with relative ease, which was not possible with
the nodal-based model. The Jacobian matrix J for the system
has the following form:

J = AR + pAR (39)

where pAR is the matrix containing all the resolved partial
derivative terms. Considering three claw sections, this matrix

has the following entries:

pAR =




pA11 pA12 pA13 pA14 pA15

pA21 pA22 0 0 0

pA31 0 pA33 0 0

pA41 0 0 pA44 0

pA51 0 0 0 pA55




(40)

pA11 =
∂Rc11

∂φm
φm +

∂Rc21

∂φm
φm +

∂Rc12

∂φm
(φm − φc11)

+
∂Rc22

∂φm
(φm + φc21) +

∂Rc13

∂φm
(φm − φc12)

+
∂Rc23

∂φm
(φm + φc22) (41)

pA12 =
∂Rc12

∂φc11
(φm − φc11) (42)

pA13 =
∂Rc13

∂φc12
(φm − φc12) (43)

pA14 =
∂Rc23

∂φc22
(φm + φc22) (44)

pA15 =
∂Rc22

∂φc21
(φm + φc21) (45)

pA21 =
∂Rc12

∂φm
(−φm + φc11) (46)

pA22 =
∂Rc12

∂φc11
(−φm + φc11) (47)

pA31 =
∂Rc13

∂φm
(−φm + φc12) (48)

pA33 =
∂Rc13

∂φc12
(−φm + φc12) (49)

pA41 =
∂Rc23

∂φm
(φm + φc22) (50)

pA44 =
∂Rc23

∂φc22
(φm + φc22) (51)

pA51 =
∂Rc22

∂φm
(φm + φc21) (52)

pA55 =
∂Rc22

∂φc21
(φm + φc21) . (53)

This completes all the preliminaries for implementing the
Newton–Raphson iterative method.

IV. MODELING RESULTS

Studies were performed to evaluate the convergence rate and
air gap flux density results for both circuit formulations. The co-
ercivity of the permanent magnets was varied to mimic different
flux values in the nonlinear magnetic region.

For the nodal-based network, two different approaches were
used to simulate the system. The first was based on the an-
alytically obtained Jacobian, using expressions shown in (20)
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Fig. 6. Air gap flux density for a coercivity of 105 A/m.

TABLE I
CONVERGENCE DATA FOR Hc = 105 A/m

and (25). Through evaluation, it was found that the analytically
obtained Jacobian yielded convergence issues, and so, an alter-
native approximation J = AP was also applied. In the mesh-
based formulation, the analytically obtained Jacobian was used
for all studies.

Fig. 6 depicts the air gap flux density curves for a
case in which the permanent magnet coercivity was set to
105 A/m. Thirty sections were used to model the flux distri-
bution in the rotor claw. A tolerance constraint of 10−6 was
used as a basis for convergence. The results were obtained from
the approximate and analytically obtained Jacobian approaches
for the nodal-based MEC model, as well as the analytically ob-
tained Jacobian approach for the mesh-based MEC model. As
seen in Fig. 6, all three approaches produce the same result.

Table I presents the convergence data for the different
approaches.

Fig. 7 depicts the air gap flux density curves for a case in which
the permanent magnet coercivity was increased to 8 × 105 A/m.
For this case, the nodal model that uses an analytically obtained
Jacobian fails to converge to a reasonable solution. The remain-
ing two MEC implementations converge to the same solution
which is plotted in Fig. 7.

Table II presents the convergence/termination data for the
different approaches.

Fig. 8 depicts the air gap flux density curves for a case
in which the permanent magnet coercivity was increased to
16 × 105 A/m. As in the previous study, the nodal-based model
that utilizes an analytic Jacobian fails to converge to a reason-
able solution. As shown in Fig. 8, the remaining two MEC
implementations converge to the same solution.

Furthermore, Fig. 9 depicts the flux density curves along
the claw for both MEC implementations. Again, both imple-

Fig. 7. Air gap flux density for a coercivity of 8 × 105 A/m.

TABLE II
CONVERGENCE DATA FOR Hc = 8 × 105 A/m

Fig. 8. Air gap flux density for a coercivity of 16 × 105 A/m.

mentations converge to the same solution. The high levels of
flux density verify that the system is operating under nonlinear/
saturation conditions.

Table III presents the convergence/termination data for the
different approaches.

