Plane Wave Reflection Coefficient Estimation by Use of Spatial Parametric Signal Modeling

J. Stuart Bolton
Purdue University, bolton@purdue.edu

Hyu-Sang Kwon

Follow this and additional works at: http://docs.lib.purdue.edu/herrick
Plane Wave Reflection Coefficient Estimation
By Use Of Spatial Parametric Signal Modeling

Hyu-Sang Kwon and J. Stuart Bolton
(Herrick Labs., Purdue Univ.)
INTRODUCTION

- How can we measure the reflection coefficient?
 - Plane wave
 - Axisymmetric source
 - Incoming and outgoing wave decomposition by two microphones
 - Plane wave decomposition by linear microphone array
 - Two plane linear microphone array
 - Reflection coefficient measurement w.r.t incident angle by wave decomposition theory
WAVE NUMBER SPECTRUM

- Plane wave decomposition theory

Spatial Fourier transform

P(x,y,z)

wave number domain

wave number domain

radiation circle

P(x,y,z)

space domain

P(x,y,z)

P(x,y,z)

P(x,y,z)

k_x

k_y

k_z

k_x

k_y

k_z

P(x,y,z)

k_x

k_y

k_z

k_x

k_y

k_z

P(x,y,z)

k_x

k_y

k_z

wave number domain

Radiation circle

P(x,y,z)

k_x

k_y

k_z

wave number domain

P(x,y,z)
ZEROTH ORDER HANKEL TRANSFORM

- An alternative of Fourier transform
 - Axisymmetric field
 - Corresponds to 2dim. spatial Fourier transform

Non-axisymmetric field

2 dimensional spatial Fourier transform

Axisymmetric field

Space domain: \(r \) dependent

Wave number domain: \(k_r \) dependent

Non-axisymmetric wave number spectrum
Reflection Coefficient

Procedure
- $P_1(r) \rightarrow \text{Hankel TF} \rightarrow \tilde{P}_1(k_r)$
- $P_2(r) \rightarrow \text{Hankel TF} \rightarrow \tilde{P}_2(k_r)$

- Measured pressures
- Wavenumber spectra

- Wave decomposition
 - $\frac{\tilde{P}_{\text{incident}}(k_r)}{\tilde{P}_{\text{reflect}}(k_r)} = R(\theta)$

Zeroth order Hankel transform
- Definition: $\tilde{X}(k_r) = \int_0^\infty rX(r)J_0(k_r r)dr$
- Wave number and angle relation
 $$k_r = \sqrt{k_x^2 + k_y^2} \quad \theta = \cos^{-1}\left(\frac{\sqrt{k_x^2 - k_r^2}}{k}\right)$$
PRONY APPROACH

- **Finite measurement aperture**
 - Finite size of anechoic room & material
 - Finite number of measuring microphones

- **DHT (Discrete Hankel Transform)**
 - Leakage & poor spectral resolution
 - Less information

 \[
 \frac{\Delta k}{k} = \frac{\lambda}{N\Delta r}
 \]

- **Parametric spectral estimation**
 - Prony model: damped harmonic signal
 - High resolution of reflection coefficient
 - Less measurement positions
 - Model order selection: by using input white noise variance
 \[
 X(z) = H(z)U(z), \quad \rho_w = P_{uu}(z)
 \]

Ref.: Akaike Information Criterion, etc.
Simulation setup

- Monopole or dipole

 - 0.15m
 - 0.05m
 - 0.07m
 - 0.05m
 - 0.005m
 - 0.05m

- Rigid wall, R=1 or No wall, R=0
 - Monopole, dipole simulation
 - No wall, rigid wall simulation

- Frequency=343Hz
- Wavelength=1m
- No. of data=50 per line

Reflection coefficients calculation
- Discrete Hankel Transform
- Prony spectral estimation
MONOPOLE CASE

Model order, N=5
No. of poles=6

Model order, N=5
No. of poles=6

Monopole without reflecting wall
Monopole with rigid reflecting wall

Purdue University Herrick Laboratories
DIPOLE CASE

Model order, N=6
No. of poles=7

Dipole without reflecting wall

Model order, N=6
No. of poles=7

Dipole with rigid reflecting wall

Prony approach
DHT approach

Purdue University
Herrick Laboratories
EXPERIMENT

- **Experimental setup**

 Axisymmetric source

 Unbaffled Loudspeaker

 ![Diagram of experimental setup]

 21 frequencies (1953Hz-4004Hz)
 No. of data=120 per line
 In a semi-anechoic room

 Reflecting surface, carpet

 - Reflection coefficient calculation
 - Discrete Hankel transform approach
 - Prony spectral estimation approach

Purdue University
Herrick Laboratories
EXPERIMENTAL RESULTS

Model order, N=18
No. of poles=19

Model order, N=11
No. of poles=12

Frequency=1953Hz, N=120

Frequency=1953Hz, N=50

Purdue University Herrick Laboratories
EXPERIMENTAL RESULTS

Model order, N=14
No. of poles=15

Model order, N=11
No. of poles=12

Frequency=2832Hz, N=120

Frequency=2832Hz, N=50
CONCLUSIONS

- Reflection coefficient measurement
 - Wave decomposition theory
 - 2 line microphone array

- Prony approach
 - Higher spectral resolution than discrete Hankel transform approach
 - Effective with less measurement points
 - Less leakage due to finite aperture

- Simulation & Experiment
APPENDIX

- **Prony model**

\[P(r) = \sum_{n=1}^{N} A_n e^{-\alpha_n r} \quad P(i) = \sum_{n=1}^{N} B_n Z_n^i \quad r = \delta \Delta r, (1+\delta) \Delta r, (2+\delta) \Delta r, \ldots \]

\[\alpha_n = -\frac{\log Z_n}{\Delta r}, \quad A_n = B_n e^{\alpha_n \delta \Delta r}, \quad |Z_n| < 1 \]

\[\tilde{P}(k_r) = \int_0^\infty rP(r)J_0(k_r r)dr \]

\[= \sum_{n=1}^{N} A_n \int_0^\infty re^{-\alpha_n r} J_0(k_r r)dr \]

\[= \sum_{n=1}^{N} \frac{A_n \alpha_n}{(\alpha_n^2 + k_r^2)^{3/2}} \]

Prony method:
Calculate \(A_n, \alpha_n \) by use of 2N or more data

Reflection coefficient

\[R(k_z) = -\frac{\tilde{P}_1 e^{-j k_z z_2} + \tilde{P}_2 e^{-j k_z z_1}}{\tilde{P}_1 e^{j k_z z_2} - \tilde{P}_2 e^{j k_z z_1}} \]