12-1-1997

Plane Wave Reflection Coefficient Estimation by Use of Spatial Parametric Signal Modeling

J. Stuart Bolton
Purdue University, bolton@purdue.edu

Hyu-Sang Kwon

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

http://docs.lib.purdue.edu/herrick/21

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Plane Wave Reflection Coefficient Estimation
By Use Of Spatial Parametric Signal Modeling

Hyu-Sang Kwon and J. Stuart Bolton
(Herrick Labs., Purdue Univ.)
INTRODUCTION

How can we measure the reflection coefficient?

- Plane wave
 - Incoming and outgoing wave decomposition by two microphones
 - Plane wave decomposition by linear microphone array
- Axisymmetric source
 - Reflection coefficient measurement w.r.t incident angle by wave decomposition theory
WAVE NUMBER SPECTRUM

- Plane wave decomposition theory

Spatial Fourier transform

P(x,y,z)

P(x,y,z)

P(x,y,z)

P(x,y,z)

P(x,y,z)

space domain

wave number domain

wave number domain

radiation circle

k_x

k_y

k_z

k_x

k_x

k_x

k_x

k_x

k_x
ZEROTH ORDER HANKEL TRANSFORM

- An alternative of Fourier transform
 - Axisymmetric field
 - Corresponds to 2dim. spatial Fourier transform

Non-axisymmetric field

Non-axisymmetric wave number spectrum

2 dimensional spatial Fourier transform

Axisymmetric field

Axisymmetric wave number spectrum

space domain

wave number domain

r dependent

k_r dependent

Purdue University Herrick Laboratories
Reflection Coefficient

Procedure

- \(P_1(r) \) \(\rightarrow \) Hankel TF \(\rightarrow \tilde{P}_1(k_r) \)
- \(P_2(r) \) \(\rightarrow \) Hankel TF \(\rightarrow \tilde{P}_2(k_r) \)

Wave decomposition

- \(\tilde{P}_{\text{incident}}(k_r) \)
- \(\tilde{P}_{\text{reflect}}(k_r) \)
- \(R(\theta) \)

Zeroth order Hankel transform

- **Definition:**
 \[
 \tilde{X}(k_r) = \int_0^\infty rX(r)J_0(k_r r)dr
 \]
- **Wave number and angle relation**
 \[
 k_r = \sqrt{k_x^2 + k_y^2} \\
 \theta = \cos^{-1}\left(\frac{\sqrt{k^2 - k_r^2}}{k}\right)
 \]
PRONY APPROACH

- **Finite measurement aperture**
 - Finite size of anechoic room & material
 - Finite number of measuring microphones

- **DHT (Discrete Hankel Transform)**
 - Leakage & poor spectral resolution
 - Less information

- **Parametric spectral estimation**
 - Prony model: damped harmonic signal
 - High resolution of reflection coefficient
 - Less measurement positions
 - Model order selection: by using input white noise variance

\[
\frac{\Delta k_r}{k} = \frac{\lambda}{N \Delta r}
\]

\[
P(r) = \sum_{n=1}^{N} A_n e^{-\alpha_n r}
\]

\[
X(z) = H(z)U(z), \quad \rho_w = P_{uu}(z)
\]

constant

Ref.: Akaike Information Criterion, etc.

Purdue University
Herrick Laboratories
Simulation

Simulation setup

Monopole or dipole

- Frequency = 343 Hz
- Wavelength = 1 m
- No. of data = 50 per line

Rigid wall, $R=1$ or
No wall, $R=0$

- Monopole, dipole simulation
- No wall, rigid wall simulation

Reflection coefficients calculation
- Discrete Hankel Transform
- Prony spectral estimation
MONOPOLE CASE

Model order, N=5
No. of poles=6

Model order, N=5
No. of poles=6

Monopole without reflecting wall
Monopole with rigid reflecting wall
DIPOLE CASE

Model order, N=6
No. of poles=7

Model order, N=6
No. of poles=7

Dipole without reflecting wall

Dipole with rigid reflecting wall

Purdue University Herrick Laboratories
EXPERIMENT

- **Experimental setup**

 Axisymmetric source
 ![Unbaffled Loudspeaker](image)

 0.1m 0.012m 0.025m 0.002m 0.01m

 Reflecting surface, carpet

 21 frequencies (1953Hz-4004Hz)
 No. of data=120 per line
 In a semi-anechoic room

- Reflection coefficient calculation
 - Discrete Hankel transform approach
 - Prony spectral estimation approach
EXPERIMENTAL RESULTS

Model order, N=18
No. of poles=19

Model order, N=11
No. of poles=12

Frequency=1953Hz, N=120

Frequency=1953Hz, N=50

Purdue University

Herrick Laboratories
EXPERIMENTAL RESULTS

Model order, N=14
No. of poles=15

Model order, N=11.3
No. of poles=12.14

Frequency=2832Hz, N=120
Frequency=2832Hz, N=50

Purdue University
Herrick Laboratories
CONCLUSIONS

- Reflection coefficient measurement
 - Wave decomposition theory
 - 2 line microphone array

- Prony approach
 - Higher spectral resolution than discrete Hankel transform approach
 - Effective with less measurement points
 - Less leakage due to finite aperture

- Simulation & Experiment
APPENDIX

- **Prony model**

\[
P(r) = \sum_{n=1}^{N} A_n e^{-\alpha_n r} \quad P(i) = \sum_{n=1}^{N} B_n Z_n^i \quad r = \delta \Delta r, (1+\delta) \Delta r, (2+\delta) \Delta r, \ldots
\]

\[
\alpha_n = -\frac{\log Z_n}{\Delta r}, \ A_n = B_n e^{\alpha_n \delta \Delta r} \quad |Z_n| < 1
\]

\[
\tilde{P}(k_r) = \int_0^\infty r P(r) J_0(k_r r) dr
\]

\[
= \sum_{n=1}^{N} A_n \int_0^\infty r e^{-\alpha_n r} J_0(k_r r) dr
\]

\[
= \sum_{n=1}^{N} \frac{A_n \alpha_n}{(\alpha_n^2 + k_r^2)^{3/2}}
\]

Prony method:

Calculate \(A_n, \alpha_n \) by use of 2N or more data

Reflection coefficient

\[
R(k_z) = \frac{-\tilde{P}_1 e^{-jk_z z_2} + \tilde{P}_2 e^{-jk_z z_1}}{\tilde{P}_1 e^{jk_z z_2} - \tilde{P}_2 e^{jk_z z_1}}
\]