Operating further into saturation yields an increasing differ-
ence between the nodal and mesh model iteration numbers.
Indeed, Table IV illustrates the convergence data for a case in
which the coercivity is increased to 18 × 105 A/m.

V. INTERPRETATION OF RESULTS

The results in the previous section clearly show that there is a
significant advantage to using the mesh-based model. Interpret-
ing this result requires investigating the solution methodology,
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Fig. 9. Claw flux density for a coercivity of 16 × 105 A/m.

TABLE III
CONVERGENCE DATA FOR Hc = 16 × 105 A/m

TABLE IV
CONVERGENCE DATA FOR Hc = 18 × 105 A/m

TABLE V
CONDITION NUMBERS FOR THE MEC IMPLEMENTATIONS

namely, the Newton–Raphson method. For a single variable, the
Newton–Raphson method takes on the following form:

xn+1 = xn − f (xn )
f ′ (xn )

. (54)

For values of f ′(xn ) close to zero, the method fails to con-
verge. For multiple variables, the method has the following
form:

xn+1 = xn − [J (xn)]−1 f (xn) . (55)

For ill-conditioned Jacobian matrices J(xn), the method fails
to converge [19]. Table V shows general trends for the condi-
tion numbers of the Jacobian matrices for the three different
implementations.

The information in the table verifies the results obtained in
the previous section. It is clear that the mesh-based approach is
the most favorable, as condition numbers are relatively small as
compared to the other approaches, leading to significantly faster
convergence rates.

Fig. 10. Components of the magnetic system.

Fig. 11. Single claw section.

In an attempt to overcome the problem of ill-conditioned
Jacobian matrices, scaling of the vector variable u in (1) was
investigated. The ill conditioning is caused by the value of the
air gap permeance Pag , which is 3 orders of magnitude smaller
than the other permeances. The term Pag appears in a number of
symmetric nondiagonal entries of the matrix AP . This renders
scaling useless, as scaling one variable that multiplies Pag re-
quires scaling other permeance terms in AP , eventually leading
to another ill-conditioned matrix.

VI. CONCLUSION

In this paper, two MEC formulations of a magnetic system
representative of a claw-pole structure are considered. For both
formulations, the Jacobian of the algebraic system was analyti-
cally obtained for use in the Newton–Raphson algorithm. Under
linear operating conditions, both formulations have similar per-
formance; however, under nonlinear operating conditions, the
computational performance of the mesh-based MEC model far
exceeds that of the nodal-based MEC model. The difference in
performance is due to the difference in the condition number of
the Jacobian matrices of the respective models.
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APPENDIX

Figure 10 depicts the shapes of all the components of the mag-
netic system. It is noted that in flattening the three-dimensional
model, unity thickness is assumed for all components.

For the permanent magnet, the cross-sectional area is fixed;
hence,

Pm =
µ0µrmag lmag

tmag
(56)

Rm =
tmag

µ0µrmag lmag
(57)

where µmag is the relative permeability of the permanent
magnet.

Next, each claw is divided into N sections. Since claw cross-
sectional area is position dependent, it is convenient to first
determine the reluctance of a claw section.

For claw section i depicted in Fig. 11, the expression for
length (and hence area) as a function of position is:

l (z) =
N (l2 − l1)

lclaw
z + l1 . (58)

The differential form of reluctance thus becomes:

dRci =
dz

µ0µrci [(N (l2 − l1) /lclaw ) z + l1 ]
(59)

which implies that

Rci =
∫

dRci =
∫ l2

l1

dz

µ0µrci [(N (l2 − l1) /lclaw ) z + l1 ]
.

(60)
Therefore

Rci =
lclaw

µ0µrciN (l1 − l2)
ln

(
l1
l2

)
(61)

Pci =
µ0µrciN (l1 − l2)

lclaw ln (l1/l2)
(62)

where µrci is the relative permeability of claw section i.
The remaining two components have constant cross-sectional

areas. The air gaps are discretized in the same manner as the
claws and hence:

Pag =
µ0 lclaw

Nlgap
(63)

Rag =
Nlgap

µ0 lclaw
. (64)

The stator permeance and reluctance can be expressed as
follows:

Ps =
µ0µslclaw

lstat
(65)

Rs =
lstat

µ0µslclaw
(66)

where µs is the relative permeability of the stator.
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